Phospholipid Fatty Acid Composition, Biomass, and Act Two Soil Types Experimentally Exposed to Different He

Applied and Environmental Microbiology 59, 3605-3617 DOI: 10.1128/aem.59.11.3605-3617.1993

Citation Report

ARTICLE

IF CITATIONS

1 Microbial Forensics. , 1964, , 227-257.

2	Tuberculostearic acid as a means of estimating the recovery (using dispersion and differential) Tj ETQq1 1 0.78	4314.rgBT /	Overlock 1
3	Bacterial communities in peat in relation to botanical composition as revealed by phospholipid fatty acid analysis. Soil Biology and Biochemistry, 1994, 26, 841-848.	4.2	114
4	Decreasing amounts of extractable phospholipid-linked fatty acids in a soil during decline in numbers of pseudomonads. Canadian Journal of Soil Science, 1994, 74, 277-284.	0.5	12
5	The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycological Research, 1995, 99, 623-629.	2.5	442
6	Microbial community structure and pH response in relation to soil organic matter quality in wood-ash fertilized, clear-cut or burned coniferous forest soils. Soil Biology and Biochemistry, 1995, 27, 229-240.	4.2	419
7	Thymidine and leucine incorporation into bacteria from soils experimentally contaminated with heavy metals. Applied Soil Ecology, 1996, 3, 225-234.	2.1	31
8	Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals. Soil Biology and Biochemistry, 1996, 28, 55-63.	4.2	307
9	Partitioning the variation of microbial measurements in forest soils into heavy metal and substrate quality dependent parts by use of near infrared spectroscopy and multivariate statistics. Soil Biology and Biochemistry, 1996, 28, 711-720.	4.2	30
10	Characterization of bacterial communities in heavy metal contaminated soils. Canadian Journal of Microbiology, 1996, 42, 593-603.	0.8	174
11	Influence of different temperatures on metal tolerance measurements and growth response in bacterial communities from unpolluted and polluted soils. Biology and Fertility of Soils, 1996, 21, 233-238.	2.3	25
12	The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 1996, 22, 59-65.	2.3	2,075
13	Influence of heavy metals on the functional diversity of soil microbial communities. Biology and Fertility of Soils, 1996, 23, 299-306.	2.3	485
14	Thymidine incorporation of bacteria sequentially extracted from soil using repeated homogenization-centrifugation. Microbial Ecology, 1996, 31, 153-166.	1.4	21
15	Broad-scale approaches to the determination of soil microbial community structure: Application of the community DNA hybridization technique. Microbial Ecology, 1996, 31, 269-80.	1.4	40
16	Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glornus intraradices. New Phytologist, 1996, 133, 705-712.	3.5	177
17	Toxicity of Nickel to Soil Organisms in Denmark. Reviews of Environmental Contamination and Toxicology, 1997, , 1-34.	0.7	20
18	Patterns of Rhizosphere Microbial Community Structure Associated with Co-Occurring Plant Species. Journal of Ecology, 1997, 85, 863.	1.9	161

#	Article	IF	CITATIONS
19	Comparative description of microbial community structure in surface sediments of eutrophic bays. Marine Pollution Bulletin, 1997, 34, 26-33.	2.3	46
20	Seasonality of the soil biota of grazed and ungrazed hill grasslands. Soil Biology and Biochemistry, 1997, 29, 1285-1294.	4.2	212
21	Where's the limit? Changes in the microbiological properties of agricultural soils at low levels of metal contamination. Soil Biology and Biochemistry, 1997, 29, 1405-1415.	4.2	151
22	Phospholipid fatty acid composition of size fractionated indigenous soil bacteria. Soil Biology and Biochemistry, 1997, 29, 1565-1569.	4.2	28
23	Title is missing!. Plant and Soil, 1998, 202, 251-262.	1.8	117
24	Interactions between ectomycorrhizal fungi and the bacterial community in soils amended with various primary minerals. FEMS Microbiology Ecology, 1998, 27, 195-205.	1.3	69
25	Prolonged, simulated acid rain and heavy metal deposition: separated and combined effects on forest soil microbial community structure. FEMS Microbiology Ecology, 1998, 27, 291-300.	1.3	64
26	The use of fatty acid signatures to study mycelial interactions between the arbuscular mycorrhizal fungus Glomus intraradices and the saprotrophic fungus Fusarium culmorum in root-free soil. Mycological Research, 1998, 102, 1491-1496.	2.5	70
27	Multivariate modelling of soil microbial variables in forest soil contaminated by heavy metals using wet chemical analyses and pyrolysis GC/MS. Soil Biology and Biochemistry, 1998, 30, 345-357.	4.2	23
28	Methane oxidation in landfill cover soils, as revealed by potential oxidation measurements and phospholipid fatty acid analyses. Soil Biology and Biochemistry, 1998, 30, 1423-1433.	4.2	73
29	Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biology and Biochemistry, 1998, 30, 1389-1414.	4.2	1,684
30	Soil microbial community structure: Effects of substrate loading rates. Soil Biology and Biochemistry, 1998, 31, 145-153.	4.2	428
31	Low amounts of root herbivory positively influence the rhizosphere microbial community in a temperate grassland soil. Soil Biology and Biochemistry, 1998, 31, 155-165.	4.2	111
32	DECOMPOSITION, MICROBIAL COMMUNITY STRUCTURE, AND EARTHWORM EFFECTS ALONG A BIRCH–SPRUCE SOIL GRADIENT. Ecology, 1998, 79, 834-846.	1.5	99
33	Effect of Metal-Rich Sludge Amendments on the Soil Microbial Community. Applied and Environmental Microbiology, 1998, 64, 238-245.	1.4	313
34	Suppression of the Biocontrol Agent <i>Trichoderma harzianum</i> by Mycelium of the Arbuscular Mycorrhizal Fungus <i>Glomus intraradices</i> in Root-Free Soil. Applied and Environmental Microbiology, 1999, 65, 1428-1434.	1.4	137
35	Abundance and Diversity of <i>Archaea</i> in Heavy-Metal-Contaminated Soils. Applied and Environmental Microbiology, 1999, 65, 3293-3297.	1.4	147
36	Microbial Biomass and Activity in Lead-Contaminated Soil. Applied and Environmental Microbiology, 1999, 65, 2256-2259.	1.4	108

#	Article	IF	CITATIONS
37	Below-Ground Microbial Community Development in a High Temperature World. Oikos, 1999, 85, 193.	1.2	84
38	Microbial characterization of a JP-4 fuel-contaminated site using a combined lipid biomarker/polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)-based approach. Environmental Microbiology, 1999, 1, 231-241.	1.8	66
39	Effects of various organic compounds on growth and phosphorus uptake of an arbuscular mycorrhizal fungus. New Phytologist, 1999, 141, 517-524.	3.5	111
40	Spatial patterns of ground vegetation, soil microbial biomass and activity in a mixed spruce-birch stand. Ecography, 1999, 22, 183-192.	2.1	128
41	Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiology Ecology, 1999, 30, 237-251.	1.3	237
42	Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biology and Fertility of Soils, 1999, 29, 111-129.	2.3	1,716
43	Structure of the Microbial Communities in Coniferous Forest Soils in Relation to Site Fertility and Stand Development Stage. Microbial Ecology, 1999, 38, 168-179.	1.4	245
44	Microbial Responses to Environmentally Toxic Cadmium. Microbial Ecology, 1999, 38, 358-364.	1.4	132
45	Responses of the soil microbiota to elevated CO2 in an artificial tropical ecosystem. Journal of Microbiological Methods, 1999, 36, 45-54.	0.7	43
46	PLANT REMOVALS IN PERENNIAL GRASSLAND: VEGETATION DYNAMICS, DECOMPOSERS, SOIL BIODIVERSITY, AND ECOSYSTEM PROPERTIES. Ecological Monographs, 1999, 69, 535-568.	2.4	415
47	Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands. Soil Biology and Biochemistry, 1999, 31, 1021-1030.	4.2	304
48	Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study. Soil Biology and Biochemistry, 1999, 31, 1455-1465.	4.2	158
49	Effects of the land application of sewage sludge on soil heavy metal concentrations and soil microbial communities. Soil Biology and Biochemistry, 1999, 31, 1467-1470.	4.2	63
50	Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biology and Biochemistry, 1999, 31, 1879-1887.	4.2	290
51	Identification of single cultured micro-organisms based on their whole-community fatty acid profiles, using an extended extraction procedure. Chemosphere, 1999, 39, 665-682.	4.2	70
52	Metal toxicity inferred from algal population density, heterotrophic substrate use, and fatty acid profile in a small stream. Environmental Toxicology and Chemistry, 2000, 19, 869-878.	2.2	49
53	A study of the structure and metal tolerance of the soil microbial community six years after cessation of sewage sludge applications. Environmental Toxicology and Chemistry, 2000, 19, 1983-1991.	2.2	69
54	Cu(II) complexes in bacterial growth medium: electron spin resonance study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2000, 56, 341-349.	2.0	4

#	Article	IF	CITATIONS
55	Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity-ecosystem function relationship. Oikos, 2000, 90, 279-294.	1.2	529
56	Growth of inoculated white-rot fungi and their interactions with the bacterial community in soil contaminated with polycyclic aromatic hydrocarbons, as measured by phospholipid fatty acids. Bioresource Technology, 2000, 73, 29-36.	4.8	56
57	Effect of Cd-containing wood ash on the microflora of coniferous forest humus. FEMS Microbiology Ecology, 2000, 32, 43-51.	1.3	70
58	Influence of decomposer food web structure and nitrogen availability on plant growth. Plant and Soil, 2000, 225, 153-165.	1.8	72
59	The growth of external AM fungal mycelium in sand dunes and in experimental systems. Plant and Soil, 2000, 226, 161-169.	1.8	102
60	Microbial Biomass and Community Structure in a Sequence of Soils with Increasing Fertility and Changing Land Use. Microbial Ecology, 2000, 40, 223-237.	1.4	382
61	Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biology and Fertility of Soils, 2000, 32, 390-400.	2.3	367
62	Phototrophic Biofilms on Ancient Mayan Buildings in Yucatan, Mexico. Current Microbiology, 2000, 40, 81-85.	1.0	80
63	Denitrovibrio acetiphilus, a novel genus and species of dissimilatory nitrate-reducing bacterium isolated from an oil reservoir model column International Journal of Systematic and Evolutionary Microbiology, 2000, 50, 1611-1619.	0.8	71
64	Effect of soil on microbial responses to metal contamination. Environmental Pollution, 2000, 110, 115-125.	3.7	111
65	Methods for assessing the composition and diversity of soil microbial communities. Applied Soil Ecology, 2000, 15, 25-36.	2.1	391
66	Ester-linked polar lipid fatty acid profiles of soil microbial communities: a comparison of extraction methods and evaluation of interference from humic acids. Soil Biology and Biochemistry, 2000, 32, 1241-1249.	4.2	64
67	Does short-term heating of forest humus change its properties as a substrate for microbes?. Soil Biology and Biochemistry, 2000, 32, 277-288.	4.2	108
68	Spatial variation and patterns of soil microbial community structure in a mixed spruce–birch stand. Soil Biology and Biochemistry, 2000, 32, 909-917.	4.2	283
69	Some observations on the copper tolerance of bacterial communities determined by the (3H)-thymidine incorporation method in heavy metal polluted humus. Soil Biology and Biochemistry, 2000, 32, 883-885.	4.2	9
70	Fatty acids in profundal benthic invertebrates and their major food resources in Lake Erken, Sweden: seasonal variation and trophic indications. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57, 2267-2279.	0.7	74
71	Shifts in Microbial Communities, Microbial Biomass and Organic Matter Mineralization for Three Mediterranean Soils Contaminated By Metals. Chemistry and Ecology, 2000, 17, 125-152.	0.6	1
72	Lipid and fatty acid composition of hyphae and spores of arbuscular mycorrhizal fungi at different growth stages. Mycological Research, 2000, 104, 429-434.	2.5	152

#	Article	IF	CITATIONS
73	Quantification of Aphanomyces euteiches in pea roots using specific fatty acids. Mycological Research, 2000, 104, 858-864.	2.5	20
74	Rhizosphere Effects on Microbial Community Structure and Dissipation and Toxicity of Polycyclic Aromatic Hydrocarbons (PAHs) in Spiked Soil. Environmental Science & Technology, 2001, 35, 2773-2777.	4.6	197
75	Effects of petroleum hydrocarbons on the phospholipid fatty acid composition of a consortium composed of marine hydrocarbon-degrading bacteria. Organic Geochemistry, 2001, 32, 891-903.	0.9	39
76	Structural diversity of microorganisms in chemically perturbed soil assessed by molecular and cytochemical approaches. Journal of Microbiological Methods, 2001, 43, 197-212.	0.7	152
77	Structural diversity of microbial communities in arable soils of a heavily industrialised area determined by PCR-DGGE fingerprinting and FAME profiling. Applied Soil Ecology, 2001, 17, 31-42.	2.1	89
78	Microbial communities in boreal coniferous forest humus exposed to heavy metals and changes in soil pH—a summary of the use of phospholipid fatty acids, Biolog® and 3H-thymidine incorporation methods in field studies. Geoderma, 2001, 100, 91-126.	2.3	127
79	Response of soil bacterial communities pre-exposed to different metals and reinoculated in an unpolluted soil. Soil Biology and Biochemistry, 2001, 33, 241-248.	4.2	68
80	Influence of long-term heavy-metal contamination on microbial communities in soil. Soil Biology and Biochemistry, 2001, 33, 287-295.	4.2	133
81	Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biology and Biochemistry, 2001, 33, 533-551.	4.2	415
82	Soil microbial community responses to dairy manure or ammonium nitrate applications. Soil Biology and Biochemistry, 2001, 33, 1011-1019.	4.2	379
83	A comparison of sole carbon source utilization patterns and phospholipid fatty acid profiles to detect changes in the root microflora of hydroponically grown crops. Canadian Journal of Microbiology, 2001, 47, 302-308.	0.8	9
84	In Situ Bioremediation through Mulching of Soil Polluted by a Copper–Nickel Smelter. Journal of Environmental Quality, 2001, 30, 1134-1143.	1.0	52
85	Composting organic residues: Trace metals and microbial pathogens. Canadian Journal of Soil Science, 2001, 81, 357-367.	0.5	8
86	Influence of Cognettia sphagnetorum (Enchytraeidae) on birch growth and microbial activity, composition and biomass in soil with or without wood ash. Biology and Fertility of Soils, 2001, 34, 185-195.	2.3	21
87	Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytologist, 2001, 151, 753-760.	3.5	420
88	Plants and fertilisers as drivers of change in microbial community structure and function in soils. Plant and Soil, 2001, 232, 135-145.	1.8	202
89	EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant and Soil, 2001, 235, 105-114.	1.8	333
90	The role of soil microorganisms in soil organic matter conservation in the tropics. Nutrient Cycling in Agroecosystems, 2001, 61, 41-51.	1.1	87

#	Article	IF	CITATIONS
91	Drought acclimation confers cold tolerance in the soil collembolan Folsomia candida. Journal of Insect Physiology, 2001, 47, 1197-1204.	0.9	120
92	Microbiota responsible for the decomposition of rice straw in a submerged paddy soil estimated from phospholipid fatty acid composition. Soil Science and Plant Nutrition, 2001, 47, 569-578.	0.8	21
93	Microbial and Plant Community Structure Across a Primary Succession Gradient. Scandinavian Journal of Forest Research, 2001, 16, 37-43.	0.5	64
94	Comparison of microbial communities in percolating water from plow layer and subsoil layer estimated by phospholipid fatty acid (PLFA) analysis. Soil Science and Plant Nutrition, 2002, 48, 877-881.	0.8	8
95	Soil ecosystem properties, microbial diversity, and ecosystem assessments. Developments in Soil Science, 2002, , 79-93.	0.5	0
96	Phosphorus Effects on Metabolic Processes in Monoxenic Arbuscular Mycorrhiza Cultures. Plant Physiology, 2002, 130, 1162-1171.	2.3	110
97	Comparison of phospholipid fatty acid composition in percolating water, floodwater, and the plow layer soil during the rice cultivation period in a Japanese paddy field. Soil Science and Plant Nutrition, 2002, 48, 595-600.	0.8	8
98	Responses of Microbial Activity and Decomposer Organisms to Contamination in Microcosms Containing Coniferous Forest Soil. Ecotoxicology and Environmental Safety, 2002, 53, 93-103.	2.9	4
99	Succession of microbiota estimated by phospholipid fatty acid analysis and changes in organic constituents during the composting process of rice straw. Soil Science and Plant Nutrition, 2002, 48, 735-743.	0.8	42
100	Soil processes are not influenced by the functional complexity of soil decomposer food webs under disturbance. Soil Biology and Biochemistry, 2002, 34, 1009-1020.	4.2	60
101	Relationships between soil microbial biomass determined by chloroform fumigation–extraction, substrate-induced respiration, and phospholipid fatty acid analysis. Soil Biology and Biochemistry, 2002, 34, 1385-1389.	4.2	205
102	Short and long-term effects of wood ash on the boreal forest humus microbial community. Soil Biology and Biochemistry, 2002, 34, 1343-1353.	4.2	81
103	Phosphorus uptake of an arbuscular mycorrhizal fungus is not effected by the biocontrol bacterium Burkholderia cepacia. Soil Biology and Biochemistry, 2002, 34, 1875-1881.	4.2	23
104	Preliminary data about compartmentalization of the gut of the saprophagous dipteran larvae Penthetria holosericea (Bibionidae). European Journal of Soil Biology, 2002, 38, 47-51.	1.4	14
105	Effects of metal (Cd, Cu, Ni, Pb or Zn) enrichment of sewage-sludge on soil micro-organisms and their activities. Applied Soil Ecology, 2002, 20, 145-155.	2.1	112
106	Indirect effects of earthworms on microbial assimilation of labile carbon. Applied Soil Ecology, 2002, 20, 255-261.	2.1	47
107	Analysis of the structural diversity of the microbial community in a paper-mill water system. Water S A, 2002, 28, 407.	0.2	3
108	Soil microbial community of abandoned sand fields. Folia Microbiologica, 2002, 47, 435-440.	1.1	13

#	Article	IF	Citations
109	Relationship between soil microarthropod species diversity and plant growth does not change when the system is disturbed. Oikos, 2002, 96, 137-149.	1.2	88
110	Arbuscular mycorrhizal fungi respond to the substrate pH of their extraradical mycelium by altered growth and root colonization. New Phytologist, 2002, 155, 173-182.	3.5	153
111	Influence of pasture management (nitrogen and lime addition and insecticide treatment) on soil organisms and pasture root system dynamics in the field. Plant and Soil, 2003, 255, 121-130.	1.8	22
112	Combined effect of an arbuscular mycorrhizal fungus and a biocontrol bacterium againstPythium ultimum in soil. Folia Geobotanica, 2003, 38, 145-154.	0.4	27
113	The Use of Neutral Lipid Fatty Acids to Indicate the Physiological Conditions of Soil Fungi. Microbial Ecology, 2003, 45, 373-383.	1.4	225
114	Fungal growth and effects of different wood decomposing fungi on the indigenous bacterial community of polluted and unpolluted soils. Biology and Fertility of Soils, 2003, 37, 190-197.	2.3	66
115	Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipid fatty acid profiles. Biology and Fertility of Soils, 2003, 38, 65-71.	2.3	128
116	Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biology and Biochemistry, 2003, 35, 453-461.	4.2	783
117	Changes in the succession and diversity of protozoan and microbial populations in soil spiked with a range of copper concentrations. Soil Biology and Biochemistry, 2003, 35, 1507-1516.	4.2	46
118	Boreal forest microbial community after long-term field exposure to acid and metal pollution and its potential remediation by using wood ash. Soil Biology and Biochemistry, 2003, 35, 1517-1526.	4.2	25
119	Incomplete degradation of polycyclic aromatic hydrocarbons in soil inoculated with woodâ€rotting fungi and their effect on the indigenous soil bacteria. Environmental Toxicology and Chemistry, 2003, 22, 1238-1243.	2.2	87
120	Interactions of heavy metals with white-rot fungi. Enzyme and Microbial Technology, 2003, 32, 78-91.	1.6	539
121	Allocation of plant carbon to foraging and storage in arbuscular mycorrhizal fungi. FEMS Microbiology Ecology, 2003, 45, 181-187.	1.3	74
122	Effects of copper amendment on the bacterial community in agricultural soil analyzed by the T-RFLP technique. FEMS Microbiology Ecology, 2003, 46, 53-62.	1.3	72
123	Microbial characteristics of soils on a latitudinal transect in Siberia. Clobal Change Biology, 2003, 9, 1106-1117.	4.2	58
124	Production of external mycelium by ectomycorrhizal fungi in a norway spruce forest was reduced in response to nitrogen fertilization. New Phytologist, 2003, 158, 409-416.	3.5	244
125	Microbial succession in the rhizosphere of live and decomposing barley roots as affected by the antagonistic strain Pseudomonas fluorescens DR54-BN14 or the fungicide imazalil. FEMS Microbiology Ecology, 2003, 43, 383-392.	1.3	35
126	Cadmium-containing wood ash in a pine forest: effects on humus microflora and cadmium concentrations in mushrooms, berries, and needles. Canadian Journal of Forest Research, 2003, 33, 2443-2451.	0.8	26

#	Article	IF	CITATIONS
127	Chapter 8 Microbial indicators. Trace Metals and Other Contaminants in the Environment, 2003, , 259-282.	0.1	22
128	Substrate utilization pattern, biomass and activity of microbial communities in a sequence of heavy metal-polluted paddy soils. Geoderma, 2003, 115, 139-148.	2.3	137
129	Microbial activity and phospholipid fatty acid pattern in long-term tannery waste-contaminated soil. Ecotoxicology and Environmental Safety, 2003, 56, 302-310.	2.9	31
130	Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Journal of Environmental Management, 2003, 8, 121-135.	1.7	384
131	Fungal Lipid Accumulation and Development of Mycelial Structures by Two Arbuscular Mycorrhizal Fungi. Applied and Environmental Microbiology, 2003, 69, 6762-6767.	1.4	125
132	Use of Phospholipid Fatty Acids To Detect Previous Self-Heating Events in Stored Peat. Applied and Environmental Microbiology, 2003, 69, 3532-3539.	1.4	35
133	Differences in Hyporheic-Zone Microbial Community Structure along a Heavy-Metal Contamination Gradient. Applied and Environmental Microbiology, 2003, 69, 5563-5573.	1.4	134
134	Chromium-Microorganism Interactions in Soils: Remediation Implications. Reviews of Environmental Contamination and Toxicology, 2003, 178, 93-164.	0.7	106
135	Microbial Community Dynamics Associated with Rhizosphere Carbon Flow. Applied and Environmental Microbiology, 2003, 69, 6793-6800.	1.4	309
136	Ethylenediaminedissuccinate as a New Chelate for Environmentally Safe Enhanced Lead Phytoextraction. Journal of Environmental Quality, 2003, 32, 500-506.	1.0	143
137	Principal components derived from soil physicochemical data explained a land degradation gradient, and suggested the applicability of new indexes for estimation of soil productivity in the Sakaerat Environmental Research Station, Thailand. International Journal of Sustainable Development and World Ecology, 2004, 11, 298-311.	3.2	14
138	Seasonal Dynamics of Shallow-Hyporheic-Zone Microbial Community Structure along a Heavy-Metal Contamination Gradient. Applied and Environmental Microbiology, 2004, 70, 2323-2331.	1.4	55
139	Nutrient Dynamics. Journal of Crop Improvement, 2004, 11, 209-248.	0.9	2
140	Determining Rates of Change and Evaluating Group-Level Resiliency Differences in Hyporheic Microbial Communities in Response to Fluvial Heavy-Metal Deposition. Applied and Environmental Microbiology, 2004, 70, 4756-4765.	1.4	26
141	Extractability and plant uptake of copper in contaminated coffee orchard soils as affected by different amendments. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2004, 54, 121-127.	0.3	6
142	Effect of Cadmium, Copper, and Lead on Different Enzyme Activities in a Native Forest Soil. Communications in Soil Science and Plant Analysis, 2004, 35, 1309-1321.	0.6	47
143	Retention and removal of the fish pathogenic bacterium Yersinia ruckeri in biological sand filters. Journal of Applied Microbiology, 2004, 97, 598-608.	1.4	8
144	Use of 13C-labelled plant materials and ergosterol, PLFA and NLFA analyses to investigate organic matter decomposition in Antarctic soil. Soil Biology and Biochemistry, 2004, 36, 165-175.	4.2	68

#	Article	IF	CITATIONS
145	Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biology and Biochemistry, 2004, 36, 499-512.	4.2	302
146	Short-term effects of defoliation on the soil microbial community associated with two contrasting Lolium perenne cultivars. Soil Biology and Biochemistry, 2004, 36, 489-498.	4.2	58
147	Phospholipid fatty acid composition of a 2,4,6-trinitrotolune contaminated soil and an uncontaminated soil as affected by a humification remediation process. Soil Biology and Biochemistry, 2004, 36, 725-729.	4.2	17
148	Changes in tolerance of soil microbial communities in Zn and Cd contaminated soils. Soil Biology and Biochemistry, 2004, 36, 805-813.	4.2	78
149	Rock fragments in soil support a different microbial community from the fine earth. Soil Biology and Biochemistry, 2004, 36, 1119-1128.	4.2	111
150	Effects of modified Pb-, Zn-, and Cd- availability on the microbial communities and on the degradation of isoproturon in a heavy metal contaminated soil. Soil Biology and Biochemistry, 2004, 36, 1943-1954.	4.2	39
151	Influence of resource quality on the composition of soil decomposer community in fragmented and continuous habitat. Soil Biology and Biochemistry, 2004, 36, 1983-1996.	4.2	33
152	Can the extent of degradation of soil fungal mycelium during soil incubation be used to estimate ectomycorrhizal biomass in soil?. Soil Biology and Biochemistry, 2004, 36, 2105-2109.	4.2	60
153	Age heterogeneity of soil organic matter. Nuclear Instruments & Methods in Physics Research B, 2004, 223-224, 521-527.	0.6	44
154	Colonisation and molecular diversity of arbuscular mycorrhizal fungi in the aquatic plants Littorella uniflora and Lobelia dortmanna in southern Sweden. Mycological Research, 2004, 108, 616-625.	2.5	86
155	Copper contamination of soil and vegetation in coffee orchards after long-term use of Cu fungicides. Nutrient Cycling in Agroecosystems, 2004, 69, 203-211.	1.1	48
156	The impact of crop plant cultivation and peat amendment on soil microbial activity and structure. Plant and Soil, 2004, 264, 273-286.	1.8	47
157	Effects of long term CO2enrichment on microbial community structure in calcareous grassland. Plant and Soil, 2004, 264, 313-323.	1.8	57
158	Production, standing biomass and natural abundance of 15 N and 13 C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia, 2004, 139, 89-97.	0.9	198
159	Application of ARDRA and PLFA analysis in characterizing the bacterial communities of the food, gut and excrement of saprophagous larvae ofPenthetria holosericea (Diptera: Bibionidae): a pilot study. Folia Microbiologica, 2004, 49, 83-93.	1.1	43
160	Rhizosphere bacterial populations of metallophyte plants in heavy metal-contaminated soils from mining areas in semiarid climate. World Journal of Microbiology and Biotechnology, 2004, 20, 759-766.	1.7	22
161	Changes in metabolic and structural diversity of a soil bacterial community in response to cadmium toxicity. Biology and Fertility of Soils, 2004, 39, 452-456.	2.3	11
162	The Use of Phospholipid Fatty Acid Analysis to Measure Impact of Acid Rock Drainage on Microbial Communities in Sediments. Microbial Ecology, 2004, 48, 300-315.	1.4	36

#	Article	IF	CITATIONS
163	Microbiological changes during bioremediation of explosives-contaminated soils in laboratory and pilot-scale bioslurry reactors. Bioresource Technology, 2004, 91, 123-133.	4.8	42
164	Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. FEMS Microbiology Ecology, 2004, 47, 39-50.	1.3	234
165	Spatial structure in soil chemical and microbiological properties in an upland grassland. FEMS Microbiology Ecology, 2004, 49, 191-205.	1.3	154
166	SOIL FUNGI ALTER INTERACTIONS BETWEEN THE INVADER CENTAUREA MACULOSA AND NORTH AMERICAN NATIVES. Ecology, 2004, 85, 1062-1071.	1.5	206
167	Microscale and Molecular Assessment of Impacts of Nickel, Nutrients, and Oxygen Level on Structure and Function of River Biofilm Communities. Applied and Environmental Microbiology, 2004, 70, 4326-4339.	1.4	129
168	ASSESSMENT AND MANAGEMENT OF SOIL MICROBIAL COMMUNITY STRUCTURE FOR DISEASE SUPPRESSION. Annual Review of Phytopathology, 2004, 42, 35-59.	3.5	280
169	The influence of collembolans and earthworms on AM fungal mycelium. Applied Soil Ecology, 2004, 27, 211-220.	2.1	79
170	Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Applied Soil Ecology, 2004, 25, 63-84.	2.1	331
171	Metal Toxicity Affects Fungal and Bacterial Activities in Soil Differently. Applied and Environmental Microbiology, 2004, 70, 2966-2973.	1.4	375
172	Effects of mefenacet and pretilachlor applications on phospholipid fatty acid profiles of soil microbial communities in rice paddy soil. Soil Science and Plant Nutrition, 2004, 50, 349-356.	0.8	9
173	Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agriculture, Ecosystems and Environment, 2005, 109, 141-152.	2.5	269
174	Growth and biomass of mycorrhizal mycelia in coniferous forests along short natural nutrient gradients. New Phytologist, 2005, 165, 613-622.	3.5	138
175	The influence of external nitrogen on carbon allocation to Glomus intraradices in monoxenic arbuscular mycorrhiza. New Phytologist, 2005, 168, 677-686.	3.5	50
176	Relationship between communities and processes; new insights from a field study of a contaminated ecosystem. Ecology Letters, 2005, 8, 1201-1210.	3.0	63
177	Changes in the microbial community of an arable soil caused by long-term metal contamination. European Journal of Soil Science, 2005, 56, 93-102.	1.8	77
178	Species richness and food web structure of soil decomposer community as affected by the size of habitat fragment and habitat corridors. Global Change Biology, 2005, 11, 1614-1627.	4.2	55
179	Below-ground responses of silver birch trees exposed to elevated CO2 and O3 levels during three growing seasons. Global Change Biology, 2005, 11, 1167-1179.	4.2	70
180	Functional stability of microbial communities in contaminated soils. Oikos, 2005, 111, 119-129.	1.2	85

ARTICLE IF CITATIONS Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster. 181 0.9 224 Journal of Insect Physiology, 2005, 51, 1173-1182. Microbial communities in forest floors under four tree species in coastal British Columbia. Soil 4.2 Biology and Biochemistry, 2005, 37, 1157-1167. Effects of Lumbricus terrestris, Allolobophora chlorotica and Eisenia fetida on microbial community 183 4.2 64 dynamics in oil-contaminated soil. Soil Biology and Biochemistry, 2005, 37, 2065-2076. Non-target effects of the microbial control agents DR54 and IK726 in soils cropped with barley 184 followed by sugar beet: a greenhouse assessment. Soil Biology and Biochemistry, 2005, 37, 2225-2239. Using Phospholipid Fatty Acid Technique to Study Short-Term Effects of the Biological Control Agent Pseudomonas fluorescens DR54 on the Microbial Microbiota in Barley Rhizosphere. Microbial 185 1.4 62 Ecology, 2005, 49, 272-281. Heterotrophic Fixation of CO2 in Soil. Microbial Ecology, 2005, 49, 218-225. 1.4 Microbial Biomass, Community Structure and Metal Tolerance of a Naturally Pb-Enriched Forest Soil. 187 1.4 71 Microbial Ecology, 2005, 50, 496-505. Cadmium in upland forests after vitality fertilization with wood ash?a summary of soil microbiological studies into the potential risk of cadmium release. Biology and Fertility of Soils, 2005, 2.3 41, 75-84. Physiology and microbial community structure in soil at extreme water content. Folia 189 72 1.1 Microbiológica, 2005, 50, 161-6. Changes in the microbial community in a forest soil amended with aluminium in situ. Plant and Soil, 1.8 2005, 275, 295-304. Nutrient and Carbon Additions to the Microbial Soil Community and its Impact on Tree Seedlings in a 191 1.8 10 Boreal Spruce Forest. Plant and Soil, 2005, 278, 275-291. Microbial Response to Heavy Metal-Polluted Soils. Journal of Environmental Quality, 2005, 34, 1.0 100 1789-1800. Compaction Alters Physical but Not Biological Indices of Soil Health. Soil Science Society of America 193 1.2 107 Journal, 2005, 69, 236. Community Structure Comparison Using FAME Analysis of Desert Varnish and Soil, Mojave Desert, California. Geomicrobiology Journal, 2005, 22, 353-360. 194 1.0 13 C Incorporation into Signature Fatty Acids as an Assay for Carbon Allocation in Arbuscular 195 1.4 52 Mycorrhiza. Applied and Environmental Microbiology, 2005, 71, 2592-2599. Effects of lead and cadmium nitrate on biomass and substrate utilization pattern of soil microbial communities. Chemosphere, 2005, 60, 508-514. The use of microorganisms in ecological soil classification and assessment concepts. Ecotoxicology 197 2.9 210 and Environmental Safety, 2005, 62, 230-248. Microbiota accompanying different arbuscular mycorrhizal fungal isolates influence soil 198 aggregation. Pedobiologia, 2005, 49, 251-259.

#	Article	IF	CITATIONS
199	The use of 13C labelling of bacterial lipids in the characterisation of ambient methane-oxidising bacteria in soils. Organic Geochemistry, 2005, 36, 769-778.	0.9	39
200	Colonisation of newly established habitats by soil decomposer organisms: the effect of habitat corridors in relation to colonisation distance and habitat size. Applied Soil Ecology, 2005, 28, 67-77.	2.1	20
201	Soil microbial diversity of four German long-term field experiments. Archives of Agronomy and Soil Science, 2006, 52, 507-523.	1.3	18
202	Assessing effects of forest management on microbial community structure in a central European beech forest. Canadian Journal of Forest Research, 2006, 36, 2595-2604.	0.8	18
203	Heterogeneity of Physico-Chemical Properties in Structured Soils and Its Consequences. Pedosphere, 2006, 16, 284-296.	2.1	63
204	Microbial community responses in forest mineral soil to compaction, organic matter removal, and vegetation control. Canadian Journal of Forest Research, 2006, 36, 577-588.	0.8	75
205	Effects of soil macrofauna on other soil biota and soil formation in reclaimed and unreclaimed post mining sites: Results of a field microcosm experiment. Applied Soil Ecology, 2006, 33, 308-320.	2.1	136
206	Interactions between fertilizer addition, plants and the soil environment: Implications for soil faunal structure and diversity. Applied Soil Ecology, 2006, 33, 199-207.	2.1	35
207	Changes in microbial community structure following herbicide (glyphosate) additions to forest soils. Applied Soil Ecology, 2006, 34, 114-124.	2.1	230
208	Effects of small-scale habitat fragmentation, habitat corridors and mainland dispersal on soil decomposer organisms. Applied Soil Ecology, 2006, 34, 152-159.	2.1	25
209	Biodegradability of the X-ray contrast compound diatrizoic acid, identification of aerobic degradation products and effects against sewage sludge micro-organisms. Chemosphere, 2006, 62, 294-302.	4.2	100
210	Response of microbial activities to heavy metals in a neutral loamy soil treated with biosolid. Chemosphere, 2006, 64, 63-70.	4.2	76
211	2,4-Dichlorophenoxyacetic acid (2,4-D) biodegradation in river sediments of Northeast-Scotland and its effect on the microbial communities (PLFA and DGGE). Chemosphere, 2006, 64, 1675-1683.	4.2	52
212	Functional and community-level soil microbial responses to zinc addition may depend on test system biocomplexity. Chemosphere, 2006, 65, 1747-1754.	4.2	11
213	Fungal Degradation of Pesticides. , 0, , 181-214.		2
214	Structural diversity of bacterial communities in a heavy metal mineralized granite outcrop. Environmental Microbiology, 2006, 8, 383-393.	1.8	24
215	A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries. Environmental Microbiology, 2006, 8, 1575-1589.	1.8	103
216	Community DNA hybridisation and %G+C profiles of microbial communities from heavy metal polluted soils. FEMS Microbiology Ecology, 2006, 24, 103-112.	1.3	59

#	Article	IF	CITATIONS
217	Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiology Ecology, 2006, 24, 289-300.	1.3	539
218	Decreased abundance and diversity of culturable Pseudomonas spp. populations with increasing copper exposure in the sugar beet rhizosphere. FEMS Microbiology Ecology, 2006, 56, 281-291.	1.3	43
219	Phylogeny of arbuscular mycorrhizal fungi predicts community composition of symbiosis-associated bacteria. FEMS Microbiology Ecology, 2006, 57, 389-395.	1.3	71
220	Field and microcosm experiments to evaluate the effects of agricultural Cu treatment on the density and genetic structure of microbial communities in two different soils. FEMS Microbiology Ecology, 2006, 58, 303-315.	1.3	66
221	Compaction of forest soil by logging machinery favours occurrence of prokaryotes. FEMS Microbiology Ecology, 2006, 58, 503-516.	1.3	44
222	Selected ion monitoring in quantitative gas–liquid chromatographic – mass spectrometric detection of fatty acid methyl esters from environmental samples. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2006, 831, 281-287.	1.2	5
223	Effect of different fertilization treatments on ecological characteristics of microorganism in paddy soil. Journal of Zhejiang University: Science A, 2006, 7, 376-380.	1.3	4
224	Changes in Soil Microbial Community Associated with Invasion of the Exotic Weed, Mikania micrantha H.B.K. Plant and Soil, 2006, 281, 309-324.	1.8	116
225	Immediate Impact of the Flood (Bohemia, August 2002) on Selected Soil Characteristics. Water, Air, and Soil Pollution, 2006, 173, 177-193.	1.1	16
226	Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three?. Oecologia, 2006, 150, 590-601.	0.9	568
227	Ammonia-oxidizing communities in agricultural soil incubated with organic waste residues. Biology and Fertility of Soils, 2006, 42, 315-323.	2.3	31
228	Bacterial Activity, Community Structure, and Centimeter-Scale Spatial Heterogeneity in Contaminated Soil. Microbial Ecology, 2006, 51, 220-231.	1.4	93
229	Microbial Community Analysis of Soils Contaminated with Lead, Chromium and Petroleum Hydrocarbons. Microbial Ecology, 2006, 51, 209-219.	1.4	112
230	Relationships between Sediment Microbial Communities and Pollutants in Two California Salt Marshes. Microbial Ecology, 2006, 52, 619-633.	1.4	24
231	Application of antisense transformation of a barley chitinase in studies of arbuscule formation by a mycorrhizal fungus. Hereditas, 2006, 142, 65-72.	0.5	3
232	Lead contamination of an old shooting range affecting the local ecosystem — A case study with a holistic approach. Science of the Total Environment, 2006, 369, 99-108.	3.9	46
233	Fungal biomass development in a chronosequence of land abandonment. Soil Biology and Biochemistry, 2006, 38, 51-60.	4.2	216
234	Microbial community structure and function in a soil contaminated by heavy metals: effects of plant growth and different amendments. Soil Biology and Biochemistry, 2006, 38, 327-341.	4.2	247

#	Article	IF	CITATIONS
235	Defoliation and fertiliser influences on the soil microbial community associated with two contrasting Lolium perenne cultivars. Soil Biology and Biochemistry, 2006, 38, 674-682.	4.2	13
236	Microbial activity and community structure of a soil after heavy metal contamination in a model forest ecosystem. Soil Biology and Biochemistry, 2006, 38, 1745-1756.	4.2	110
237	Microbial diversity in three floodplain soils at the Elbe River (Germany). Soil Biology and Biochemistry, 2006, 38, 2144-2151.	4.2	104
238	Uptake of 87Sr from microcline and biotite by ectomycorrhizal fungi in a Norway spruce forest. Soil Biology and Biochemistry, 2006, 38, 2487-2490.	4.2	17
239	Organic compounds that reach subsoil may threaten groundwater quality; effect of benzotriazole on degradation kinetics and microbial community composition. Soil Biology and Biochemistry, 2006, 38, 2543-2556.	4.2	33
240	Cumulative Effects of Short-Term Polymetal Contamination on Soil Bacterial Community Structure. Applied and Environmental Microbiology, 2006, 72, 1684-1687.	1.4	59
241	Effect of P Availability on Temporal Dynamics of Carbon Allocation and Glomus intraradices High-Affinity P Transporter Gene Induction in Arbuscular Mycorrhiza. Applied and Environmental Microbiology, 2006, 72, 4115-4120.	1.4	43
242	Diversity, Composition, and Geographical Distribution of Microbial Communities in California Salt Marsh Sediments. Applied and Environmental Microbiology, 2006, 72, 3357-3366.	1.4	108
243	Reorganization of membrane lipids during fast and slow cold hardening in Drosophila melanogaster. Physiological Entomology, 2006, 31, 328-335.	0.6	77
244	Identification and Isolation of a Castellaniella Species Important during Biostimulation of an Acidic Nitrate- and Uranium-Contaminated Aquifer. Applied and Environmental Microbiology, 2007, 73, 4892-4904.	1.4	55
245	Influences of polycyclic aromatic hydrocarbons (PAHs) on soil microbial community composition with or without Vegetation. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2007, 42, 65-72.	0.9	19
246	Use of Fatty Acid Methyl Ester Profiles to Compare Copper-Tolerant and Copper-Sensitive Strains of <i>Pantoea ananatis</i> . Phytopathology, 2007, 97, 1298-1304.	1.1	13
247	Effects of compost addition on extra-radical growth of arbuscular mycorrhizal fungi in Acacia tortilis ssp. raddiana savanna in a pre-Saharan area. Applied Soil Ecology, 2007, 35, 184-192.	2.1	32
248	Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring. Applied Soil Ecology, 2007, 35, 610-621.	2.1	151
249	Assessment of soil microbial communities in surface applied mixtures of Illinois River sediments and biosolids. Applied Soil Ecology, 2007, 36, 176-183.	2.1	27
250	Assessing plant-microbial competition for 33P using uptake into phospholipids. Applied Soil Ecology, 2007, 36, 233-237.	2.1	12
251	Carbon and nitrogen limitation to microbial respiration and biomass in an acidic solfatara field. European Journal of Soil Biology, 2007, 43, 1-13.	1.4	36
252	Effects of soil moisture and plant interactions on the soil microbial community structure. European Journal of Soil Biology, 2007, 43, 31-38.	1.4	103

#	Article	IF	Citations
253	New advances in plant growth-promoting rhizobacteria for bioremediation. Environment International, 2007, 33, 406-413.	4.8	495
254	Influence of lead acetate on soil microbial biomass and community structure in two different soils with the growth of Chinese cabbage (Brassica chinensis). Chemosphere, 2007, 66, 1197-1205.	4.2	21
255	Differences in cold and drought tolerance of high arctic and sub-arctic populations of Megaphorura arctica Tullberg 1876 (Onychiuridae: Collembola). Cryobiology, 2007, 55, 315-323.	0.3	45
256	Microbial activity during summer in humus layers under Pinus silvestris and Alnus incana. Forest Ecology and Management, 2007, 242, 314-323.	1.4	25
257	Adherent bacteria in heavy metal contaminated marine sediments. Biofouling, 2007, 23, 1-13.	0.8	49
258	Soil Microbial Community Structure and Function Assessed by FAME, PLFA and DGCE — Advantages and Limitations. Soil Biology, 2007, , 181-200.	0.6	18
259	Understanding Microbially Active Biogeochemical Environments. Advances in Applied Microbiology, 2007, 62, 81-104.	1.3	21
260	Effects of 2,4-dichlorophenol, pentachlorophenol and vegetation on microbial characteristics in a heavy metal polluted soil. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2007, 42, 551-557.	0.7	15
261	Carbon and nitrogen limitation of soil microbial respiration in a High Arctic successional glacier foreland near Ny-Alesund, Svalbard. Polar Research, 2007, 26, 22-30.	1.6	82
262	Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytologist, 2007, 173, 600-610.	3.5	472
263	Interactions between extraradical ectomycorrhizal mycelia, microbes associated with the mycelia and growth rate of Norway spruce (Picea abies) clones. New Phytologist, 2007, 173, 798-807.	3.5	63
264	Low amounts of herbivory by root-knot nematodes affect microbial community dynamics and carbon allocation in the rhizosphere. FEMS Microbiology Ecology, 2007, 62, 268-279.	1.3	57
265	Fungal and bacterial growth in soil with plant materials of different C/N ratios. FEMS Microbiology Ecology, 2007, 62, 258-267.	1.3	317
266	Local variation in soil microbial community structure in seminatural and artificial grasslands. Grassland Science, 2007, 53, 165-171.	0.6	8
267	Selective depletion of organic matter in mottled podzol horizons. Soil Biology and Biochemistry, 2007, 39, 607-621.	4.2	44
268	Profiling of PLFA: Implications for nonlinear spatial gradient of PCP degradation in the vicinity of Lolium perenne L. roots. Soil Biology and Biochemistry, 2007, 39, 1121-1129.	4.2	40
269	Carbon allocation in mycelia of arbuscular mycorrhizal fungi during colonisation of plant seedlings. Soil Biology and Biochemistry, 2007, 39, 1450-1458.	4.2	38
270	Linking dynamics of soil microbial phospholipid fatty acids to carbon mineralization in a 13C natural abundance experiment: Impact of heavy metals and acid rain. Soil Biology and Biochemistry, 2007, 39, 3177-3186.	4.2	52

#	Article	IF	CITATIONS
271	Phospholipid fatty acid patterns of microbial communities in paddy soil under different fertilizer treatments. Journal of Environmental Sciences, 2007, 19, 55-59.	3.2	42
272	GC–MS–MS analysis of bacterial fatty acids in heavily creosote-contaminated soil samples. Analytical and Bioanalytical Chemistry, 2007, 387, 1573-1577.	1.9	10
273	Microbial community structure and ecology of subglacial sediments in two polythermal Svalbard glaciers characterized by epifluorescence microscopy and PLFA. Polar Biology, 2007, 30, 277-287.	0.5	93
274	Experimentally induced effects of heavy metal on microbial activity and community structure of forest mor layers. Biology and Fertility of Soils, 2007, 44, 79-91.	2.3	67
275	Does carbon partitioning in ectomycorrhizal pine seedlings under elevated CO2 vary with fungal species?. Plant and Soil, 2007, 291, 323-333.	1.8	27
276	An invasive aster (Ageratina adenophora) invades and dominates forest understories in China: altered soil microbial communities facilitate the invader and inhibit natives. Plant and Soil, 2007, 294, 73-85.	1.8	152
277	Growth of ectomycorrhizal mycelia and composition of soil microbial communities in oak forest soils along a nitrogen deposition gradient. Oecologia, 2007, 153, 375-384.	0.9	156
278	Physical, chemical and microbiological properties of an Andisol as related to land use and tillage practice. Soil and Tillage Research, 2008, 101, 10-19.	2.6	109
279	Suitability of mycorrhiza-defective mutant/wildtype plant pairs (Solanum lycopersicum L. cv) Tj ETQq0 0 0 rgBT /	Overlock 1 1.8	10 Tf 50 422
280	Screening for decolorizing basidiomycetes in Mexico. World Journal of Microbiology and Biotechnology, 2008, 24, 465-473.	1.7	33
281	Long-term Effect of Municipal Solid Waste Amendment on Microbial Abundance and Humus-associated Enzyme Activities Under Semiarid Conditions. Microbial Ecology, 2008, 55, 651-661.	1.4	96
282	Assessing bacterial diversity in soil. Journal of Soils and Sediments, 2008, 8, 379-388.	1.5	130
283	Rhizoremediation of metals: harnessing microbial communities. Indian Journal of Microbiology, 2008, 48, 80-88.	1.5	68
284	Membrane fatty acids adaptive profile in the simultaneous presence of arsenic and toluene in Bacillus sp. ORAs2 and Pseudomonas sp. ORAs5 strains. Extremophiles, 2008, 12, 343-349.	0.9	52
285	The effect of transgenic nematode resistance on non-target organisms in the potato rhizosphere. Journal of Applied Ecology, 2008, 39, 915-923.	1.9	51
286	Microbial activity and community diversity in a variable charge soil as affected by cadmium exposure levels and time. Journal of Zhejiang University: Science B, 2008, 9, 250-260.	1.3	26
287	Metals affect soil bacterial and fungal functional diversity differently. Environmental Toxicology and Chemistry, 2008, 27, 591-598.	2.2	131

288	Spatial covariation of microbial community composition and polycyclic aromatic hydrocarbon concentration in a creosoteâ€polluted soil. Environmental Toxicology and Chemistry, 2008, 27, 1039-1046.	2.2	24

#	Article	IF	CITATIONS
289	Phospholipid fatty acid composition of microorganisms in pine forest soils of Central Siberia. Biology Bulletin, 2008, 35, 452-458.	0.1	10
290	Molecular and functional responses of soil microbial communities under grassland restoration. Agriculture, Ecosystems and Environment, 2008, 127, 286-293.	2.5	60
291	Multiple profiling of soil microbial communities identifies potential genetic markers of metal-enriched sewage sludge. FEMS Microbiology Ecology, 2008, 65, 555-564.	1.3	25
292	Organic Matter Stimulates Bacteria and Arbuscular Mycorrhizal Fungi in Bauhinia purpurea and Leucaena diversifolia Plantations on Eroded Slopes in Nepal. Restoration Ecology, 2008, 16, 79-87.	1.4	41
293	Response of soil bacterial community structure to successive perturbations of different types and intensities. Environmental Microbiology, 2008, 10, 2184-2187.	1.8	39
294	Plantâ€mediated effects of elevated ultravioletâ€B radiation on peat microbial communities of a subarctic mire. Global Change Biology, 2008, 14, 925-937.	4.2	22
295	Plant growth and soil microbial community structure of legumes and grasses grown in monoculture or mixture. Journal of Environmental Sciences, 2008, 20, 1231-1237.	3.2	40
296	Methanotrophic communities in a landfill cover soil as revealed by [13C] PLFAs and respiratory quinones: Impact of high methane addition and landfill leachate irrigation. Soil Biology and Biochemistry, 2008, 40, 751-762.	4.2	26
297	Impacts of methamidophos on the biochemical, catabolic, and genetic characteristics of soil microbial communities. Soil Biology and Biochemistry, 2008, 40, 778-788.	4.2	89
298	Decoupling plant-growth from land-use legacies in soil microbial communities. Soil Biology and Biochemistry, 2008, 40, 1059-1068.	4.2	37
299	Labile and recalcitrant plant fractions are utilised by distinct microbial communities in soil: Independent of the presence of roots and mycorrhizal fungi. Soil Biology and Biochemistry, 2008, 40, 1103-1113.	4.2	196
300	Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils. Soil Biology and Biochemistry, 2008, 40, 1583-1591.	4.2	231
301	Timber harvesting alters soil carbon mineralization and microbial community structure in coniferous forests. Soil Biology and Biochemistry, 2008, 40, 1901-1907.	4.2	84
302	Long term repeated burning in a wet sclerophyll forest reduces fungal and bacterial biomass and responses to carbon substrates. Soil Biology and Biochemistry, 2008, 40, 2246-2252.	4.2	62
303	Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biology and Biochemistry, 2008, 40, 2297-2308.	4.2	457
304	Antagonistic and synergistic effects of fungal and bacterial growth in soil after adding different carbon and nitrogen sources. Soil Biology and Biochemistry, 2008, 40, 2334-2343.	4.2	165
305	Changes in soil microbial community structure under elevated tropospheric O3 and CO2. Soil Biology and Biochemistry, 2008, 40, 2502-2510.	4.2	78
306	Dietary switching of collembola in grassland soil food webs. Soil Biology and Biochemistry, 2008, 40, 2898-2903.	4.2	9

#	ARTICLE	IF	CITATIONS
307	Ectomycorrhizal mycelial species composition in apatite amended and non-amended mesh bags buried in a phosphorus-poor spruce forest. Mycological Research, 2008, 112, 681-688.	2.5	38
308	Arbuscular Mycorrhizae and Alleviation of Soil Stresses on Plant Growth. , 2008, , 99-134.		24
309	Foraging strategies of the external mycelium of the arbuscular mycorrhizal fungi Glomus intraradices and Scutellospora calospora. Applied Soil Ecology, 2008, 39, 282-290.	2.1	17
310	Application of fresh and composted organic wastes modifies structure, size and activity of soil microbial community under semiarid climate. Applied Soil Ecology, 2008, 40, 318-329.	2.1	279
311	Bacterial carbon utilization in vertical subsurface flow constructed wetlands. Water Research, 2008, 42, 1622-1634.	5.3	51
312	Efficacy and side effects of five sampling methods for soil earthworms (Annelida, Lumbricidae). Ecotoxicology and Environmental Safety, 2008, 71, 552-565.	2.9	58
313	Conventional versus organic cropping and peat amendment: Impacts on soil microbiota and their activities. European Journal of Soil Biology, 2008, 44, 419-428.	1.4	21
314	The use of molecular techniques to characterize the microbial communities in contaminated soil and water. Environment International, 2008, 34, 265-276.	4.8	161
315	The dynamics of soil bacterial community structure in response to yearly repeated agricultural copper treatments. Research in Microbiology, 2008, 159, 251-254.	1.0	34
316	Soil Microbial Community Structure in Diverse Land Use Systems: A Comparative Study Using Biolog, DGGE, and PLFA Analyses. Pedosphere, 2008, 18, 653-663.	2.1	82
317	Dynamics of Microbial Community in Japanese Andisol of Apple Orchard Production Systems. Communications in Soil Science and Plant Analysis, 2008, 39, 1630-1657.	0.6	8
318	Changes in soil microbial biomass and community composition along vegetation zonation in a coastal sand dune. Soil Research, 2008, 46, 390.	0.6	10
319	Floodplain soils at the Elbe river, Germany, and their diverse microbial biomass. Archives of Agronomy and Soil Science, 2008, 54, 259-273.	1.3	22
320	Variation in soil microbial communities across a boreal spruce forest landscape. Canadian Journal of Forest Research, 2008, 38, 1504-1516.	0.8	19
321	Root excretion and plant tolerance to cadmium toxicity - a review. Plant, Soil and Environment, 2007, 53, 193-200.	1.0	180
322	Adaptive and cross-protective responses against cadmium and zinc toxicity in cadmium-resistant bacterium isolated from a zinc mine. Brazilian Journal of Microbiology, 2009, 40, 838-845.	0.8	8
323	Short-term nematode population dynamics as influenced by the quality of exogenous organic matter. Nematology, 2009, 11, 23-38.	0.2	31
324	Effects of different chloroform stabilizers on the extraction efficiencies of phospholipid fatty acids from soils. Soil Biology and Biochemistry, 2009, 41, 428-430.	4.2	12

#	Article	IF	CITATIONS
325	Does the depletion of pentachlorophenol in root–soil interface follow a simple linear dependence on the distance to root surfaces?. Soil Biology and Biochemistry, 2009, 41, 1807-1813.	4.2	47
326	Influence of Glomus etunicatum/Zea mays mycorrhiza on atrazine degradation, soil phosphatase and dehydrogenase activities, and soil microbial community structure. Soil Biology and Biochemistry, 2009, 41, 726-734.	4.2	90
327	Evaluation of functional diversity in rhizobacterial taxa of a wild grass (Saccharum ravennae) colonizing abandoned fly ash dumps in Delhi urban ecosystem. Soil Biology and Biochemistry, 2009, 41, 813-821.	4.2	72
328	Substrate inputs and pH as factors controlling microbial biomass, activity and community structure in an arable soil. Soil Biology and Biochemistry, 2009, 41, 1396-1405.	4.2	240
329	Frequent addition of wheat straw residues to soil enhances carbon mineralization rate. Soil Biology and Biochemistry, 2009, 41, 1475-1482.	4.2	63
330	Physiological, biochemical and molecular responses of the soil microbial community after afforestation of pastures with Pinus radiata. Soil Biology and Biochemistry, 2009, 41, 1642-1651.	4.2	94
331	Residue chemistry and microbial community structure during decomposition of eucalypt, wheat and vetch residues. Soil Biology and Biochemistry, 2009, 41, 1966-1975.	4.2	149
332	Microbial response to exudates in the rhizosphere of young beech trees (Fagus sylvatica L.) after dormancy. Soil Biology and Biochemistry, 2009, 41, 1976-1985.	4.2	76
333	Low importance for a fungal based food web in arable soils under mineral and organic fertilization indicated by Collembola grazers. Soil Biology and Biochemistry, 2009, 41, 2308-2317.	4.2	47
334	Trace element behaviour at the root–soil interface: Implications in phytoremediation. Environmental and Experimental Botany, 2009, 67, 243-259.	2.0	340
335	Phosphorus utilization and microbial community in response to lead/iron addition to a waterlogged soil. Journal of Environmental Sciences, 2009, 21, 1415-1423.	3.2	6
336	Increasing abundance of soil fungi is a driver for 15N enrichment in soil profiles along a chronosequence undergoing isostatic rebound in northern Sweden. Oecologia, 2009, 160, 87-96.	0.9	37
337	The influence of cadmium on life-history parameters and gut microflora of Archegozetes longisetosus (Acari: Oribatida) under laboratory conditions. Experimental and Applied Acarology, 2009, 47, 191-200.	0.7	13
338	Heterotrophic nitrogen fixation in oligotrophic tropical marshes: changes after phosphorus addition. Hydrobiologia, 2009, 627, 55-65.	1.0	23
339	Assessing the effect of air-drying and storage on microbial biomass and community structure in paddy soils. Plant and Soil, 2009, 317, 213-221.	1.8	33
340	Site identity and moss species as determinants of soil microbial community structure in Norway spruce forests across three vegetation zones. Plant and Soil, 2009, 318, 81-91.	1.8	8
341	PLFA profiles of drinking water biofilters with different acetate and glucose loadings. Ecotoxicology, 2009, 18, 700-706.	1.1	10
342	Distributions of phospholipid and glycolipid fatty acids in two strains of different functional Erythrobacter sp. isolated from South China Sea. Frontiers of Earth Science, 2009, 3, 91-99.	0.5	1

#	Article	IF	CITATIONS
343	The effect of earthworms and liming on soil microbial communities. Biology and Fertility of Soils, 2009, 45, 361-369.	2.3	27
344	Molecular and Functional Assessment of Bacterial Community Convergence in Metal-Amended Soils. Microbial Ecology, 2009, 58, 10-22.	1.4	18
345	Enhancement of the microbial community biomass and diversity during air sparging bioremediation of a soil highly contaminated with kerosene and BTEX. Applied Microbiology and Biotechnology, 2009, 82, 565-577.	1.7	52
346	Investigating biological control over soil carbon temperature sensitivity. Global Change Biology, 2009, 15, 2935-2949.	4.2	114
347	Integrative approaches for assessing the ecological sustainability of <i>in situ</i> bioremediation. FEMS Microbiology Reviews, 2009, 33, 324-375.	3.9	142
348	Flooding forested groundwater recharge areas modifies microbial communities from top soil to groundwater table. FEMS Microbiology Ecology, 2009, 67, 171-182.	1.3	23
349	High turnover of fungal hyphae in incubation experiments. FEMS Microbiology Ecology, 2009, 67, 389-396.	1.3	28
350	Long term repeated prescribed burning increases evenness in the basidiomycete laccase gene pool in forest soils. FEMS Microbiology Ecology, 2009, 67, 397-410.	1.3	29
351	Resistance and resilience of Cu-polluted soil after Cu perturbation, tested by a wide range of soil microbial parameters. FEMS Microbiology Ecology, 2009, 70, 293-304.	1.3	50
352	Lipid biomarkers for assessment of microbial communities in floodplain soils of the Elbe River (Germany). Wetlands, 2009, 29, 353-362.	0.7	61
353	Influence of liquid water and soil temperature on petroleum hydrocarbon toxicity in Antarctic soil. Environmental Toxicology and Chemistry, 2009, 28, 1409-1415.	2.2	21
354	Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Canadian Journal of Microbiology, 2009, 55, 501-514.	0.8	217
355	Microbial community structure and function during abnormal curve development of substrate-induced respiration measurements. Chemosphere, 2009, 77, 1488-1494.	4.2	13
356	Changes in the soil microbial community structure with latitude in eastern China, based on phospholipid fatty acid analysis. Applied Soil Ecology, 2009, 43, 234-240.	2.1	110
357	Microbial community development in the traps of aquatic Utricularia species. Aquatic Botany, 2009, 90, 129-136.	0.8	77
358	Factors Affecting the Variation of Microbial Communities in Different Agro-Ecosystems. , 2009, , 301-324.		10
359	Soil Microbial Community Composition and Diversity in the Rhizosphere of a Chinese Medicinal Plant. Communications in Soil Science and Plant Analysis, 2009, 40, 1462-1482.	0.6	20
360	Soil processes and microbial community structures in 45- and 135-year-old lodgepole pine stands. Canadian Journal of Forest Research, 2009, 39, 2263-2271.	0.8	15

#	Article	IF	CITATIONS
361	Microbial activity and community structure in degraded soils on the Loess Plateau of China. Journal of Plant Nutrition and Soil Science, 2009, 172, 118-126.	1.1	14
362	Microbial Community Structure of Casing Soil During Mushroom Growth. Pedosphere, 2009, 19, 446-452.	2.1	26
363	Copper Impacts on Corn, Soil Extractability, and the Soil Bacterial Community. Soil Science, 2010, 175, 586-592.	0.9	18
364	Microbial Protein in Soil: Influence of Extraction Method and C Amendment on Extraction and Recovery. Microbial Ecology, 2010, 59, 390-399.	1.4	62
365	Estimation by PLFA of Microbial Community Structure Associated with the Rhizosphere of Lygeum spartum and Piptatherum miliaceum Growing in Semiarid Mine Tailings. Microbial Ecology, 2010, 60, 265-271.	1.4	49
366	Drying–Rewetting Cycles Affect Fungal and Bacterial Growth Differently in an Arable Soil. Microbial Ecology, 2010, 60, 419-428.	1.4	191
367	Does history matter? Temperature effects on soil microbial biomass and community structure based on the phospholipid fatty acid (PLFA) analysis. Journal of Soils and Sediments, 2010, 10, 223-230.	1.5	35
368	Different influences of cadmium on soil microbial activity and structure with Chinese cabbage cultivated and non-cultivated. Journal of Soils and Sediments, 2010, 10, 818-826.	1.5	23
369	Nutrient enrichment in tropical wetlands: shifts from autotrophic to heterotrophic nitrogen fixation. Biogeochemistry, 2010, 101, 295-310.	1.7	25
370	Effects of grassland species on decomposition of litter and soil microbial communities. Ecological Research, 2010, 25, 255-261.	0.7	34
371	Is vegetation composition or soil chemistry the best predictor of the soil microbial community?. Plant and Soil, 2010, 333, 417-430.	1.8	121
372	Investigation of the fate and effects of acetyl cedrene on Capitella teleta and sediment bacterial community. Ecotoxicology, 2010, 19, 1046-1058.	1.1	4
373	Microbial community variation in phytoremediation of triazophos by Canna indica Linn. in a hydroponic system. Journal of Environmental Sciences, 2010, 22, 1225-1231.	3.2	22
374	Effect of lime application on microbial community in acidic tea orchard soils in comparison with those in wasteland and forest soils. Journal of Environmental Sciences, 2010, 22, 1253-1260.	3.2	37
375	Pine forest and grassland differently influence the response of soil microbial communities to metal contamination. Science of the Total Environment, 2010, 408, 6134-6141.	3.9	39
376	Abundance, production and stabilization of microbial biomass under conventional and reduced tillage. Soil Biology and Biochemistry, 2010, 42, 48-55.	4.2	166
377	Microbial community composition and activity in different Alpine vegetation zones. Soil Biology and Biochemistry, 2010, 42, 155-161.	4.2	156
378	Plant species influence microbial diversity and carbon allocation in the rhizosphere. Soil Biology and Biochemistry, 2010, 42, 162-168.	4.2	165

#	Article	IF	CITATIONS
379	Development of pollution-induced community tolerance is linked to structural and functional resilience of a soil bacterial community following a five-year field exposure to copper. Soil Biology and Biochemistry, 2010, 42, 748-757.	4.2	105
380	Carbon input belowground is the major C flux contributing to leaf litter mass loss: Evidences from a 13C labelled-leaf litter experiment. Soil Biology and Biochemistry, 2010, 42, 1009-1016.	4.2	142
381	Acidification of a sandy grassland favours bacteria and disfavours fungal saprotrophs as estimated by fatty acid profiling. Soil Biology and Biochemistry, 2010, 42, 1058-1064.	4.2	48
382	Spatial analysis reveals differences in soil microbial community interactions between adjacent coniferous forest and clearcut ecosystems. Soil Biology and Biochemistry, 2010, 42, 1138-1147.	4.2	34
383	Tree influence on soil microbial community structure. Soil Biology and Biochemistry, 2010, 42, 1934-1943.	4.2	32
384	Plant and soil microbial biomasses in Agrostis capillaris and Lathyrus pratensis monocultures exposed to elevated O3 and CO2 for three growing seasons. Soil Biology and Biochemistry, 2010, 42, 1967-1975.	4.2	17
385	Additive and interactive effects of functionally dissimilar soil organisms on a grassland plant community. Soil Biology and Biochemistry, 2010, 42, 2266-2275.	4.2	22
386	Recovery of soil microbial community structure after fire in a sagebrushâ€grassland ecosystem. Land Degradation and Development, 2010, 21, 423-432.	1.8	29
387	Characterisation of microbial communities in relation to physical–chemical parameters during in situ aeration of waste material. Waste Management, 2010, 30, 2177-2184.	3.7	8
388	Soil microbial community structure in cucumber rhizosphere of different resistance cultivars to fusarium wilt. FEMS Microbiology Ecology, 2010, 72, 456-463.	1.3	86
389	Plants as resource islands and storage units - adopting the mycocentric view of arbuscular mycorrhizal networks. FEMS Microbiology Ecology, 2010, 74, 336-345.	1.3	108
390	Effects of soilâ€surface microbial community phenotype upon physical and hydrological properties of an arable soil: a microcosm study. European Journal of Soil Science, 2010, 61, 493-503.	1.8	2
391	The ecological engineering impact of a single tree species on the soil microbial community. Journal of Ecology, 2010, 98, 50-61.	1.9	67
392	Influence of plant species and soil conditions on plant–soil feedback in mixed grassland communities. Journal of Ecology, 2010, 98, 384-395.	1.9	171
393	Microbial ecological response of the intestinal flora of <i>Peromyscus maniculatus</i> and <i>P. leucopus</i> to heavy metal contamination. Molecular Ecology, 2010, 19, 67-80.	2.0	19
394	Measuring soil microbial parameters relevant for soil carbon fluxes. , 2010, , 169-186.		2
395	Influence of benomyl and prometryn on the soil microbial activities and community structures in pasture grasslands of Slovakia. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2010, 45, 702-709.	0.7	3
396	The effect of imazethapyr on soil microbes in soybean fields in northeast China. Chemistry and Fcology, 2010, 26, 173-182	0.6	7

#	Article	IF	CITATIONS
397	Evaluating the Maturity and Quality of Solid Waste Compost through Phospholipid Fatty Acid Biomarkers. , 2010, , 307-310.		0
398	Behavior of Decabromodiphenyl Ether (BDE-209) in the Soilâ^'Plant System: Uptake, Translocation, and Metabolism in Plants and Dissipation in Soil. Environmental Science & Technology, 2010, 44, 663-667.	4.6	180
399	Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10938-10942.	3.3	390
400	Urban belowground food-web responses to plant community manipulation – Impacts on nutrient dynamics. Landscape and Urban Planning, 2010, 97, 1-10.	3.4	26
401	Sources of organic matter and microbial community structure in the sediments of the Visakhapatnam harbour, east coast of India. Chemical Geology, 2010, 276, 309-317.	1.4	18
402	Do plant species of different resource qualities form dissimilar energy channels below-ground?. Applied Soil Ecology, 2010, 44, 270-278.	2.1	17
403	The impact of farming practice on soil microorganisms and arbuscular mycorrhizal fungi: Crop type versus long-term mineral and organic fertilization. Applied Soil Ecology, 2010, 46, 134-142.	2.1	70
404	Microbial community structure of vineyard soils with different pH and copper content. Applied Soil Ecology, 2010, 46, 276-282.	2.1	66
405	Soil microbial community dynamics and phenanthrene degradation as affected by rape oil application. Applied Soil Ecology, 2010, 46, 329-334.	2.1	16
406	Soil Degradation and Rehabilitation: Microorganisms and Functionality. , 2010, , 253-270.		8
407	Effect of Heavy Metals on Saprotrophic Soil Fungi. Soil Biology, 2010, , 263-279.	0.6	19
408	Impacts of epigeic, anecic and endogeic earthworms on metal and metalloid mobility and availability. Journal of Environmental Monitoring, 2011, 13, 266-273.	2.1	52
409	Effects of stump removal on soil decomposer communities in undisturbed patches of the forest floor. Scandinavian Journal of Forest Research, 2011, 26, 221-231.	0.5	17
410	Soil Microbial Community Diversity and Its Relationships with Geochemical Elements under different Farmlands in Shouguang, China. Communications in Soil Science and Plant Analysis, 2011, 42, 1008-1026.	0.6	2
411	Combined effects of the antibiotic sulfadiazine and liquid manure on the soil microbial ommunity structure and functions. Journal of Plant Nutrition and Soil Science, 2011, 174, 614-623.	1.1	67
412	Soil nitrogen status as a regulator of carbon substrate flows through microbial communities with elevated CO ₂ . Journal of Geophysical Research, 2011, 116, .	3.3	24
413	Response of Soil Microbial Communities to Different Farming Systems for Upland Soybean Cultivation. Journal of the Korean Society for Applied Biological Chemistry, 2011, 54, 423-433.	0.9	24
414	Changes in Microbial Community of Agricultural Soils Subjected to Organic Farming System in Korean Paddy Fields with No-till Management. Journal of the Korean Society for Applied Biological Chemistry, 2011, 54, 434-441.	0.9	20

ARTICLE IF CITATIONS Comparative plant growth promoting traits and distribution of rhizobacteria associated with heavy metals in contaminated soils. International Journal of Environmental Science and Technology, 2011, 8, 1.8 19 415 807-816. Community Analysis-Based Methods., 2011, , 251-282. Changes in microbial properties after manure, lime, and bentonite application to a heavy 417 2.1 86 metal-contaminated mine waste. Applied Soil Ecology, 2011, 48, 1-10. Soil microbial communities and activities in sand dunes of subtropical coastal forests. Applied Soil 418 Ecology, 2011, 49, 256-262. Use of biostimulants on soil restoration: Effects on soil biochemical properties and microbial 419 2.1 54 community. Applied Soil Ecology, 2011, 49, 11-17. Short-term responses of soil decomposer and plant communities to stump harvesting in boreal forests. Forest Ecology and Management, 2011, 262, 379-388. 1.4 Variable effects of labile carbon on the carbon use of different microbial groups in black slate 421 1.6 44 degradation. Geochimica Et Cosmochimica Acta, 2011, 75, 2557-2570. Response of soil microbial communities to different management practices in surface soils of a 422 1.4 106 soybean agroecosystem in Argentina. European Journal of Soil Biology, 2011, 47, 55-60. Geographical structure of soil microbial communities in northern Japan: Effects of distance, land use 423 1.4 36 type and soil properties. European Journal of Soil Biology, 2011, 47, 88-94. Comparison of microbial community assays for the assessment of stream biofilm ecology. Journal of 424 Microbiological Methods, 2011, 85, 190-198. Tracking Collembola feeding strategies by the natural 13C signal of fatty acids in an arable soil with 425 32 0.5 different fertilizer regimes. Pedobiologia, 2011, 54, 225-233. Microbial Community Structure and Enzyme Activities in a Sequence of Copper-Polluted Soils. 2.1 Pedosphere, 2011, 21, 164-169. Effects of sulfadiazine-contaminated fresh and stored manure on a soil microbial community. 427 1.4 46 European Journal of Soil Biology, 2011, 47, 61-68. Arbuscular mycorrhizal fungi and heavy metal contaminated soils. African Journal of Microbiology 428 0.4 Research, 2011, 5, . MikrobiolÃ³giai indikÃ_itorok alkalmazÃ_isa a talajminÅ'ség értékelésében. 1. MÃ³dszerek. Agrokemia Es_{0.1} 429 5 Talajtan, 2011, 60, 273-286. Changes in microbialâ€community structure with depth and time in a chronosequence of restored grassland soils on the Loess Plateau in northwest China. Journal of Plant Nutrition and Soil Science, <u>2011, 1</u>74, 765-774. Microbial community structure and residue chemistry during decomposition of shoots and roots of young and mature wheat (Triticum aestivum L.) in sand. European Journal of Soil Science, 2011, 62, 666-675. 431 1.8 27 Comparison of nutrient acquisition in exotic plant species and congeneric natives. Journal of Ecology, 2011, 99, 1308-1315.

CITATION REPORT

#

#	Article	IF	CITATIONS
433	Recovery of ectomycorrhiza after â€~nitrogen saturation' of a conifer forest. New Phytologist, 2011, 189, 515-525.	3.5	128
434	Influences of plant litter diversity on decomposition, nutrient mineralization and soil microbial community structure. Grassland Science, 2011, 57, 72-80.	0.6	12
435	Fungal and bacterial growth responses to N fertilization and pH in the 150-year â€~Park Grass' UK grassland experiment. FEMS Microbiology Ecology, 2011, 76, 89-99.	1.3	173
436	Soil microbial communities resistant to changes in plant functional group composition. Soil Biology and Biochemistry, 2011, 43, 78-85.	4.2	68
437	The microbial community composition changes rapidly in the early stages of decomposition of wheat residue. Soil Biology and Biochemistry, 2011, 43, 445-451.	4.2	164
438	Use and misuse of PLFA measurements in soils. Soil Biology and Biochemistry, 2011, 43, 1621-1625.	4.2	916
439	Inputs of nitrogen and organic matter govern the composition of fungal communities in soil disturbed by overwintering cattle. Soil Biology and Biochemistry, 2011, 43, 647-656.	4.2	32
440	Long-term plant growth legacies overwhelm short-term plant growth effects on soil microbial community structure. Soil Biology and Biochemistry, 2011, 43, 823-830.	4.2	108
441	Long-term impacts of zinc and copper enriched sewage sludge additions on bacterial, archaeal and fungal communities in arable and grassland soils. Soil Biology and Biochemistry, 2011, 43, 932-941.	4.2	65
442	Soil microbial communities in (sub)alpine grasslands indicate a moderate shift towards new environmental conditions 11 years after soil translocation. Soil Biology and Biochemistry, 2011, 43, 1148-1154.	4.2	33
443	Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biology and Biochemistry, 2011, 43, 1417-1425.	4.2	294
444	Effects of soil frost on growth, composition and respiration of the soil microbial decomposer community. Soil Biology and Biochemistry, 2011, 43, 2069-2077.	4.2	65
445	Solvent-based washing removes lipophilic contaminant interference with phospholipid fatty acid analysis of soil communities. Soil Biology and Biochemistry, 2011, 43, 2208-2212.	4.2	4
446	Effects of different organic materials and mineral nutrients on arbuscular mycorrhizal fungal growth in a Mediterranean saline dryland. Soil Biology and Biochemistry, 2011, 43, 2332-2337.	4.2	39
447	Responses of Scirpus triqueter, soil enzymes and microbial community during phytoremediation of pyrene contaminated soil in simulated wetland. Journal of Hazardous Materials, 2011, 193, 45-51.	6.5	61
448	A short-term study on the interaction of bacteria, fungi and endosulfan in soil microcosm. Science of the Total Environment, 2011, 412-413, 375-379.	3.9	23
449	Behavior of decabromodiphenyl ether (BDE-209) in soil: Effects of rhizosphere and mycorrhizal colonization of ryegrass roots. Environmental Pollution, 2011, 159, 749-753.	3.7	56
450	Forest floor properties across sharp compositional boundaries separating trembling aspen and jack pine stands in the southern boreal forest. Plant and Soil, 2011, 345, 353-364.	1.8	6

	Сп	CITATION REPORT	
#	Article	IF	Citations
451	Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza, 2011, 21, 117-129	. 1.3	153
452	Effect of biostimulation on the microbial community in PCB-contaminated sediments through periodic amendment of sediment with iron. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 1691-1707.	1.4	12
453	Lack of arbuscular mycorrhizal colonisation in tea (Camellia sinensis L.) plants cultivated in Northern Iran. Symbiosis, 2011, 55, 91-95.	1.2	6
454	Monitoring of microbial hydrocarbon remediation in the soil. 3 Biotech, 2011, 1, 117-138.	1.1	120
455	Remediation of polycyclic aromatic hydrocarbon (PAH) contaminated soil through composting with fresh organic wastes. Environmental Science and Pollution Research, 2011, 18, 1574-1584.	2.7	44
456	Effects of contamination of single and combined cadmium and mercury on the soil microbial community structural diversity and functional diversity. Diqiu Huaxue, 2011, 30, 366-374.	0.5	19
457	Can gas chromatography combustion isotope ratio mass spectrometry be used to quantify organic compound abundance?. Rapid Communications in Mass Spectrometry, 2011, 25, 2433-2438.	0.7	53
458	Priming effect after glucose amendment in two different soils evaluated by SIR- and PLFA-technique. Ecological Engineering, 2011, 37, 465-473.	1.6	11
459	ETBE (ethyl tert butyl ether) and TAME (tert amyl methyl ether) affect microbial community structure and function in soils. Journal of Hazardous Materials, 2011, 187, 488-494.	6.5	9
460	Removal of heavy metals using different polymer matrixes as support for bacterial immobilisation. Journal of Hazardous Materials, 2011, 191, 277-286.	6.5	35
461	Sterols and fatty acid biomarkers as indicators of changes in soil microbial communities in a uranium mine area. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 659-668.	0.9	6
462	Effect of pyrene contamination on soil microbial biomass and community structure using PLFA analysis. , 2011, , .		0
463	Lack of Correlation between Turnover of Low-Molecular-Weight Dissolved Organic Carbon and Differences in Microbial Community Composition or Growth across a Soil pH Gradient. Applied and Environmental Microbiology, 2011, 77, 2791-2795.	1.4	38
464	Effect of Glucose on the Fatty Acid Composition of Cupriavidus necator JMP134 during 2,4-Dichlorophenoxyacetic Acid Degradation: Implications for Lipid-Based Stable Isotope Probing Methods. Applied and Environmental Microbiology, 2011, 77, 7296-7306.	1.4	7
465	Soil Microbial Community Recovery in Reclaimed Soils on a Surface Coal Mine Site. Soil Science Society of America Journal, 2012, 76, 915-924.	1.2	83
466	Cross-Site Soil Microbial Communities under Tillage Regimes: Fungistasis and Microbial Biomarkers. Applied and Environmental Microbiology, 2012, 78, 8191-8201.	1.4	49
467	Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME Journal, 2012, 6, 1749-1762.	4.4	537
468	Use of the Signature Fatty Acid 16:1 <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="M1"><mml:mrow><mml:mi mathvariant="bold">l‰</mml:mi></mml:mrow></mml:math> 5 as a T Determine the Distribution of Arbuscular Mycorrhizal Fungi in Soil. Journal of Lipids, 2012, 2012, 1-8.	ool to 1.9	84

#	Article	IF	CITATIONS
469	Soil microbial community structure and microbial activities in the root zone ofNothapodytes nimmoniana. Soil Science and Plant Nutrition, 2012, 58, 479-491.	0.8	0
470	Soil Contamination, Nutritive Value, and Human Health Risk Assessment of Heavy Metals: An Overview. , 2012, , 1-27.		62
471	Purification efficiencies and microbial community structure of integrated vertical-flow constructed wetland for domestic wastewater treatment during acclimation period. Desalination and Water Treatment, 2012, 48, 302-309.	1.0	0
472	N2 Fixation in Feather Mosses is a Sensitive Indicator of N Deposition in Boreal Forests. Ecosystems, 2012, 15, 986-998.	1.6	57
473	Fate of invading bacteria in soil and survival of transformants after simulated uptake of transgenes, as evaluated by a model system based on lindane degradation. Research in Microbiology, 2012, 163, 200-210.	1.0	9
474	Relative strengths of relationships between plant, microbial, and environmental parameters in heavy-metal contaminated floodplain soil. Pedobiologia, 2012, 55, 15-23.	0.5	2
475	Effect of soil moisture and bovine urine on microbial stress. Pedobiologia, 2012, 55, 211-218.	0.5	19
476	¹³ C pulseâ€labeling assessment of the community structure of active fungi in the rhizosphere of a genetically starchâ€modified potato (<i>Solanum tuberosum</i>) cultivar and its parental isoline. New Phytologist, 2012, 194, 784-799.	3.5	123
477	Dynamics of bacterial communities in relation to soil aggregate formation during the decomposition of 13C-labelled rice straw. Applied Soil Ecology, 2012, 53, 1-9.	2.1	81
478	Subhumid pasture soil microbial communities affected by presence of grazing, but not grazing management. Applied Soil Ecology, 2012, 59, 20-28.	2.1	13
479	Standardizing methylation method during phospholipid fatty acid analysis to profile soil microbial communities. Journal of Microbiological Methods, 2012, 88, 285-291.	0.7	44
480	Engineering difference: Matrix design determines community composition in wastewater treatment systems. Ecological Engineering, 2012, 40, 183-188.	1.6	7
481	Soil microbial community response to pyrene at the presence of Scirpus triqueter. European Journal of Soil Biology, 2012, 50, 44-50.	1.4	22
482	The impact of long-term CO2 enrichment and moisture levels on soil microbial community structure and enzyme activities. Geoderma, 2012, 170, 331-336.	2.3	97
483	Assessing the effects of Cu and pH on microorganisms in highly acidic vineyard soils. European Journal of Soil Science, 2012, 63, 571-578.	1.8	23
484	Effects of Irrigation Patterns and Nitrogen Fertilization on Rice Yield and Microbial Community Structure in Paddy Soil. Pedosphere, 2012, 22, 661-672.	2.1	29
485	Differential responses of structural and functional aspects of soil microbes and nematodes to abiotic and biotic modifications of the soil environment. Applied Soil Ecology, 2012, 61, 26-33.	2.1	23
486	Response of soil microorganisms and enzyme activities on the decomposition of transgenic cyanophycin-producing potatoes during overwintering in soil. European Journal of Soil Biology, 2012, 53, 1-10.	1.4	8

#	Article	IF	CITATIONS
487	Comparison of Transesterification Methods for Fatty Acid Analysis in Higher Fungi: Application to Mushrooms. Food Analytical Methods, 2012, 5, 1159-1166.	1.3	4
488	Decline in Topsoil Microbial Quotient, Fungal Abundance and C Utilization Efficiency of Rice Paddies under Heavy Metal Pollution across South China. PLoS ONE, 2012, 7, e38858.	1.1	34
489	Impact of No-Tillage and Conventional Tillage Systems on Soil Microbial Communities. Applied and Environmental Soil Science, 2012, 2012, 1-10.	0.8	218
490	Biogeochemical factors affecting mercury methylation rate in two contaminated floodplain soils. Biogeosciences, 2012, 9, 493-507.	1.3	123
491	Anaerobic oxidation of methane in grassland soils used for cattle husbandry. Biogeosciences, 2012, 9, 3891-3899.	1.3	13
492	Soil microbial community structure affected by 53 years of nitrogen fertilisation and different organic amendments. Biology and Fertility of Soils, 2012, 48, 245-257.	2.3	115
493	Nutrient addition retards decomposition and C immobilization in two wet grasslands. Hydrobiologia, 2012, 692, 67-81.	1.0	13
494	Soil microbial community structure and activity in monospecific and mixed forest stands, under Mediterranean humid conditions. Plant and Soil, 2012, 354, 359-370.	1.8	77
495	Soil microbial community analysis of between no-till and tillage in a controlled horticultural field. World Journal of Microbiology and Biotechnology, 2012, 28, 1797-1801.	1.7	16
496	Short-term effects of diesel fuel on rhizosphere microbial community structure of native plants in Yangtze estuarine wetland. Environmental Science and Pollution Research, 2012, 19, 2179-2185.	2.7	24
497	Effects of cotton straw amendment on soil fertility and microbial communities. Frontiers of Environmental Science and Engineering, 2012, 6, 336-349.	3.3	41
498	Effects of Water Stress, Organic Amendment and Mycorrhizal Inoculation on Soil Microbial Community Structure and Activity During the Establishment of Two Heavy Metal-Tolerant Native Plant Species. Microbial Ecology, 2012, 63, 794-803.	1.4	39
499	Microbial biomass, microbial diversity, soil carbon storage, and stability after incubation of soil from grass–clover pastures of different age. Biology and Fertility of Soils, 2012, 48, 371-383.	2.3	23
500	Temporal and spatial changes in the microbial bioaerosol communities in green-waste composting. FEMS Microbiology Ecology, 2012, 79, 229-239.	1.3	40
501	The effect of triclosan on microbial community structure in three soils. Chemosphere, 2012, 89, 1-9.	4.2	27
502	Influence of black carbon addition on phenanthrene dissipation and microbial community structure in soil. Environmental Pollution, 2012, 161, 121-127.	3.7	21
503	Links between bacterial communities in marine sediments and trace metal geochemistry as measured by in situ DET/DGT approaches. Marine Pollution Bulletin, 2012, 64, 353-362.	2.3	22
504	Biochar influences the microbial community structure during manure composting with agricultural wastes. Science of the Total Environment, 2012, 416, 476-481.	3.9	185

#	Article	IF	CITATIONS
505	Natural attenuation of contaminated marine sediments from an old floating dock Part II: Changes of sediment microbial community structure and its relationship with environmental variables. Science of the Total Environment, 2012, 423, 95-103.	3.9	19
506	Co-tolerance to zinc and copper of the soil nitrifying community and its relationship with the community structure. Soil Biology and Biochemistry, 2012, 44, 75-80.	4.2	16
507	Feasibility of a cell separation-proteomic based method for soils with different edaphic properties and microbial biomass. Soil Biology and Biochemistry, 2012, 45, 136-138.	4.2	21
508	The thermodynamic efficiency of soil microbial communities subject to long-term stress is lower than those under conventional input regimes. Soil Biology and Biochemistry, 2012, 47, 149-157.	4.2	34
509	Microscale distribution and function of soil microorganisms in the interface between rhizosphere and detritusphere. Soil Biology and Biochemistry, 2012, 49, 174-183.	4.2	64
510	Addition of organic and inorganic P sources to soil – Effects on P pools and microorganisms. Soil Biology and Biochemistry, 2012, 49, 106-113.	4.2	125
511	Incorporation of 13C-labelled rice rhizodeposition carbon into soil microbial communities under different water status. Soil Biology and Biochemistry, 2012, 53, 72-77.	4.2	58
512	Elevated CO2 increases Cs uptake and alters microbial communities and biomass in the rhizosphere of Phytolacca americana Linn (pokeweed) and Amaranthus cruentus L. (purple amaranth) grown on soils spiked with various levels of Cs. Journal of Environmental Radioactivity, 2012, 112, 29-37.	0.9	31
513	Explaining the variation in the soil microbial community: do vegetation composition and soil chemistry explain the same or different parts of the microbial variation?. Plant and Soil, 2012, 351, 355-362.	1.8	42
514	Overstory and understory vegetation interact to alter soil community composition and activity. Plant and Soil, 2012, 352, 65-84.	1.8	28
515	Leaf and root litter of a legume tree as nitrogen sources for cacaos with different root colonisation by arbuscular mycorrhizae. Nutrient Cycling in Agroecosystems, 2012, 92, 51-65.	1.1	21
516	Structure and dynamics of microbial community in full-scale activated sludge reactors. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 19-25.	1.4	11
517	Characterization of microbial communities in strong aromatic liquor fermentation pit muds of different ages assessed by combined DGGE and PLFA analyses. Food Research International, 2013, 54, 660-666.	2.9	87
518	A closeup study of early beech litter decomposition: potential drivers and microbial interactions on a changing substrate. Plant and Soil, 2013, 371, 139-154.	1.8	27
519	Effects of long-term temperature and nutrient manipulation on Norway spruce fine roots and mycelia production. Plant and Soil, 2013, 366, 287-303.	1.8	60
520	Successional changes in the soil microbial community along a vegetation development sequence in a subalpine volcanic desert on Mount Fuji, Japan. Plant and Soil, 2013, 364, 261-272.	1.8	43
521	Influence of the Activity of Allobophora molleri in Microbial Activity and Metal Availability of Arsenic-Polluted Soils. Archives of Environmental Contamination and Toxicology, 2013, 65, 449-457.	2.1	7
522	Nitrogen deposition, plant carbon allocation, and soil microbes: Changing interactions due to enrichment. American Journal of Botany, 2013, 100, 1458-1470.	0.8	42

#	Article	IF	CITATIONS
523	The effect of long-term reclamation on enzyme activities and microbial community structure of saline soil at Shangyu, China. Environmental Earth Sciences, 2013, 69, 151-159.	1.3	32
524	Quantitative relationship between biofilms components and emitter clogging under reclaimed water drip irrigation. Irrigation Science, 2013, 31, 1251-1263.	1.3	51
525	Grazing effects on microbial community composition, growth and nutrient cycling in salt marsh and sand dune grasslands. Biology and Fertility of Soils, 2013, 49, 89-98.	2.3	38
526	Soil microbial properties under different vegetation types on Mountain Han. Science China Life Sciences, 2013, 56, 561-570.	2.3	21
527	Changes in soil microbial community and enzyme activity along an exotic plant Eupatorium adenophorum invasion in a Chinese secondary forest. Science Bulletin, 2013, 58, 4101-4108.	1.7	26
528	Response of Intestinal Microbiota to Antibiotic Growth Promoters in Chickens. Foodborne Pathogens and Disease, 2013, 10, 331-337.	0.8	83
529	Improved sensitivity of sedimentary phospholipid analysis resulting from a novel extract cleanup strategy. Organic Geochemistry, 2013, 65, 46-52.	0.9	11
530	Microbial biomass and community composition in a Luvisol soil as influenced by long-term land use and fertilization. Catena, 2013, 107, 89-95.	2.2	41
531	Investigating the longâ€ŧerm legacy of drought and warming on the soil microbial community across five <scp>E</scp> uropean shrubland ecosystems. Global Change Biology, 2013, 19, 3872-3884.	4.2	109
532	Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales. Ecology, 2013, 94, 2334-2345.	1.5	134
533	Long-term fertilization regimes influence FAME profiles of microbial communities in an arable sandy loam soil in Northern China. Pedobiologia, 2013, 56, 179-183.	0.5	5
534	Chemical and biological properties of a sandy loam soil amended with olive mill waste, solid or liquid form, in vitro. International Journal of Recycling of Organic Waste in Agriculture, 2013, 2, 1.	2.0	4
535	Influence of the application of chelant EDDS on soil enzymatic activity and microbial community structure. Journal of Hazardous Materials, 2013, 262, 561-570.	6.5	33
536	Lipid and fatty acid profile ofGeobacillus kaustophilusin response to abiotic stress. Canadian Journal of Microbiology, 2013, 59, 117-125.	0.8	3
537	Changes in the population of seed bacteria of transgenerationally <scp><scp>Cd</scp></scp> â€exposed <i><scp>A</scp>rabidopsis thaliana</i> . Plant Biology, 2013, 15, 971-981.	1.8	84
538	The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environmental Science and Pollution Research, 2013, 20, 1041-1049.	2.7	101
539	<i>In situ</i> carbon turnover dynamics and the role of soil microorganisms therein: a climate warming study in an Alpine ecosystem. FEMS Microbiology Ecology, 2013, 83, 112-124.	1.3	48
540	Soil Microbial Community Composition During Natural Recovery in the Loess Plateau, China. Journal of Integrative Agriculture, 2013, 12, 1872-1883.	1.7	18

#	Article	IF	CITATIONS
541	Abundance of arbuscular mycorrhizal fungi in relation to soil salinity around Lake Urmia in northern Iran analyzed by use of lipid biomarkers and microscopy. Pedobiologia, 2013, 56, 225-232.	0.5	13
542	Microbial utilisation of biochar-derived carbon. Science of the Total Environment, 2013, 465, 288-297.	3.9	292
543	Response of Soil Microbial Community to a High Dose of Fresh Olive Mill Wastewater. Pedosphere, 2013, 23, 281-289.	2.1	9
544	Removal of dissolved organic carbon and nitrogen during simulated soil aquifer treatment. Water Research, 2013, 47, 3559-3572.	5.3	30
545	Profiling of microbial PLFAs: Implications for interspecific interactions due to intercropping whichÂincrease phosphorus uptake in phosphorus limited acidic soils. Soil Biology and Biochemistry, 2013, 57, 625-634.	4.2	86
546	Biogeochemical indicators of buried mineralization under cover, Talbot VMS Cu–Zn prospect, Manitoba. Applied Geochemistry, 2013, 37, 190-202.	1.4	8
547	Impacts of 3Âyears of elevated atmospheric <scp><co< scp=""></co<></scp> ₂ on rhizosphere carbon flow and microbial community dynamics. Global Change Biology, 2013, 19, 621-636.	4.2	93
548	Halobacterial Community Analysis of Mierlei Saline Lake in Transylvania (Romania). Geomicrobiology Journal, 2013, 30, 801-812.	1.0	22
549	Feather moss nitrogen acquisition across natural fertility gradients in boreal forests. Soil Biology and Biochemistry, 2013, 61, 86-95.	4.2	44
550	Effect of Scripus triqueter of its rhizosphere and root exudates on microbial community structure of simulated diesel-spiked wetland. International Biodeterioration and Biodegradation, 2013, 82, 110-116.	1.9	17
551	The Potential Use of Phytoremediation for Sites With Mixed Organic and Inorganic Contamination. Critical Reviews in Environmental Science and Technology, 2013, 43, 217-259.	6.6	80
552	Mycoremediation of Heavy Metals. Soil Biology, 2013, , 245-267.	0.6	12
553	Seasonal carbon allocation to arbuscular mycorrhizal fungi assessed by microscopic examination, stable isotope probing and fatty acid analysis. Plant and Soil, 2013, 368, 547-555.	1.8	43
554	Effects of salinity on microbial tolerance to drying and rewetting. Biogeochemistry, 2013, 112, 71-80.	1.7	64
555	Soil microbial community under a nurse-plant species changes in composition, biomass and activity as the nurse grows. Soil Biology and Biochemistry, 2013, 64, 139-146.	4.2	102
556	Effects of digestate from anaerobically digested cattle slurry and plant materials on soil microbial community and emission of CO2 and N2O. Applied Soil Ecology, 2013, 63, 36-44.	2.1	120
557	Fungi and Their Role in Phytoremediation of Heavy Metal-Contaminated Soils. Soil Biology, 2013, , 313-345.	0.6	3
558	Longâ€ŧerm fertilization of a boreal N orway spruce forest increases the temperature sensitivity of soil organic carbon mineralization. Ecology and Evolution, 2013, 3, 5177-5188.	0.8	27

ARTICLE IF CITATIONS # Evidence of Microbial Regulation of Biogeochemical Cycles from a Study on Methane Flux and Land 559 82 1.4 Use Change. Applied and Environmental Microbiology, 2013, 79, 4031-4040. Organic fertilizer application increases biomass and proportion of fungi in the soil microbial community in a minimum tillage Chinese cabbage field. Canadian Journal of Soil Science, 2013, 93, 271-278. Microbial community structure and functioning along metal pollution gradients. Environmental 561 2.2 102 Toxicology and Chemistry, 2013, 32, 1992-2002. Oxytetracycline on functions and structure of soil microbial community. Journal of Soil Science and Plant Nutrition, 2013, , 0-0. Fate of Decomposed Fungal Cell Wall Material in Organic Horizons of Old-Growth Douglas-fir Forest 563 1.2 23 Soils. Soil Science Society of America Journal, 2013, 77, 489-500. Different Selective Effects on Rhizosphere Bacteria Exerted by Genetically Modified versus Conventional Potato Lines. PLoS ONE, 2013, 8, e67948. 564 1.1 Phospholipid fatty acids analysis-fatty acid methyl ester (PLFA-FAME) changes during bioremediation of 565 0.3 4 crude oil contamination soil. African Journal of Biotechnology, 2013, 12, 6294-6301. Comparison of soil microbial communities between high and low yield organically managed orchards. 566 0.4 African Journal of Microbiology Research, 2013, 7, 4768-4774. Soil Type Modestly Impacts Bacterial Community Succession Associated with Decomposing Grass 567 1.2 8 Detrituspheres. Sóil Science Society of America Journal, 2013, 77, 133-144. Nitrogen Deposition Enhances Carbon Sequestration by Plantations in Northern China. PLoS ONE, 1.1 24 2014, 9, e87975. Fatty Acids as a Tool to Understand Microbial Diversity and Their Role in Food Webs of Mediterranean 569 1.7 37 Temporary Ponds. Molecules, 2014, 19, 5570-5598. Soil Biotic and Abiotic Responses to Dimethyl Disulfide Spot Drip Fumigation in Established Grape 1.2 Vines. Soil Science Society of America Journal, 2014, 78, 520-530. Natural and synthesised iron-rich amendments for As and Pb immobilisation in agricultural soil. 571 0.6 30 Chemistry and Ecology, 2014, 30, 267-279. Influence of redox conditions on the microbial degradation of polychlorinated biphenyls in different niches of rice paddy fields. Soil Biology and Biochemistry, 2014, 78, 307-315. 4.2 The Effect of Long-Term Cd and Ni Exposure on Seed Endophytes of <i>Agrostis capillaris </i> Potential Application in Phytoremediation of Metal-Contaminated Soils. International Journal of 573 1.7 46 Phytoremediation, 2014, 16, 643-659. Effects of a simulated hurricane disturbance on forest floor microbial communities. Forest Ecology 574 1.4 and Management, 2014, 332, 22-31. Effect of Methyl-Branched Fatty Acids on the Structure of Lipid Bilayers. Journal of Physical 575 1.2 65 Chemistry B, 2014, 118, 13838-13848. Effects of long-term treatments of different organic fertilizers complemented with chemical N 576 fertilizer on the chemical and biological properties of soils. Soil Science and Plant Nutrition, 2014, 60, 499-511.

#	Article	IF	CITATIONS
577	Soil Microbial Community Structure Evolution along Halophyte Succession in Bohai Bay Wetland. Journal of Chemistry, 2014, 2014, 1-8.	0.9	8
578	Behavior of oxyfluorfen in soils amended with different sources of organic matter. Effects on soil biology. Journal of Hazardous Materials, 2014, 273, 207-214.	6.5	31
579	Dissipation of sulfamethoxazole in pasture soils as affected by soil and environmental factors. Science of the Total Environment, 2014, 479-480, 284-291.	3.9	62
580	Structure and function of soil microbial community in artificially planted Sonneratia apetala and S. caseolaris forests at different stand ages in Shenzhen Bay, China. Marine Pollution Bulletin, 2014, 85, 754-763.	2.3	41
581	16S rDNA Pyrosequencing Analysis of Bacterial Community in Heavy Metals Polluted Soils. Microbial Ecology, 2014, 67, 635-647.	1.4	235
582	Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biology and Fertility of Soils, 2014, 50, 695-702.	2.3	216
583	Seasonal controls on grassland microbial biogeography: Are they governed by plants, abiotic properties or both?. Soil Biology and Biochemistry, 2014, 71, 21-30.	4.2	79
584	Microbial dynamics after adding bovine manure effluent together with a nitrification inhibitor (3,4) Tj ETQq1 10.	784314 rg 2.3	;BT_/Overlo <mark>c</mark> l
585	Measuring soil disturbance effects and assessing soil restoration success by examining distributions of soil properties. Applied Soil Ecology, 2014, 76, 102-111.	2.1	23
586	Collembola grazing on arbuscular mycorrhiza fungi modulates nutrient allocation in plants. Pedobiologia, 2014, 57, 171-179.	0.5	54
587	Species composition of a soil invertebrate multi-species test system determines the level of ecotoxicity. Environmental Pollution, 2014, 184, 586-596.	3.7	16
588	Long-term impact of Heracleum mantegazzianum invasion on soil chemical and biological characteristics. Soil Biology and Biochemistry, 2014, 68, 270-278.	4.2	34
589	Changes in Enzyme Activities and Microbial Community Structure in Heavy Metalâ€Contaminated Soil under <i>in Situ</i> Aided Phytostabilization. Clean - Soil, Air, Water, 2014, 42, 1618-1625.	0.7	25
590	Fungal–bacterial consortia increase diuron degradation in water-unsaturated systems. Science of the Total Environment, 2014, 466-467, 699-705.	3.9	78
591	Soil microbial community response to surfactants and herbicides in two soils. Applied Soil Ecology, 2014, 74, 12-20.	2.1	65
592	Microbial diversity in waters, sediments and microbial mats evaluated using fatty acid-based methods. International Journal of Environmental Science and Technology, 2014, 11, 1487-1496.	1.8	16
593	Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil. FEMS Microbiology Ecology, 2014, 87, 164-181.	1.3	225
594	Changes in Soil Biota Resulting from Growth of the Invasive Weed, Ambrosia artemisiifolia L. (Compositae), Enhance Its Success and Reduce Growth of Co-Occurring Plants. Journal of Integrative Agriculture, 2014, 13, 1962-1971.	1.7	15

#	Article	IF	CITATIONS
595	Isothermal Microcalorimetry Provides New Insight into Terrestrial Carbon Cycling. Environmental Science & Contended Science &	4.6	56
596	Microbial Biomass and PLFA Profile Changes in Rhizosphere of Pakchoi (Brassica chinensis L.) as Affected by External Cadmium Loading. Pedosphere, 2014, 24, 553-562.	2.1	19
597	Degradation of chlorpyrifos using different biostimulants/biofertilizers: Effects on soil biochemical properties and microbial community. Applied Soil Ecology, 2014, 84, 158-165.	2.1	35
598	Microbial Community Composition in a Rehabilitated Bauxite Residue Disposal Area: A Case Study for Improving Microbial Community Composition. Restoration Ecology, 2014, 22, 798-805.	1.4	33
599	Brassicas: Responses and Tolerance to Heavy Metal Stress. , 2014, , 1-36.		1
600	Rhizosphere effect of <i>Scirpus triqueter</i> on soil microbial structure during phytoremediation of diesel-contaminated wetland. Environmental Technology (United Kingdom), 2014, 35, 514-520.	1.2	20
601	Zinc Speciation in the Suspended Particulate Matter of an Urban River (Orge, France): Influence of Seasonality and Urbanization Gradient. Environmental Science & Technology, 2014, 48, 11901-11909.	4.6	13
602	Incorporation of urea-derived 13C into microbial communities in four different agriculture soils. Biology and Fertility of Soils, 2014, 50, 603-612.	2.3	19
603	Arbuscular mycorrhizal fungi and their associated microbial community modulated by Collembola grazers in host plant free substrate. Soil Biology and Biochemistry, 2014, 69, 25-33.	4.2	20
604	Behaviour of oxyfluorfen in soils amended with edaphic biostimulants/biofertilizers obtained from sewage sludge and chicken feathers. Effects on soil biological properties. Environmental Science and Pollution Research, 2014, 21, 11027-11035.	2.7	24
605	Short-term utilization of carbon by the soil microbial community under future climatic conditions in a temperate heathland. Soil Biology and Biochemistry, 2014, 68, 9-19.	4.2	18
606	Collembola feeding habits and niche specialization in agricultural grasslands of different composition. Soil Biology and Biochemistry, 2014, 74, 31-38.	4.2	26
607	Impact of Lignosulfonate on Solution Chemistry and Phospholipid Fatty Acid Composition in Soils. Pedosphere, 2014, 24, 308-321.	2.1	11
608	Characterization of the microbial community in biological soil crusts dominated by Fulgensia desertorum (Tomin) Poelt and Squamarina cartilaginea (With.) P. James and in the underlying soil. Soil Biology and Biochemistry, 2014, 76, 70-79.	4.2	30
609	Reclamation of lignite mine areas with Triticum aestivum: The dynamics of soil functions and microbial communities. Applied Soil Ecology, 2014, 80, 51-59.	2.1	26
611	Soil restoration with organic amendments: linking cellular functionality and ecosystem processes. Scientific Reports, 2015, 5, 15550.	1.6	104
612	Spatial patterns of benthic bacterial communities in a large lake. International Review of Hydrobiology, 2015, 100, 97-105.	0.5	17
613	Difference of microbial community stressed in artificial pit muds for <i>Luzhou</i> -flavour liquor brewing revealed by multiphase culture-independent technology. Journal of Applied Microbiology, 2015, 119, 1345-1356.	1.4	31

#	Article	IF	CITATIONS
614	Crop rotation and seasonal effects on fatty acid profiles of neutral and phospholipids extracted from noâ€ŧill agricultural soils. Soil Use and Management, 2015, 31, 165-175.	2.6	20
615	Soil organic carbon and microbial communities respond to vineyard management. Soil Use and Management, 2015, 31, 528-533.	2.6	18
616	Effect of biochar application on microbial biomass and enzymatic activities in degraded red soil. African Journal of Agricultural Research Vol Pp, 2015, 10, 755-766.	0.2	18
617	Warming reduces the cover and diversity of biocrust-forming mosses and lichens, and increases the physiological stress of soil microbial communities in a semi-arid Pinus halepensis plantation. Frontiers in Microbiology, 2015, 6, 865.	1.5	58
618	Soil Microbial Biomass and Phospholipid Fatty Acids. Soil Science Society of America Book Series, 2015, , 331-348.	0.3	1
619	Soil Microbial Community Structure and Target Organisms under Different Fumigation Treatments. Applied and Environmental Soil Science, 2015, 2015, 1-8.	0.8	22
620	Fatty Acids Profile of Microbial Populations in a Mining Reclaimed Region Contaminated with Metals: Relation with Ecological Characteristics and Soil Respiration. Journal of Bioremediation & Biodegradation, 2015, 06, .	0.5	10
621	The relationship between successional vascular plant assemblages and associated microbial communities on coal mine spoil heaps. Community Ecology, 2015, 16, 23-32.	0.5	23
622	Sources of dissolved organic matter during storm and inter-storm conditions in a lowland headwater catchment: constraints from high-frequency molecular data. Biogeosciences, 2015, 12, 4333-4343.	1.3	23
623	Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem. Scientific Reports, 2014, 4, 5634.	1.6	130
624	Benefactor and allelopathic shrub species have different effects on the soil microbial community along an environmental severity gradient. Soil Biology and Biochemistry, 2015, 88, 48-57.	4.2	44
625	Impact of tropical lowland rainforest conversion into rubber and oil palm plantations on soil microbial communities. Biology and Fertility of Soils, 2015, 51, 697-705.	2.3	125
626	Accelerated degradation of PAHs using edaphic biostimulants obtained from sewage sludge and chicken feathers. Journal of Hazardous Materials, 2015, 300, 235-242.	6.5	17
627	Phospholipid fatty acid profiling of microbial communities-a review of interpretations and recent applications. Journal of Applied Microbiology, 2015, 119, 1207-1218.	1.4	259
628	Salinity-induced differences in soil microbial communities around the hypersaline Lake Urmia. Soil Research, 2015, 53, 494.	0.6	23
629	Priming of soil organic matter decomposition scales linearly with microbial biomass response to litter input in steppe vegetation. Oikos, 2015, 124, 649-657.	1.2	70
630	Review of biological diagnostic tools and their applications in geoenvironmental engineering. Reviews in Environmental Science and Biotechnology, 2015, 14, 161-194.	3.9	16
631	Synergists and antagonists in the rhizosphere modulate microbial communities and growth of Quercus robur L Soil Biology and Biochemistry, 2015, 82, 65-73.	4.2	18

#	Article	IF	CITATIONS
632	Revisiting the hypothesis that fungalâ€toâ€bacterial dominance characterizes turnover of soil organic matter and nutrients. Ecological Monographs, 2015, 85, 457-472.	2.4	126
633	Fertilization and irrigation practice as source of microorganisms and the impact on nematodes as their potential vectors. Applied Soil Ecology, 2015, 90, 68-77.	2.1	9
634	Combination of nitrogen and phosphorus fertilization enhance ecosystem carbon sequestration in a nitrogen-limited temperate plantation of Northern China. Forest Ecology and Management, 2015, 341, 59-66.	1.4	35
635	Effect of drip irrigation frequency on emitter clogging using reclaimed water. Irrigation Science, 2015, 33, 221-234.	1.3	33
636	Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. Journal of Bioscience and Bioengineering, 2015, 119, 683-693.	1.1	179
637	Soil microbial biomass carbon and fatty acid composition of earthworm Lumbricus rubellus after exposure to engineered nanoparticles. Biology and Fertility of Soils, 2015, 51, 261-269.	2.3	29
638	Soil microbial community response and recovery following group selection harvest: Temporal patterns from an experimental harvest in a US northern hardwood forest. Forest Ecology and Management, 2015, 340, 82-94.	1.4	37
639	Response of Soil Microbial Activity and Biodiversity in Soils Polluted with Different Concentrations of Cypermethrin Insecticide. Archives of Environmental Contamination and Toxicology, 2015, 69, 8-19.	2.1	33
640	Soil microbial response to experimental warming in cool temperate semiâ€natural grassland in Japan. Ecological Research, 2015, 30, 235-245.	0.7	17
641	Interactions of water and nitrogen addition on soil microbial community composition and functional diversity depending on the inter-annual precipitation in a Chinese steppe. Journal of Integrative Agriculture, 2015, 14, 788-799.	1.7	19
642	The effect of cowpea (Vigna unguiculata) with root mucilage on phenanthrene (PHE) dissipation and microbial community composition using phospholipid fatty acid (PLFA) analysis and artificial neural network (ANN) modeling. International Biodeterioration and Biodegradation, 2015, 100, 29-37.	1.9	7
643	Changes in soil microbial community functionality and structure in a metal-polluted site: The effect of digestate and fly ash applications. Journal of Environmental Management, 2015, 162, 63-73.	3.8	52
644	Metals other than uranium affected microbial community composition in a historical uranium-mining site. Environmental Science and Pollution Research, 2015, 22, 19326-19341.	2.7	15
645	Urea addition and litter manipulation alter plant community and soil microbial community composition in a Kobresia humilis meadow. European Journal of Soil Biology, 2015, 70, 7-14.	1.4	20
646	Insights into the effect of mixed engineered nanoparticles on activated sludge performance. FEMS Microbiology Ecology, 2015, 91, fiv082.	1.3	25
647	Transition to second generation cellulosic biofuel production systems reveals limited negative impacts on the soil microbial community structure Applied Soil Ecology, 2015, 95, 62-72.	2.1	11
648	Deforestation fosters bacterial diversity and the cyanobacterial community responsible for carbon fixation processes under semiarid climate: a metaproteomics study. Applied Soil Ecology, 2015, 93, 65-67.	2.1	27
649	Mecoprop mineralization potential at oxygen-reduced conditions inÂsubsoil with phenoxy acid contamination history. Soil Biology and Biochemistry, 2015, 84, 189-198.	4.2	3

#	Article	IF	CITATIONS
650	Dynamic biofilm component in reclaimed water during rapid growth period. Environmental Earth Sciences, 2015, 73, 4325-4338.	1.3	10
651	Shifts in the metabolic function of a benthic estuarine microbial community following a single pulse exposure to silver nanoparticles. Environmental Pollution, 2015, 201, 91-99.	3.7	48
652	Soil microbial communities vary as much over time as with chronic warming and nitrogen additions. Soil Biology and Biochemistry, 2015, 88, 19-24.	4.2	84
653	Changes in soil microbial community structure and activity in a cedar plantation invaded by moso bamboo. Applied Soil Ecology, 2015, 91, 1-7.	2.1	68
654	Distinctive effects of TiO 2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biology and Biochemistry, 2015, 86, 24-33.	4.2	186
655	Microbial phospholipid biomarkers and stable isotope methods help reveal soil functions. Soil Biology and Biochemistry, 2015, 86, 98-107.	4.2	55
656	Interphase microbial community characteristics in the fermentation cellar of Chinese Luzhou-flavor liquor determined by PLFA and DGGE profiles. Food Research International, 2015, 72, 16-24.	2.9	49
657	Labile, recalcitrant, microbial carbon and nitrogen and the microbial community composition at two Abies faxoniana forest elevations under elevated temperatures. Soil Biology and Biochemistry, 2015, 91, 1-13.	4.2	70
658	Temporal dynamics and variation with forest type of phospholipid fatty acids in litter and soil of temperate forests across regions. Soil Biology and Biochemistry, 2015, 91, 248-257.	4.2	31
659	Effect of digestate and fly ash applications on soil functional properties and microbial communities. European Journal of Soil Biology, 2015, 71, 1-12.	1.4	55
660	Statistical Tools for Data Analysis. Springer Protocols, 2015, , 41-57.	0.1	0
661	Monthly dynamics of microbial community structure and their controlling factors in three floodplain soils. Soil Biology and Biochemistry, 2015, 90, 169-178.	4.2	74
662	Enhanced biodegradation of phthalate acid esters in marine sediments by benthic diatom Cylindrotheca closterium. Science of the Total Environment, 2015, 508, 251-257.	3.9	24
663	Identifying qualitative effects of different grazing types on belowâ€ground communities and function in a longâ€ŧerm field experiment. Environmental Microbiology, 2015, 17, 841-854.	1.8	21
664	Comparative study of microbial community structure in integrated vertical-flow constructed wetlands for treatment of domestic and nitrified wastewaters. Environmental Science and Pollution Research, 2015, 22, 3518-3527.	2.7	22
665	Assessment of degradation potential of aliphatic hydrocarbons by autochthonous filamentous fungi from a historically polluted clay soil. Science of the Total Environment, 2015, 505, 545-554.	3.9	44
666	Fatty Acid Profiling in Selected Cultivated Edible and Wild Medicinal Mushrooms in Southern United States. Journal of Experimental Food Chemistry, 2016, 02, .	0.5	15
667	Effect of 40 and 80 Years of Conifer Regrowth on Soil Microbial Activities and Community Structure in Subtropical Low Mountain Forests. Forests, 2016, 7, 244.	0.9	15

#	Article	IF	Citations
668	Continued Selenium Biofortification of Carrots and Broccoli Grown in Soils Once Amended with Se-enriched S. pinnata. Frontiers in Plant Science, 2016, 7, 1251.	1.7	39
669	Increases in Soil Aggregation Following Phosphorus Additions in a Tropical Premontane Forest are Not Driven by Root and Arbuscular Mycorrhizal Fungal Abundances. Frontiers in Earth Science, 2016, 3, .	0.8	9
670	Cadmiumâ€induced and transâ€generational changes in the cultivable and total seed endophytic community of <i>Arabidopsis thaliana</i> . Plant Biology, 2016, 18, 376-381.	1.8	41
671	Immobilization of copper and cadmium by hydroxyapatite combined with phytoextraction and changes in microbial community structure in a smelter-impacted soil. RSC Advances, 2016, 6, 103955-103964.	1.7	16
672	Soil microbial C:N ratio is a robust indicator of soil productivity for paddy fields. Scientific Reports, 2016, 6, 35266.	1.6	36
673	Soil pH, total phosphorus, climate and distance are the major factors influencing microbial activity at a regional spatial scale. Scientific Reports, 2016, 6, 25815.	1.6	70
674	5 Fungi and Industrial Pollutants. , 2016, , 99-125.		6
675	The combination of quarry restoration strategies in semiarid climate induces different responses in biochemical and microbiological soil properties. Applied Soil Ecology, 2016, 107, 33-47.	2.1	51
676	Differences in substrate use efficiency: impacts of microbial community composition, land use management, and substrate complexity. Biology and Fertility of Soils, 2016, 52, 547-559.	2.3	62
677	Microbial utilization of rice straw and its derived biochar in a paddy soil. Science of the Total Environment, 2016, 559, 15-23.	3.9	76
678	Behavior of two pesticides in a soil subjected to severe drought. Effects on soil biology. Applied Soil Ecology, 2016, 105, 17-24.	2.1	28
679	Effects of vegetational type and soil depth on soil microbial communities on the Loess Plateau of China. Archives of Agronomy and Soil Science, 2016, 62, 1665-1677.	1.3	12
680	Spatial and temporal variation of resource allocation in an arable soil drives community structure and biomass of nematodes and their role in the micro-food web. Pedobiologia, 2016, 59, 111-120.	0.5	25
681	Biochemical properties of highly mineralised and infertile soil modified by acacia and spinifex plants in northwest Queensland, Australia. Soil Research, 2016, 54, 265.	0.6	7
682	Phosphorus fertilization to the wheat-growing season only in a rice–wheat rotation in the Taihu Lake region of China. Field Crops Research, 2016, 198, 32-39.	2.3	28
683	Bioenergy cropping systems that incorporate native grasses stimulate growth of plant-associated soil microbes in the absence of nitrogen fertilization. Agriculture, Ecosystems and Environment, 2016, 233, 396-403.	2.5	49
684	The effect of fire intensity, nutrients, soil microbes, and spatial distance on grassland productivity. Plant and Soil, 2016, 409, 203-216.	1.8	40
685	Analysis of the microbial communities of three kinds of Fen-Daqu by PLFAs. Journal of the Institute of	0.8	10

#	Article	IF	CITATIONS
686	Evaluating leachate recirculation with cellulase addition to enhance waste biostabilisation and landfill gas production. Waste Management, 2016, 55, 61-70.	3.7	23
687	Long-term response of soil microbial communities to fire and fire-fighting chemicals. Biology and Fertility of Soils, 2016, 52, 963-975.	2.3	20
688	Pesticide Toxicity to Microorganisms: Exposure, Toxicity and Risk Assessment Methodologies. , 2016, , 351-410.		7
689	Grassland invasibility varies with drought effects on soil functioning. Journal of Ecology, 2016, 104, 1250-1258.	1.9	35
690	The combined effect of sulfadiazine and copper on soil microbial activity and community structure. Ecotoxicology and Environmental Safety, 2016, 134, 43-52.	2.9	52
691	Drivers of temperature sensitivity of decomposition of soil organic matter along a mountain altitudinal gradient in the Western Carpathians. Ecological Research, 2016, 31, 609-615.	0.7	14
692	Positive plant–soil feedbacks of the invasive <i>Impatiens glandulifera</i> and their effects on aboveâ€ground microbial communities. Weed Research, 2016, 56, 198-207.	0.8	38
693	Non-target impact of fungicide tetraconazole on microbial communities in soils with different agricultural management. Ecotoxicology, 2016, 25, 1047-1060.	1.1	27
694	Soil Microbial Community Composition in a Peach Orchard Under Different Irrigation Methods and Postharvest Deficit Irrigation. Soil Science, 2016, 181, 208-215.	0.9	7
695	Soil microbial community composition and its driving factors in alpine grasslands along a mountain elevational gradient. Journal of Mountain Science, 2016, 13, 1013-1023.	0.8	14
696	Land-use and land-cover effects on soil microbial community abundance and composition in headwater riparian wetlands. Soil Biology and Biochemistry, 2016, 97, 215-233.	4.2	37
697	Description of vegetation and soil properties in sagebrush steppe following pipeline burial, reclamation, and recovery time. Geoderma, 2016, 265, 19-26.	2.3	13
698	Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments. Global Change Biology, 2016, 22, 4150-4161.	4.2	121
699	Fire Alters Vegetation and Soil Microbial Community in Alpine Meadow. Land Degradation and Development, 2016, 27, 1379-1390.	1.8	56
700	Changes in soil physicochemical and microbial properties along elevation gradients in two forest soils. Scandinavian Journal of Forest Research, 2016, 31, 242-253.	0.5	20
701	The effect of altitudinal gradient on soil microbial community activity and structure in moso bamboo plantations. Applied Soil Ecology, 2016, 98, 213-220.	2.1	44
702	Bacterial and fungal growth in burnt acid soils amended with different high C/N mulch materials. Soil Biology and Biochemistry, 2016, 97, 102-111.	4.2	40
703	Do arbuscular mycorrhizal fungi stabilize litterâ€derived carbon in soil?. Journal of Ecology, 2016, 104, 261-269.	1.9	84

#	Article	IF	CITATIONS
704	Soil nitrogen availability alters rhizodeposition carbon flux into the soil microbial community. Journal of Soils and Sediments, 2016, 16, 1472-1480.	1.5	15
705	Nanoparticles within WWTP sludges have minimal impact on leachate quality and soil microbial community structure and function. Environmental Pollution, 2016, 211, 399-405.	3.7	61
706	Reed litter Si content affects microbial community structure and the lipid composition of an invertebrate shredder during aquatic decomposition. Limnologica, 2016, 57, 14-22.	0.7	5
707	Incorporation of 13 C-labelled rice rhizodeposition into soil microbial communities under different fertilizer applications. Applied Soil Ecology, 2016, 101, 11-19.	2.1	46
708	Substrate limitation to soil microbial communities in a subalpine volcanic desert on Mount Fuji, Japan. European Journal of Soil Biology, 2016, 73, 34-45.	1.4	3
709	The occurrence of PAHs and faecal sterols in Dublin Bay and their influence on sedimentary microbial communities. Marine Pollution Bulletin, 2016, 106, 215-224.	2.3	15
710	Response of the soil microbial community and soil nutrient bioavailability to biomass harvesting and reserve tree retention in northern Minnesota aspen-dominated forests. Applied Soil Ecology, 2016, 99, 110-117.	2.1	10
711	Effect of rice straw application on microbial community and activity in paddy soil under different water status. Environmental Science and Pollution Research, 2016, 23, 5941-5948.	2.7	27
712	Opposing effects of nitrogen versus phosphorus additions on mycorrhizal fungal abundance along an elevational gradient in tropical montane forests. Soil Biology and Biochemistry, 2016, 94, 37-47.	4.2	61
713	Combinational effects of sulfomethoxazole and copper on soil microbial community and function. Environmental Science and Pollution Research, 2016, 23, 4235-4241.	2.7	27
714	Response of microbial communities from an apple orchard and grassland soils to the first-time application of the fungicide tetraconazole. Ecotoxicology and Environmental Safety, 2016, 124, 193-201.	2.9	18
715	A five-year P fertilization pot trial for wheat only in a rice-wheat rotation of Chinese paddy soil: interaction of P availability and microorganism. Plant and Soil, 2016, 399, 305-318.	1.8	24
716	Response of soil microbial community and diversity to increasing water salinity and nitrogen fertilization rate in an arid soil. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2016, 66, 117-126.	0.3	12
717	The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment. Journal of Proteomics, 2016, 135, 162-169.	1.2	136
718	Microbial biomass in sediments affects greenhouse gas effluxes in Poyang Lake in China. Journal of Freshwater Ecology, 2016, 31, 109-121.	0.5	12
719	Evidence for the importance of litter as a co-substrate for MCPA dissipation in an agricultural soil. Environmental Science and Pollution Research, 2016, 23, 4164-4175.	2.7	9
720	Biochar and Crop Residue Amendments on Soil Microbial and Biochemical Properties. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2017, 87, 975-983.	0.4	5
721	A Multi-biological Assay Approach to Assess Microbial Diversity in Arsenic (As) Contaminated Soils. Geomicrobiology Journal, 2017, 34, 183-192.	1.0	21

#	Article	IF	CITATIONS
722	Fertilization alters microbial community composition and functional patterns by changing the chemical nature of soil organic carbon: A field study in a Halosol. Geoderma, 2017, 292, 17-24.	2.3	37
723	A phosphorus threshold for mycoheterotrophic plants in tropical forests. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162093.	1.2	22
724	Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. Chemosphere, 2017, 174, 593-603.	4.2	245
725	Temperature sensitivity of substrate-use efficiency can result from altered microbial physiology without change to community composition. Soil Biology and Biochemistry, 2017, 109, 59-69.	4.2	44
726	Slow pyrolyzed biochars from crop residues for soil metal(loid) immobilization and microbial community abundance in contaminated agricultural soils. Chemosphere, 2017, 177, 157-166.	4.2	50
727	Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications, 2017, 8, 14349.	5.8	555
728	Mycoremediation of Potentially Toxic Trace Elements—a Biological Tool for Soil Cleanup: A Review. Pedosphere, 2017, 27, 205-222.	2.1	59
729	Effects of long-term experimental warming on plant community properties and soil microbial community composition in an alpine meadow. Israel Journal of Ecology and Evolution, 2017, 63, 1-12.	0.2	3
730	Distance-dependent varieties of microbial community structure and metabolic functions in the rhizosphere of Sedum alfredii Hance during phytoextraction of a cadmium-contaminated soil. Environmental Science and Pollution Research, 2017, 24, 14234-14248.	2.7	8
731	Conversion of rainforest into agroforestry and monoculture plantation in China: Consequences for soil phosphorus forms and microbial community. Science of the Total Environment, 2017, 595, 769-778.	3.9	64
732	Effects of titanium dioxide nanoparticles on soil microbial communities and wheat biomass. Soil Biology and Biochemistry, 2017, 111, 85-93.	4.2	73
733	Effects of zokors (Myospalax baileyi) on plant, on abiotic and biotic soil characteristic of an alpine meadow. Ecological Engineering, 2017, 103, 95-105.	1.6	15
734	A comparative study on the pore-size and filter type effect on the molecular composition of soil and stream dissolved organic matter. Organic Geochemistry, 2017, 110, 36-44.	0.9	16
735	Isotopologue profiling enables insights into dietary routing and metabolism of trophic biomarker fatty acids. Chemoecology, 2017, 27, 101-114.	0.6	15
736	Ground bryophytes regulate net soil carbon efflux: evidence from two subalpine ecosystems on the east edge of the Tibet Plateau. Plant and Soil, 2017, 417, 363-375.	1.8	18
737	Soil Biology Changes as a Consequence of Organic Amendments Subjected to a Severe Drought. Land Degradation and Development, 2017, 28, 897-905.	1.8	15
738	Effects of heavy metals on soil microbial community structure and diversity in the rice (<i>Oryza) Tj ETQq0 0 0 rg</i>	gBT /Overl 0.8	ock 10 Tf 50 44
739	Microbial community response to changes in substrate availability and habitat conditions in a reciprocal subsoil transfer experiment. Soil Biology and Biochemistry, 2017, 105, 138-152.	4.2	39

#	Article	IF	Citations
	Differentiating between root- and leaf-litter controls on the structure and stability of soil		
740	micro-food webs. Soil Biology and Biochemistry, 2017, 113, 192-200.	4.2	21
741	Using community trait-distributions to assign microbial responses to pH changes and Cd in forest soils treated with wood ash. Soil Biology and Biochemistry, 2017, 112, 153-164.	4.2	73
742	Short-term responses and resistance of soil microbial community structure to elevated CO2 and N addition in grassland mesocosms. FEMS Microbiology Letters, 2017, 364, .	0.7	26
743	Driving factors and temporal fluctuation of Collembola communities and reproductive mode across forest types and regions. Ecology and Evolution, 2017, 7, 4390-4403.	0.8	34
744	Nutrient leaching, soil pH and changes in microbial community increase with time in lead-contaminated boreal forest soil at a shooting range area. Environmental Science and Pollution Research, 2017, 24, 5415-5425.	2.7	6
745	Responses of Soil Micro-Food Web to Land Use Change from Upland to Paddy Fields with Different Years of Rice Cultivation. Pedosphere, 2017, 27, 155-164.	2.1	8
746	Fast and sensitive in vivo studies under controlled environmental conditions to substitute long-term field trials with genetically modified plants. Journal of Biotechnology, 2017, 243, 48-60.	1.9	0
747	Arbuscular mycorrhizal fungal community composition is altered by longâ€ŧerm litter removal but not litter addition in a lowland tropical forest. New Phytologist, 2017, 214, 455-467.	3.5	45
748	Effects of Ant Mounds on the Plant and Soil Microbial Community in an Alpine Meadow of Qinghai–Tibet Plateau. Land Degradation and Development, 2017, 28, 1538-1548.	1.8	13
749	Tidal flooding diminishes the effects of livestock grazing on soil micro-food webs in a coastal saltmarsh. Agriculture, Ecosystems and Environment, 2017, 236, 177-186.	2.5	14
750	Phospholipid fatty acid biomarkers show positive soil microbial community responses to conservation soil management of irrigated crop rotations. Soil and Tillage Research, 2017, 168, 1-10.	2.6	36
751	Response of soil microbial communities and nitrogen thresholds of Bothriochloa ischaemum to short-term nitrogen addition on the Loess Plateau. Geoderma, 2017, 308, 112-119.	2.3	47
752	Multitrophic interactions in the rhizosphere of a temperate forest tree affect plant carbon flow into the belowground food web. Soil Biology and Biochemistry, 2017, 115, 526-536.	4.2	31
753	The effects on soil aggregation and carbon fixation of different organic amendments for restoring degraded soil in semiarid areas. European Journal of Soil Science, 2017, 68, 941-950.	1.8	22
754	Strong indirect herbicide effects on mycorrhizal associations through plant community shifts and secondary invasions. Ecological Applications, 2017, 27, 2359-2368.	1.8	19
755	Converting highly productive arable cropland in Europe to grassland: –a poor candidate for carbon sequestration. Scientific Reports, 2017, 7, 10493.	1.6	27
756	Changes in soil microbial community composition and organic carbon fractions in an integrated rice–crayfish farming system in subtropical China. Scientific Reports, 2017, 7, 2856.	1.6	71
757	A Lipid Extraction and Analysis Method for Characterizing Soil Microbes in Experiments with Many Samples. Journal of Visualized Experiments, 2017, , .	0.2	10

#	Article	IF	CITATIONS
758	Reprint of "Fast and sensitive in vivo studies under controlled environmental conditions to substitute long-term field trials with genetically modified plants― Journal of Biotechnology, 2017, 257, 22-34.	1.9	0
759	Detecting the presence of fish farm-derived organic matter at the seafloor using stable isotope analysis of phospholipid fatty acids. Scientific Reports, 2017, 7, 5146.	1.6	9
760	Characterizing rhizosphere microbial communities in long-term monoculture tea orchards by fatty acid profiles and substrate utilization. European Journal of Soil Biology, 2017, 81, 48-54.	1.4	30
761	Forest-type shift and subsequent intensive management affected soil organic carbon and microbial community in southeastern China. European Journal of Forest Research, 2017, 136, 689-697.	1.1	35
762	Effects of residue incorporation and plant growth on soil labile organic carbon and microbial function and community composition under two soil moisture levels. Environmental Science and Pollution Research, 2017, 24, 18849-18859.	2.7	17
763	Reduced tillage stimulated symbiotic fungi and microbial saprotrophs, but did not lead to a shift in the saprotrophic microorganism community structure. Applied Soil Ecology, 2017, 119, 104-114.	2.1	18
764	Response of soil bacterial communities to lead and zinc pollution revealed by Illumina MiSeq sequencing investigation. Environmental Science and Pollution Research, 2017, 24, 666-675.	2.7	54
765	Rice rhizodeposition and its utilization by microbial groups depends on N fertilization. Biology and Fertility of Soils, 2017, 53, 37-48.	2.3	123
766	The Impact ofAllolobophora mollerion Soil Biology Under Different Organic Amendments. Land Degradation and Development, 2017, 28, 918-925.	1.8	3
767	Soil microbial community assembly precedes vegetation development after drastic techniques to mitigate effects of nitrogen deposition. Biological Conservation, 2017, 212, 476-483.	1.9	10
768	Heavy metals and soil microbes. Environmental Chemistry Letters, 2017, 15, 65-84.	8.3	225
769	Bacterial and fungal community structure and diversity in a mining region under long-term metal exposure revealed by metagenomics sequencing. Ecological Genetics and Genomics, 2017, 2, 13-24.	0.3	65
770	Soil Microbial Communities in Natural and Managed Cloud Montane Forests. Forests, 2017, 8, 33.	0.9	14
771	The Response of Soil CO2 Efflux to Water Limitation Is Not Merely a Climatic Issue: The Role of Substrate Availability. Forests, 2017, 8, 241.	0.9	3
772	The Effect of Re-Planting Trees on Soil Microbial Communities in a Wildfire-Induced Subalpine Grassland. Forests, 2017, 8, 385.	0.9	6
773	Effects of Pulp and Na-Bentonite Amendments on the Mobility of Trace Elements, Soil Enzymes Activity and Microbial Parameters under Ex Situ Aided Phytostabilization. PLoS ONE, 2017, 12, e0169688.	1.1	12
774	Effects of forest conversion on soil microbial communities depend on soil layer on the eastern Tibetan Plateau of China. PLoS ONE, 2017, 12, e0186053.	1.1	15
775	Ammonia Oxidizers in a Grazing Land with a History of Poultry Litter Application. Journal of Environmental Quality, 2017, 46, 994-1002.	1.0	5

#	Article	IF	Citations
776	New molecular evidence for surface and sub-surface soil erosion controls on the composition of stream DOM during storm events. Biogeosciences, 2017, 14, 5039-5051.	1.3	15
777	Micro-decomposer communities and decomposition processes in tropical lowlands as affected by land use and litter type. Oecologia, 2018, 187, 255-266.	0.9	33
778	Facilitating ecosystem assembly: Plant-soil interactions as a restoration tool. Biological Conservation, 2018, 220, 272-279.	1.9	41
779	Microbial community composition and activity controls phosphorus transformation in rhizosphere soils of the Yeyahu Wetland in Beijing, China. Science of the Total Environment, 2018, 628-629, 1266-1277.	3.9	51
780	Arbuscular mycorrhizal fungal and soil microbial communities in African Dark Earths. FEMS Microbiology Ecology, 2018, 94, .	1.3	7
781	Molecular Genomic Techniques for Identification of Soil Microbial Community Structure and Dynamics. Microorganisms for Sustainability, 2018, , 9-33.	0.4	2
782	Green roof soil organisms: Anthropogenic assemblages or natural communities?. Applied Soil Ecology, 2018, 126, 11-20.	2.1	29
783	Life on the edge: active microbial communities in the Kryos MgCl2-brine basin at very low water activity. ISME Journal, 2018, 12, 1414-1426.	4.4	42
784	The influence of tree species on soil properties and microbial communities following afforestation of abandoned land in northeast China. European Journal of Soil Biology, 2018, 85, 73-78.	1.4	27
785	The restoration age of Robinia pseudoacacia plantation impacts soil microbial biomass and microbial community structure in the Loess Plateau. Catena, 2018, 165, 192-200.	2.2	56
786	Contributions of residue-C and -N to plant growth and soil organic matter pools under planted and unplanted conditions. Soil Biology and Biochemistry, 2018, 120, 91-104.	4.2	23
787	Rhizospheric effects on the microbial community of e-waste-contaminated soils using phospholipid fatty acid and isoprenoid glycerol dialkyl glycerol tetraether analyses. Environmental Science and Pollution Research, 2018, 25, 9904-9914.	2.7	9
788	Effect of Silene vulgaris and Heavy Metal Pollution on Soil Microbial Diversity in Long-Term Contaminated Soil. Water, Air, and Soil Pollution, 2018, 229, 13.	1.1	45
789	Assessment of Cu applications in two contrasting soils—effects on soil microbial activity and the fungal community structure. Ecotoxicology, 2018, 27, 217-233.	1.1	54
790	Metagenomic analysis of microbial community and function involved in cd-contaminated soil. BMC Microbiology, 2018, 18, 11.	1.3	148
791	Experimental evidence of REE size fraction redistribution during redox variation in wetland soil. Science of the Total Environment, 2018, 631-632, 580-588.	3.9	15
792	Net nitrogen mineralization in Alberta bog peat is insensitive to experimentally increased nitrogen deposition and time since wildfire. Biogeochemistry, 2018, 138, 155-170.	1.7	10
793	Can chemical and molecular biomarkers help discriminate between industrial, rural and urban environments?. Science of the Total Environment, 2018, 631-632, 1059-1069.	3.9	12

#	Article	IF	CITATIONS
794	Effects of biochars on the bioaccessibility of phenanthrene/pyrene/zinc/lead and microbial community structure in a soil under aerobic and anaerobic conditions. Journal of Environmental Sciences, 2018, 63, 296-306.	3.2	25
795	Microbial community biomass and structure in saline and non-saline soils associated with salt- and boron-tolerant poplar clones grown for the phytoremediation of selenium. International Journal of Phytoremediation, 2018, 20, 129-137.	1.7	11
796	Soil microbial communities changed with a continuously monocropped processing tomato system. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2018, 68, 149-160.	0.3	1
797	The importance of plants to development and maintenance of soil structure, microbial communities and ecosystem functions. Soil and Tillage Research, 2018, 175, 139-149.	2.6	60
798	Utilisation of mucilage C by microbial communities under drought. Biology and Fertility of Soils, 2018, 54, 83-94.	2.3	18
799	Investigations of microbial degradation of polycyclic aromatic hydrocarbons based on 13C-labeled phenanthrene in a soil co-contaminated with trace elements using a plant assisted approach. Environmental Science and Pollution Research, 2018, 25, 6364-6377.	2.7	11
800	Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil. Science of the Total Environment, 2018, 621, 148-159.	3.9	181
801	Chemodiagnostic by Lipid Analysis of the Microbial Community Structure in Trace Metal Polluted Urban Soil. Springer Geography, 2018, , 150-160.	0.3	1
802	Dynamics of microbial biomass and community composition after short-term water status change in Chinese paddy soils. Environmental Science and Pollution Research, 2018, 25, 2932-2941.	2.7	24
803	Replacement of natural hardwood forest with planted bamboo and cedar in a humid subtropical mountain affects soil microbial community. Applied Soil Ecology, 2018, 124, 146-154.	2.1	15
804	Ecotoxicity evaluation and human risk assessment of an agricultural polluted soil. Environmental Monitoring and Assessment, 2018, 190, 738.	1.3	14
805	Nematodes and Microorganisms Interactively Stimulate Soil Organic Carbon Turnover in the Macroaggregates. Frontiers in Microbiology, 2018, 9, 2803.	1.5	45
806	Impacts of Climate Change on Soil Microbial Communities and Their Functioning. Developments in Soil Science, 2018, 35, 111-129.	0.5	14
807	Soil Phospholipid Fatty Acid Biomarkers and βâ€Glucosidase Activities after Longâ€Term Manure and Fertilizer N Applications. Soil Science Society of America Journal, 2018, 82, 343-353.	1.2	15
808	Multivariate optimization of a method for the determination of fatty acids in dental biofilm by GC–MS. Bioanalysis, 2018, 10, 1319-1333.	0.6	5
809	The Various Roles of Fatty Acids. Molecules, 2018, 23, 2583.	1.7	403
810	Chemical nature of soil organic carbon under different long-term fertilization regimes is coupled with changes in the bacterial community composition in a Calcaric Fluvisol. Biology and Fertility of Soils, 2018, 54, 999-1012.	2.3	27
811	A modified high-throughput analysis of PLFAs in soil. MethodsX, 2018, 5, 1491-1497.	0.7	3

#	Article	IF	CITATIONS
812	Favorable effect of mycorrhizae on biomass production efficiency exceeds their carbon cost in a fertilization experiment. Ecology, 2018, 99, 2525-2534.	1.5	31
813	Grass-Legume Mixtures for Improved Soil Health in Cultivated Agroecosystem. Sustainability, 2018, 10, 2718.	1.6	32
814	Molecular fingerprinting of particulate organic matter as aÂnew tool for its source apportionment: changes along aÂheadwater drainage in coarse, medium and fine particles as aÂfunction of rainfalls. Biogeosciences, 2018, 15, 973-985.	1.3	7
815	The legacy of mixed planting and precipitation reduction treatments on soil microbial activity, biomass and community composition in a young tree plantation. Soil Biology and Biochemistry, 2018, 124, 227-235.	4.2	39
816	Native bacteria promote plant growth under drought stress condition without impacting the rhizomicrobiome. FEMS Microbiology Ecology, 2018, 94, .	1.3	54
817	Structure and function of the global topsoil microbiome. Nature, 2018, 560, 233-237.	13.7	1,370
818	Micro-Food Web Structure Shapes Rhizosphere Microbial Communities and Growth in Oak. Diversity, 2018, 10, 15.	0.7	6
819	Seasonal Effects on Microbial Community Structure and Nitrogen Dynamics in Temperate Forest Soil. Forests, 2018, 9, 153.	0.9	37
820	The Effect of Combining Natural Terpenes and Antituberculous Agents against Reference and Clinical Mycobacterium tuberculosis Strains. Molecules, 2018, 23, 176.	1.7	32
821	Changes in soil microbial community structure in relation to plant succession and soil properties during 4000 years of pedogenesis. European Journal of Soil Biology, 2018, 88, 80-88.	1.4	26
822	Elevated CO2 concentration affected pine and oak litter chemistry and the respiration and microbial biomass of soils amended with these litters. Biology and Fertility of Soils, 2018, 54, 583-594.	2.3	12
823	Responses of microbial tolerance to heavy metals along a century-old metal ore pollution gradient in a subarctic birch forest. Environmental Pollution, 2018, 240, 297-305.	3.7	16
824	Shifts in priming partly explain impacts of longâ€ŧerm nitrogen input in different chemical forms on soil organic carbon storage. Global Change Biology, 2018, 24, 4160-4172.	4.2	24
825	The biogeochemical consequences of litter transformation by insect herbivory in the Subarctic: a microcosm simulation experiment. Biogeochemistry, 2018, 138, 323-336.	1.7	20
826	Analysis of soil microbial dynamics at a cropland-grassland interface in an agro-pastoral zone in a temperate steppe in northern China. Catena, 2018, 170, 257-265.	2.2	13
827	Tetrabromobisphenol A alters soil microbial community via selective antibacterial activity. Ecotoxicology and Environmental Safety, 2018, 164, 597-603.	2.9	14
828	Plant Species and Heavy Metals Affect Biodiversity of Microbial Communities Associated With Metal-Tolerant Plants in Metalliferous Soils. Frontiers in Microbiology, 2018, 9, 1425.	1.5	59
829	Effects of artificial warming on different soil organic carbon and nitrogen pools in a subtropical plantation. Soil Biology and Biochemistry, 2018, 124, 161-167.	4.2	39

#	Article	lF	CITATIONS
830	Effects of straw management and nitrogen application rate on soil organic matter fractions and microbial properties in North China Plain. Journal of Soils and Sediments, 2019, 19, 618-628.	1.5	42
831	Soil microbes and medical metabolites of <i>Artemisia annua</i> L.Âalong altitudinal gradient in Guizhou Karst terrains of China. Journal of Plant Interactions, 2019, 14, 167-176.	1.0	3
832	Experimental nitrogen addition alters structure and function of a boreal bog: critical load and thresholds revealed. Ecological Monographs, 2019, 89, e01371.	2.4	35
833	Stable Isotope Probing of Microbial Phospholipid Fatty Acids in Environmental Samples. Methods in Molecular Biology, 2019, 2046, 45-55.	0.4	8
834	Soil health indicators impacted by long-term cattle manure and inorganic fertilizer application in a corn-soybean rotation of South Dakota. Scientific Reports, 2019, 9, 11776.	1.6	59
835	Phosphorus addition accelerates fine root decomposition by stimulating extracellular enzyme activity in a subtropical natural evergreen broad-leaved forest. European Journal of Forest Research, 2019, 138, 917-928.	1.1	8
836	Effects of food waste compost on the shift of microbial community in water saturated and unsaturated soil condition. Applied Biological Chemistry, 2019, 62, .	0.7	10
837	The Influence of Potentially Toxic Elements on Soil Biological and Chemical Properties. , 0, , .		10
838	Phospholipids as Life Markers in Geological Habitats. , 2019, , 1-29.		3
839	Fungi and bacteria respond differently to changing environmental conditions within a soil profile. Soil Biology and Biochemistry, 2019, 137, 107543.	4.2	31
840	Plant growth-promoting microorganisms in sustainable agriculture. , 2019, , 1-19.		7
841	Lipid Biomarkers in Geomicrobiology: Analytical Techniques and Applications. , 2019, , 341-359.		0
842	Experimental evidence that phosphorus fertilization and arbuscular mycorrhizal symbiosis can reduce the carbon cost of phosphorus uptake. Functional Ecology, 2019, 33, 2215-2225.	1.7	32
843	Role of different microorganisms in remediating PAH-contaminated soils treated with compost or fungi. Journal of Environmental Management, 2019, 252, 109675.	3.8	28
844	Influence of Repeated Application of Wetting Agents on Soil Water Repellency and Microbial Community. Sustainability, 2019, 11, 4505.	1.6	7
845	Long term effects of intensive biomass harvesting and compaction on the forest soil ecosystem. Soil Biology and Biochemistry, 2019, 137, 107572.	4.2	6
846	Succession of litter-decomposing microbial organisms in deciduous birch and oak forests, northern Japan. Acta Oecologica, 2019, 101, 103485.	0.5	8
847	Litter chemical quality strongly affects forest floor microbial groups and ecoenzymatic stoichiometry in the subalpine forest. Annals of Forest Science, 2019, 76, 1.	0.8	10

#	Article	IF	CITATIONS
848	Short-term impacts of biochar and manure application on soil labile carbon fractions, enzyme activity, and microbial community structure. Biochar, 2019, 1, 271-282.	6.2	19
849	Instantaneous responses of microbial communities to stress in soils pretreated with Mentha spicata essential oil and/or inoculated with arbuscular mycorrhizal fungus. Ecological Research, 2019, 34, 701-710.	0.7	9
850	Trees in trimmed hedgerows but not tree health increase diversity of oribatid mite communities in intensively managed agricultural land. Soil Biology and Biochemistry, 2019, 138, 107568.	4.2	8
851	Molecular Dynamics and Metadynamics Insights of 1,4-Dioxane-Induced Structural Changes of Biomembrane Models. Journal of Physical Chemistry B, 2019, 123, 7869-7884.	1.2	7
852	Ecological restoration of heavy metal-contaminated soil using Na-bentonite and green compost coupled with the cultivation of the grass Festuca arundinacea. Ecological Engineering, 2019, 138, 420-433.	1.6	12
853	The microbial community size, structure, and process rates along natural gradients of soil salinity. Soil Biology and Biochemistry, 2019, 138, 107607.	4.2	47
854	The potential of corn-soybean intercropping to improve the soil health status and biomass production in cool climate boreal ecosystems. Scientific Reports, 2019, 9, 13148.	1.6	25
855	Moss-dominated biocrusts improve the structural diversity of underlying soil microbial communities by increasing soil stability and fertility in the Loess Plateau region of China. European Journal of Soil Biology, 2019, 95, 103120.	1.4	31
856	Influence of Thorny Bamboo Plantations on Soil Microbial Biomass and Community Structure in Subtropical Badland Soils. Forests, 2019, 10, 854.	0.9	5
857	Impacts of core rotation, defaunation and nitrogen addition on arbuscular mycorrhizal fungi, microorganisms and microarthropods in a tropical montane rainforest. Tropical Ecology, 2019, 60, 350-361.	0.6	5
858	Leaf litter decomposition and decomposer communities in streams affected by intensive forest biomass removal. Ecological Indicators, 2019, 101, 364-372.	2.6	11
859	Urban meadows as an alternative to short mown grassland: effects of composition and height on biodiversity. Ecological Applications, 2019, 29, e01946.	1.8	76
860	Naphthalene exerts substantial nontarget effects on soil nitrogen mineralization processes in a subalpine forest soil: A microcosm study. PLoS ONE, 2019, 14, e0217178.	1.1	5
861	Influence of intercropping Chinese milk vetch on the soil microbial community in rhizosphere of rape. Plant and Soil, 2019, 440, 85-96.	1.8	45
862	Expanding the toolbox of nutrient limitation studies: A novel method of soil microbial inâ€growth bags to evaluate nutrient demands in tropical forests. Functional Ecology, 2019, 33, 1536-1548.	1.7	5
863	Microbial community structure in pasture and hayfield soils of the Helderberg region of New York State: a comparison of management strategies. Agroecology and Sustainable Food Systems, 2019, 43, 1031-1053.	1.0	6
864	Antibiotics in the Soil Environment—Degradation and Their Impact on Microbial Activity and Diversity. Frontiers in Microbiology, 2019, 10, 338.	1.5	511
865	Biotic homogenization of wetland nematode communities by exotic <i>Spartina alterniflora</i> in China. Ecology, 2019, 100, e02596.	1.5	37

#	Article	IF	CITATIONS
866	Foliar Roundup application has minor effects on the compositional and functional diversity of soil microorganisms in a short-term greenhouse experiment. Ecotoxicology and Environmental Safety, 2019, 174, 506-513.	2.9	16
867	Changes in Soil C:N:P Stoichiometry and Microbial Structure along Soil Depth in Two Forest Soils. Forests, 2019, 10, 113.	0.9	20
868	A Polyphasic Approach for Assessing Eco-System Connectivity Demonstrates that Perturbation Remodels Network Architecture in Soil Microcosms. Microbial Ecology, 2019, 78, 949-960.	1.4	7
869	Impact of soil leachate on microbial biomass and diversity affected by plant diversity. Plant and Soil, 2019, 439, 505-523.	1.8	44
870	Microbial functional diversity and carbon use feedback in soils as affected by heavy metals. Environment International, 2019, 125, 478-488.	4.8	135
871	Effects of naphthalene on soil fauna abundance and enzyme activity in the subalpine forest of western Sichuan, China. Scientific Reports, 2019, 9, 2849.	1.6	9
872	Contribution of Peatland Permafrost to Dissolved Organic Matter along a Thaw Gradient in North Siberia. Environmental Science & Technology, 2019, 53, 14165-14174.	4.6	15
873	Changes in growth and soil microbial communities in reciprocal grafting clones between Populus deltoides males and females exposed to water deficit conditions. Annals of Forest Science, 2019, 76, 1.	0.8	2
874	Assessing soil biological health in forest soils. Developments in Soil Science, 2019, , 397-426.	0.5	12
875	Abiotic factors determine functional outcomes of microbial inoculation of soils from a metal contaminated brownfield. Ecotoxicology and Environmental Safety, 2019, 168, 450-456.	2.9	9
876	Changes in soil microbial community response to precipitation events in a semi-arid steppe of the Xilin River Basin, China. Journal of Arid Land, 2019, 11, 97-110.	0.9	12
877	Labile and recalcitrant components of organic matter of a Mollisol changed with land use and plant litter management: An advanced 13C NMR study. Science of the Total Environment, 2019, 660, 1-10.	3.9	19
878	Earthworms and cadmium – Heavy metal resistant gut bacteria as indicators for heavy metal pollution in soils?. Ecotoxicology and Environmental Safety, 2019, 171, 843-853.	2.9	75
879	Using a combination of PLFA and DNA-based sequencing analyses to detect shifts in the soil microbial community composition after a simulated spring precipitation in a semi-arid grassland in China. Science of the Total Environment, 2019, 657, 1237-1245.	3.9	38
880	Effects of bacterial-feeding nematodes on soil microbial activity and the microbial community in oil-contaminated soil. Journal of Environmental Management, 2019, 234, 424-430.	3.8	20
881	¹⁴ Câ€Free Carbon Is a Major Contributor to Cellular Biomass in Geochemically Distinct Groundwater of Shallow Sedimentary Bedrock Aquifers. Water Resources Research, 2019, 55, 2104-2121.	1.7	24
882	Can enzymatic stoichiometry be used to determine growth-limiting nutrients for microorganisms? - A critical assessment in two subtropical soils. Soil Biology and Biochemistry, 2019, 128, 115-126.	4.2	118
883	Prediction of bioavailability and toxicity of complex chemical mixtures through machine learning models. Chemosphere, 2019, 215, 388-395.	4.2	52

#	Article	IF	CITATIONS
884	Do soil bacterial communities respond differently to abrupt or gradual additions of copper?. FEMS Microbiology Ecology, 2019, 95, .	1.3	5
885	Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine. Ecotoxicology and Environmental Safety, 2019, 170, 218-226.	2.9	220
886	Biological soil crusts as key player in biogeochemical P cycling during pedogenesis of sandy substrate. Geoderma, 2019, 338, 145-158.	2.3	24
887	Linking bioavailability and toxicity changes of complex chemicals mixture to support decision making for remediation endpoint of contaminated soils. Science of the Total Environment, 2019, 650, 2150-2163.	3.9	21
888	Do biological legacies moderate the effects of forest harvesting on soil microbial community composition and soil respiration. Forest Ecology and Management, 2019, 432, 298-308.	1.4	15
889	Biomass, activity and structure of rhizosphere soil microbial community under different metallophytes in a mining site. Plant and Soil, 2019, 434, 245-262.	1.8	23
890	Soil chemical and biological fertility, microbial community structure and dynamics in successive and fallow sugarcane planting systems. Agroecology and Sustainable Food Systems, 2020, 44, 768-794.	1.0	7
891	Effect of long-term fertilization on decomposition of crop residues and their incorporation into microbial communities of 6-year stored soils. Biology and Fertility of Soils, 2020, 56, 25-37.	2.3	22
892	Relationship between the chemical structure of straw and composition of main microbial groups during the decomposition of wheat and maize straws as affected by soil texture. Biology and Fertility of Soils, 2020, 56, 11-24.	2.3	26
893	Responses of nematode, bacterial, and fungal populations to high frequency applications and increasing rates of biosolids in an agricultural soil. Applied Soil Ecology, 2020, 148, 103481.	2.1	7
894	Effects of vegetation type on the microbial characteristics of the fissure soil-plant systems in karst rocky desertification regions of SW China. Science of the Total Environment, 2020, 712, 136543.	3.9	38
895	Effects of waterlogging and increased salinity on microbial communities and extracellular enzyme activity in native and exotic marsh vegetation soils. Soil Science Society of America Journal, 2020, 84, 82-98.	1.2	9
896	Soil Microbial Responses to 28ÂYears of Nutrient Fertilization in a Subarctic Heath. Ecosystems, 2020, 23, 1107-1119.	1.6	14
897	Short-term effect of pig slurry and its digestate application on biochemical properties of soils and emissions of volatile organic compounds. Applied Soil Ecology, 2020, 147, 103376.	2.1	15
898	Mikania micrantha invasion enhances the carbon (C) transfer from plant to soil and mediates the soil C utilization through altering microbial community. Science of the Total Environment, 2020, 711, 135020.	3.9	14
899	Mesh bags underestimated arbuscular mycorrhizal abundance but captured fertilization effects in a mesocosm experiment. Plant and Soil, 2020, 446, 563-575.	1.8	12
900	Trade-offs in greenhouse gas emissions across a liming-induced gradient of soil pH: Role of microbial structure and functioning. Soil Biology and Biochemistry, 2020, 150, 108006.	4.2	30
901	The drivers of soil microbial communities structure on forest stands along the altitudinal gradient in western carpathians. Acta Oecologica, 2020, 108, 103643.	0.5	5

#	Article	IF	CITATIONS
902	Phospholipids as Life Markers in Geological Habitats. , 2020, , 445-473.		0
903	Prokaryotic community assembly after 40 years of soda solonetz restoration by natural grassland and reclaimed farmland. European Journal of Soil Biology, 2020, 100, 103213.	1.4	12
904	Soil salinity changes the temperature sensitivity of soil carbon dioxide and nitrous oxide emissions. Catena, 2020, 195, 104912.	2.2	16
905	Effect of land uses on soil microbial community structures among different soil depths in northeastern China. European Journal of Soil Biology, 2020, 99, 103205.	1.4	25
906	Organic-matter composition and microbial communities as key indicators for arsenic mobility in groundwater aquifers: Evidence from PLFA and 3D fluorescence. Journal of Hydrology, 2020, 591, 125308.	2.3	13
907	Volcanic deposits affect soil nitrogen dynamics and fungal–bacterial dominance in temperate forests. Soil Biology and Biochemistry, 2020, 150, 108011.	4.2	9
908	Response of Soil Microbial Communities to Warming and Clipping in Alpine Meadows in Northern Tibet. Sustainability, 2020, 12, 5617.	1.6	14
909	Microbial responses to selected pharmaceuticals in agricultural soils: Microcosm study on the roles of soil, treatment and time. Soil Biology and Biochemistry, 2020, 149, 107924.	4.2	18
910	Naphthalene exerts non-target effects on the abundance of active fungi by stimulating basidiomycete abundance. Journal of Mountain Science, 2020, 17, 2001-2010.	0.8	3
911	Shifts in Vegetation-Associated Microbial Community in the Reclamation of Coal Mining Subsidence Land. Environmental Engineering Science, 2020, 37, 838-848.	0.8	9
912	Evaluating Heathland Restoration Belowground Using Different Quality Indices of Soil Chemical and Biological Properties. Agronomy, 2020, 10, 1140.	1.3	5
913	Corn and hardwood biochars affected soil microbial community and enzymeÂactivities. , 2020, 3, e20082.		6
914	Soil Heating at High Temperatures and Different Water Content: Effects on the Soil Microorganisms. Geosciences (Switzerland), 2020, 10, 355.	1.0	13
915	Relative importance of soil microbes and litter quality on decomposition and nitrogen cycling in grasslands. Ecological Research, 2020, 35, 912-924.	0.7	16
916	The addition of organic carbon and nitrogen accelerates the restoration of soil system of degraded alpine grassland in Qinghai-Tibet Plateau. Ecological Engineering, 2020, 158, 106084.	1.6	20
917	Composite effects of temperature increase and snow cover change on litter decomposition and microbial community in coolâ€ŧemperate grassland. Grassland Science, 2020, 67, 315.	0.6	1
918	Soil biochemical and microbial response to wheat and corn stubble residue management in Louisiana. , 2020, 3, e20004.		1
919	Moderate disturbance increases the PLFA diversity and biomass of the microbial community in biocrusts in the Loess Plateau region of China. Plant and Soil, 2020, 451, 499-513.	1.8	13

#	Article	IF	CITATIONS
920	Experimental nitrogen addition alters structure and function of a boreal poor fen: Implications for critical loads. Science of the Total Environment, 2020, 733, 138619.	3.9	13
921	Simulated rhizosphere deposits induce microbial Nâ€mining that may accelerate shrubification in the subarctic. Ecology, 2020, 101, e03094.	1.5	25
922	The responses of moss-associated nitrogen fixation and belowground microbial community to chronic Mo and P supplements in subarctic dry heaths. Plant and Soil, 2020, 451, 261-276.	1.8	10
923	Changes of microbial community and activity under different electric fields during electro-bioremediation of PAH-contaminated soil. Chemosphere, 2020, 254, 126880.	4.2	18
924	Coâ€introduction of native mycorrhizal fungi and plant seeds accelerates restoration of postâ€mining landscapes. Journal of Applied Ecology, 2020, 57, 1741-1751.	1.9	33
925	Response of soil phosphorus fractions and fluxes to different vegetation restoration types in a subtropical mountain ecosystem. Catena, 2020, 193, 104663.	2.2	34
926	Positive effects of co-inoculation with Rhizophagus irregularis and Serendipita indica on tomato growth under saline conditions, and their individual colonization estimated by signature lipids. Mycorrhiza, 2020, 30, 455-466.	1.3	16
927	Traits of dominant species and soil properties co-regulate soil microbial communities across land restoration types in a subtropical plateau region of Southwest China. Ecological Engineering, 2020, 153, 105897.	1.6	10
928	Organic management improves soil phosphorus availability and microbial properties in a tea plantation after land conversion from longan (Dimocarpus longan). Applied Soil Ecology, 2020, 154, 103642.	2.1	15
929	Suitability of Mycorrhiza-Defective Rice and Its Progenitor for Studies on the Control of Nitrogen Loss in Paddy Fields via Arbuscular Mycorrhiza. Frontiers in Microbiology, 2020, 11, 186.	1.5	6
930	Soil Microbial Biomass and Community Composition Relates to Poplar Genotypes and Environmental Conditions. Forests, 2020, 11, 262.	0.9	10
931	Land rehabilitation improves edaphic conditions and increases soil microbial biomass and abundance. Soil Ecology Letters, 2020, 2, 145-156.	2.4	6
932	Total RNA sequencing reveals multilevel microbial community changes and functional responses to wood ash application in agricultural and forest soil. FEMS Microbiology Ecology, 2020, 96, .	1.3	30
933	Illumina MiSeq based assessment of bacterial community structure and diversity along the heavy metal concentration gradient in Sukinda chromite mine area soils, India. Ecological Genetics and Genomics, 2020, 15, 100054.	0.3	8
934	Fingerprinting ambient air to understand bioaerosol profiles in three different environments in the south east of England. Science of the Total Environment, 2020, 719, 137542.	3.9	10
935	Pulse of dissolved organic matter alters reciprocal carbon subsidies between autotrophs and bacteria in stream food webs. Ecological Monographs, 2020, 90, e01399.	2.4	25
936	Changes in the Abundance and Composition of a Microbial Community Associated with Land Use Change in a Mexican Tropical Rain Forest. Journal of Soil Science and Plant Nutrition, 2020, 20, 1144-1155.	1.7	21
937	Advances in monitoring soil microbial community dynamic and function. Journal of Applied Genetics, 2020, 61, 249-263.	1.0	67

#	Article	IF	CITATIONS
938	Arbuscular mycorrhizal and microbial profiles of an aged phenol–polynuclear aromatic hydrocarbon-contaminated soil. Ecotoxicology and Environmental Safety, 2020, 192, 110299.	2.9	12
939	The influence of soil warming on organic carbon sequestration of arbuscular mycorrhizal fungi in a sub-arctic grassland. Soil Biology and Biochemistry, 2020, 147, 107826.	4.2	23
940	Response of carbon and microbial properties to risk elements pollution in arctic soils. Journal of Hazardous Materials, 2021, 408, 124430.	6.5	11
941	Changes in the soil microbial communities of different soil aggregations after vegetation restoration in a semiarid grassland, China. Soil Ecology Letters, 2021, 3, 6-21.	2.4	7
942	Linkage of fine and coarse litter traits to soil microbial characteristics and nitrogen mineralization across topographic positions in a temperate natural forest. Plant and Soil, 2021, 459, 261-276.	1.8	13
943	Biochemical signatures reveal positive effects of conservation tillage on arbuscular mycorrhizal fungi but not on saprotrophic fungi and bacteria. Applied Soil Ecology, 2021, 157, 103765.	2.1	7
944	Rhizosphere bacterial and fungal communities succession patterns related to growth of poplar fine roots. Science of the Total Environment, 2021, 756, 143839.	3.9	7
945	Responses of soil phosphorus pools accompanied with carbon composition and microorganism changes to phosphorus-input reduction in paddy soils. Pedosphere, 2021, 31, 83-93.	2.1	7
946	Microbial inputs at the litter layer translate climate into altered organic matter properties. Global Change Biology, 2021, 27, 435-453.	4.2	20
947	Microplastic Addition Alters the Microbial Community Structure and Stimulates Soil Carbon Dioxide Emissions in Vegetableâ€Growing Soil. Environmental Toxicology and Chemistry, 2021, 40, 352-365.	2.2	179
948	Soil Texture Alters the Impact of Salinity on Carbon Mineralization. Agronomy, 2021, 11, 128.	1.3	9
949	PGPR-Assisted Bioremediation and Plant Growth: A Sustainable Approach for Crop Production Using Polluted Soils. , 2021, , 403-420.		5
950	Soil microbial community structure and functionality changes in response to longâ€ŧerm metal and radionuclide pollution. Environmental Microbiology, 2021, 23, 1670-1683.	1.8	36
952	Effects of Exotic <i>Spartina alterniflora</i> Invasion on Soil Phosphorus and Carbon Pools and Associated Soil Microbial Community Composition in Coastal Wetlands. ACS Omega, 2021, 6, 5730-5738.	1.6	11
953	Interactions between soil microbial communities and agronomic behavior in a mandarin crop subjected to water deficit and irrigated with reclaimed water. Agricultural Water Management, 2021, 247, 106749.	2.4	7
954	Co-incorporating leguminous green manure and rice straw drives the synergistic release of carbon and nitrogen, increases hydrolase activities, and changes the composition of main microbial groups. Biology and Fertility of Soils, 2021, 57, 547-561.	2.3	15
955	Deadwood Reduces the Variation in Soil Microbial Communities Caused by Experimental Forest Gaps. Ecosystems, 2021, 24, 1928-1943.	1.6	10
956	Response of soil microbial communities to mixed beech-conifer forests varies with site conditions. Soil Biology and Biochemistry, 2021, 155, 108155.	4.2	21

#	Article	IF	CITATIONS
957	Overview on the role of heavy metals tolerance on developing antibiotic resistance in both Gram-negative and Gram-positive bacteria. Archives of Microbiology, 2021, 203, 2761-2770.	1.0	33
958	Microbial response to designer biochar and compost treatments for mining impacted soils. Biochar, 2021, 3, 299-314.	6.2	7
959	Forest management practices of Pinus tabulaeformis plantations alter soil organic carbon stability by adjusting microbial characteristics on the Loess Plateau of China. Science of the Total Environment, 2021, 766, 144209.	3.9	24
960	Nutrient limitation may induce microbial mining for resources from persistent soil organic matter. Ecology, 2021, 102, e03328.	1.5	56
961	Increased Above- and Belowground Plant Input Can Both Trigger Microbial Nitrogen Mining in Subarctic Tundra Soils. Ecosystems, 2022, 25, 105-121.	1.6	8
962	Comparing the effect of Cu-based fungicides and pure Cu salts on microbial biomass, microbial community structure and bacterial community tolerance to Cu. Journal of Hazardous Materials, 2021, 409, 124960.	6.5	7
963	Microbial Utilisation of Aboveground Litter-Derived Organic Carbon Within a Sandy Dystric Cambisol Profile. Frontiers in Soil Science, 2021, 1, .	0.8	11
964	Plant residue chemical quality modulates the soil microbial response related to decomposition and soil organic carbon and nitrogen stabilization in a rainfed Mediterranean agroecosystem. Soil Biology and Biochemistry, 2021, 156, 108198.	4.2	47
965	Stimulated saprotrophic fungi in arable soil extend their activity to the rhizosphere and root microbiomes of crop seedlings. Environmental Microbiology, 2021, 23, 6056-6073.	1.8	11
966	Litter inputs drive increases in topsoil organic carbon after scrub encroachment in an alpine grassland. Pedobiologia, 2021, 85-86, 150731.	0.5	6
967	Microbial assembly and association network in watermelon rhizosphere after soil fumigation for Fusarium wilt control. Agriculture, Ecosystems and Environment, 2021, 312, 107336.	2.5	40
968	Nitrogen Addition Exacerbates the Negative Effect of Throughfall Reduction on Soil Respiration in a Bamboo Forest. Forests, 2021, 12, 724.	0.9	7
969	Can heavy metal pollution induce bacterial resistance to heavy metals and antibiotics in soils from an ancient land-mine?. Journal of Hazardous Materials, 2021, 411, 124962.	6.5	23
970	Interactions between belowâ€ground traits and rhizosheath fungal and bacterial communities for phosphorus acquisition. Functional Ecology, 2021, 35, 1603-1619.	1.7	15
972	Distinct accumulation of bacterial and fungal residues along a salinity gradient in coastal salt-affected soils. Soil Biology and Biochemistry, 2021, 158, 108266.	4.2	29
973	Microbial composition in different physical compartments of six constructed wetland systems in New Zealand. Ecological Engineering, 2021, 166, 106238.	1.6	4
974	Wetland reclamation homogenizes microbial properties along soil profiles. Geoderma, 2021, 395, 115075.	2.3	18
975	Effects of longâ€ŧerm contrasting lime and phosphorus applications on barley grain yield, root growth and abundance of mycorrhiza. Soil Use and Management, 2022, 38, 991-1003.	2.6	5

#	Article	IF	CITATIONS
976	Soil texture affects the coupling of litter decomposition and soil organic matter formation. Soil Biology and Biochemistry, 2021, 159, 108302.	4.2	56
977	Plateau pika offsets the positive effects of warming on soil organic carbon in an alpine swamp meadow on the Tibetan Plateau. Catena, 2021, 204, 105417.	2.2	10
978	Effects of N addition and clipping on above and belowground plant biomass, soil microbial community structure, and function in an alpine meadow on the Qinghai-Tibetan Plateau. European Journal of Soil Biology, 2021, 106, 103344.	1.4	11
979	Keystone taxa-mediated bacteriome response shapes the resilience of the paddy ecosystem to fungicide triadimefon contamination. Journal of Hazardous Materials, 2021, 417, 126061.	6.5	14
980	Biochar-amended coastal wetland soil enhances growth of Suaeda salsa and alters rhizosphere soil nutrients and microbial communities. Science of the Total Environment, 2021, 788, 147707.	3.9	28
981	Abundant fungal and rare bacterial taxa jointly reveal soil nutrient cycling and multifunctionality in uneven-aged mixed plantations. Ecological Indicators, 2021, 129, 107932.	2.6	38
982	Different mechanisms underlying the divergent responses of soil respiration components to an introduction of N2-fixer tree species into Eucalyptus plantations. Agricultural and Forest Meteorology, 2021, 308-309, 108536.	1.9	1
983	Succession of fungal community and enzyme activity during the co-decomposition process of rice (Oryza sativa L.) straw and milk vetch (Astragalus sinicus L.). Waste Management, 2021, 134, 1-10.	3.7	9
984	Fatty acid signatures of sediment microbial community in the chronically polluted mangrove ecosystem. Marine Pollution Bulletin, 2021, 172, 112885.	2.3	2
985	Limited potential of biosolids application for long-term soil carbon stabilization in coastal dune forests. Geoderma, 2021, 403, 115384.	2.3	5
986	Disentangling the effects of OM quality and soil texture on microbially mediated structure formation in artificial model soils. Geoderma, 2021, 403, 115213.	2.3	31
987	Interactions between invertebrate and microbial communities in decomposing camphor and Masson pine litter varied with seasonal rainfall. Applied Soil Ecology, 2022, 169, 104231.	2.1	2
988	Response dynamics and sustainability of the microbial community structure in biocrusts to moderate disturbance: Results of long-term effects. Geoderma, 2022, 405, 115460.	2.3	6
989	Subsoiling tillage with straw incorporation improves soil microbial community characteristics in the whole cultivated layers: A one-year study. Soil and Tillage Research, 2022, 215, 105188.	2.6	32
990	Drought legacies on soil respiration and microbial community in a Mediterranean forest soil under different soil moisture and carbon inputs. Geoderma, 2022, 405, 115425.	2.3	18
991	Organic versus inorganic fertilizers: Response of soil properties and crop yield. AIMS Geosciences, 2021, 7, 415-439.	0.4	13
992	Cyclic fatty acids: qualitative and quantitative analysis. , 1998, , 136-180.		8
0.6.6	Scientific basis for extrapolating results from soil ecotoxicity tests to field conditions and the use		

#	Article	IF	Citations
994	ls it possible to develop microbial test systems to evaluate pollution effects on soil nutrient cycling?. , 1997, , 51-69.		5
995	Modulation of Plant Growth and Metabolism in Cadmium-Enriched Environments. Reviews of Environmental Contamination and Toxicology, 2014, 229, 51-88.	0.7	44
996	Isolation and Analysis of Lipids, Biomarkers. , 2010, , 3743-3750.		1
997	Effects of Cadmium and Mercury alone and in Combination on the Soil Microbial Community Structural Diversity. , 2010, , 337-341.		2
998	Plant Growth Promoting Rhizobacteria as Alleviators for Soil Degradation. , 2012, , 41-63.		4
999	Relationship between Functional Diversity and Genetic Diversity in Complex Microbial Communities. , 1997, , 1-9.		29
1000	Comparison of Biolog and Phospholipid Fatty Acid Patterns to Detect Changes in Microbial Community. , 1997, , 37-48.		10
1001	Impact of Fertilizers on the Humus Layer Microbial Community of Scots Pine Stands Growing Along a Gradient of Heavy Metal Pollution. , 1997, , 68-83.		17
1002	Lipids of Mycorrhizae. , 2001, , 63-93.		9
1003	Importance of Arbuscular Mycorrhizal Fungi in Legume Production Under Heavy Metal-Contaminated Soils. , 2012, , 219-241.		3
1004	Plants and fertilisers as drivers of change in microbial community structure and function in soils. , 2002, , 135-145.		4
1005	Variability in bacterial community structure during upwelling in the coastal ocean. , 1999, , 139-148.		7
1006	Effects of heavy metals on soil microflora. Forestry Sciences, 2000, , 260-265.	0.4	2
1007	The role of soil microorganisms in soil organic matter conservation in the tropics. , 2001, , 41-51.		3
1008	Toxicity of Organophosphate Pesticide on Soil Microorganism: Risk Assessments Strategies. , 2021, , 257-295.		3
1009	The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 1996, 22, 59-65.	2.3	164
1010	Influence of heavy metals on the functional diversity of soil microbial communities. Biology and Fertility of Soils, 1996, 23, 299-306.	2.3	32
1011	Microbial Detoxification of Polluted Soils and Agroecosystem. , 2020, , 237-257.		1

		I ILFORT	
#	Article	IF	CITATIONS
1012	Seasonal variations in soil microbial communities under different land restoration types in a subtropical mountains region, Southwest China. Applied Soil Ecology, 2020, 153, 103634.	2.1	28
1013	Amending sugarcane monoculture through rotation breaks and fungicides: effects on soil chemical and microbial properties, and sucrose yields. Crop and Pasture Science, 2019, 70, 990.	0.7	1
1014	SOIL MICROBIAL DIVERSITY: PRESENT AND FUTURE CONSIDERATIONS. Soil Science, 1997, 162, 607-617.	0.9	93
1020	Effects of cropping systems under noâ€ŧill agriculture on arbuscular mycorrhizal fungi in Argentinean Pampas. Soil Use and Management, 2017, 33, 364-378.	2.6	24
1021	Multiple Heavy Metal Tolerance of Soil Bacterial Communities and Its Measurement by a Thymidine Incorporation Technique. Applied and Environmental Microbiology, 1994, 60, 2238-2247.	1.4	148
1022	Impact of carbon and flooding on the metabolic diversity of microbial communities in soils. Applied and Environmental Microbiology, 1995, 61, 4043-4050.	1.4	285
1023	Channel structures in aerobic biofilms of fixed-film reactors treating contaminated groundwater. Applied and Environmental Microbiology, 1995, 61, 769-777.	1.4	163
1024	Phospholipid Fatty Acid Composition and Heavy Metal Tolerance of Soil Microbial Communities along Two Heavy Metal-Polluted Gradients in Coniferous Forests. Applied and Environmental Microbiology, 1996, 62, 420-428.	1.4	337
1025	Effect of Environmental Factors on the trans/cis Ratio of Unsaturated Fatty Acids in Pseudomonas putida S12. Applied and Environmental Microbiology, 1996, 62, 2773-2777.	1.4	134
1026	Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels. Applied and Environmental Microbiology, 1996, 62, 2970-2977.	1.4	218
1027	Microbial communities of continuously cropped, irrigated rice fields. Applied and Environmental Microbiology, 1997, 63, 233-238.	1.4	121
1028	Dynamics of a microbial community associated with manure hot spots as revealed by phospholipid fatty acid analyses. Applied and Environmental Microbiology, 1997, 63, 2224-2231.	1.4	109
1029	Phosphorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by analysis of Fatty Acid signatures. Applied and Environmental Microbiology, 1997, 63, 3531-3538.	1.4	181
1030	Structure of a Microbial Community in Soil after Prolonged Addition of Low Levels of Simulated Acid Rain. Applied and Environmental Microbiology, 1998, 64, 2173-2180.	1.4	169
1031	Effect of Toxic Metals on Indigenous Soil β-Subgroup Proteobacterium Ammonia Oxidizer Community Structure and Protection against Toxicity by Inoculated Metal-Resistant Bacteria. Applied and Environmental Microbiology, 1999, 65, 95-101.	1.4	249
1032	Linking Toluene Degradation with Specific Microbial Populations in Soil. Applied and Environmental Microbiology, 1999, 65, 5403-5408.	1.4	94
1033	Soil microbial communities of Japanese apricot (Prunus mume) orchard under organic and conventional management. Applied Biological Chemistry, 2019, 62, .	0.7	3
1034	Species-Specific Effects of Epigeic Earthworms on Microbial Community Structure during First Stages of Decomposition of Organic Matter. PLoS ONE, 2012, 7, e31895.	1.1	68

#	Article	IF	CITATIONS
1035	Metal-Macrofauna Interactions Determine Microbial Community Structure and Function in Copper Contaminated Sediments. PLoS ONE, 2013, 8, e64940.	1.1	35
1036	Accumulation and Distribution of Cadmium in Flue-Cured Tobacco and Its Impact on Rhizosphere Microbial Community. Polish Journal of Environmental Studies, 0, 24, 1563-1569.	0.6	5
1037	Natural Fluctuations in Carbon Substrate Utilizing Activity and Community-Level Physiological Profiles of Microorganisms in Rice Paddy Soils as a Basis for Assessing the Side-Effects of Pesticides on Soil Ecosystems. Journal of Pesticide Sciences, 2002, 27, 360-364.	0.8	5
1038	Impactos da aplicação de biossólidos na microbiota de solos tropicais. Revista Brasileira De Ciencia Do Solo, 2008, 32, 1129-1138.	0.5	14
1039	Vineyard management system affects soil microbiological properties. Oeno One, 2020, 54, .	0.7	9
1040	ECOSYSTEM RECOVERY ON RECLAIMED SURFACE MINELANDS. Journal of the American Society of Mining and Reclamation, 2009, 2009, 1371-1393.	0.3	1
1041	Neutral lipid fatty acid analysis is a sensitive marker for quantitative estimation of arbuscular mycorrhizal fungi in agricultural soil with crops of different mycotrophy. Agricultural and Food Science, 2012, 21, 12-27.	0.3	28
1042	Variation of carbon and metal concentration in soil amended with sewage sludge. Ekologija (Vilnius,) Tj ETQq1 1	0.784314	ł rgβT /Overic
1043	Effect of long-term industrial pollution on soil microorganisms in deciduous forests situated along a pollution gradient next to a fertilizer factory 1. Abundance of bacteria, actinomycetes and fungi. Ekologija (Vilnius, Lithuania), 2009, 55, 67-77.	0.2	9
1044	Effect of long-term industrial pollution on microorganisms in soil of deciduous forests situated along a pollution gradient next to a fertilizer factory 2. Abundance and diversity of soil fungi. Ekologija (Vilnius, Lithuania), 2009, 55, 133-141.	0.2	7
1045	CONTRASTIVE SOIL PROPERTIES, MICROBIAL STRUCTURE AND SOIL ENZYMES IN THE RHIZOSPHERE OF Scirpus triqueter AND BULK SOIL IN PETROLEUM-CONTAMINATED WETLAND. Environmental Engineering and Management Journal, 2018, 17, 1701-1709.	0.2	3
1046	Are community structures of soil nematodes different between organic and conventional farming systems in commercial tomato fields?. Nihon Senchu Gakkai Shi = Japanese Journal of Nematology, 2009, 39, 63-71.	0.3	4
1047	Effect of Metals Contamination on Soil Microbial Diversity, Enzymatic Activity, Organic Matter Decomposition and Nitrogen Mineralisation (A Review). Pakistan Journal of Biological Sciences, 2000, 3, 1950-1956.	0.2	14
1048	The effects of arbuscular mycorrhizal fungi and essential oil on soil microbial community and N-related enzymes during the fungal early colonization phase. AIMS Microbiology, 2017, 3, 938-959.	1.0	12
1050	A Meta-Analysis of the Effects of Warming and Elevated CO2 on Soil Microbes. Journal of Resources and Ecology, 2019, 10, 69.	0.2	12
1051	Effect of Biodegradable Mulch Film on Soil Microbial Community. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2016, 49, 125-131.	0.1	10
1052	Impacts of Cropping Systems on the Distribution of Soil Microorganisms in Mid-mountainous Paddy. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2016, 49, 480-488.	0.1	1
1054	Changes in soil bacterial community profiles associated with deforestation in the Sakaerat Environmental Research Station, Thailand: comparisons between soils of the original forest and bare ground. Tropics, 2004, 14, 39-53.	0.2	1

#	Article	IF	CITATIONS
1055	Application of antisense transformation of a barley chitinase in studies of arbuscule formation by a mycorrhizal fungus. Hereditas, 2005, .	0.5	0
1056	Methodological Approaches to the Study of Carbon Flow and the Associated Microbial Population Dynamics in the Rhizosphere. Books in Soils, Plants, and the Environment, 2007, , 371-399.	0.1	1
1057	Assessing Microbial Community in Andisol Differing in Management Practices by Biochemical and Molecular Fingerprinting Methods. International Journal of Soil Science, 2007, 3, 1-10.	0.7	3
1058	Using Stable Carbon Isotope Labelling in Signature Fatty Acids to Track Carbon Allocation in Arbuscular Mycorrhiza. Soil Biology, 2009, , 275-284.	0.6	0
1059	Response of Soil Microbial Communities to Different Cultivation Systems in Controlled Horticultural Land. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2011, 44, 118-126.	0.1	15
1060	Response of Soil Microbial Communities to Applications of Green Manures in Paddy at an Early Rice-Growing Stage. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2011, 44, 221-227.	0.1	22
1061	Comparison of Microbial Community of Orchard Soils in Gyeongnam Province. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2011, 44, 492-497.	0.1	9
1062	Impacts of Topography on Microbial Community from Upland Soils in Gyeongnam Province. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2011, 44, 485-491.	0.1	7
1063	Effects of Electrical Conductivity on the Soil Microbial Community in a Controled Horticultural Land for Strawberry Cultivation. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2011, 44, 830-835.	0.1	12
1064	Changes in Soil Biota Affected by the Application of Organic Materials in Reclaimed Upland and Paddy-converted Soils Cultivated with Korea Ginseng. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2011, 44, 872-877.	0.1	3
1065	Impacts of Soil Type on Microbial Community from Paddy Soils in Gyeongnam Province. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2011, 44, 1164-1168.	0.1	3
1066	Impacts of Soil Texture on Microbial Community from Paddy Soils in Gyeongnam Province. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2011, 44, 1176-1180.	0.1	4
1067	Relationship of Topography and Microbial Community from Paddy Soils in Gyeongnam Province. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2011, 44, 1158-1163.	0.1	2
1069	Variation of Microbial Communities with Crop Species in Controlled Horticultural Soils of Gyeongnam Province. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2013, 46, 182-186.	0.1	0
1070	Norway spruce fine root dynamics and carbon input into soil in relation to environmental factors. Dissertationes Forestales, 2014, 2014, .	0.1	0
1071	Seasonal changes in sedimentary microbial communities of two eutrophic bays as estimated by biomarkers. , 1999, , 117-125.		2
1072	Analysis of Soil Microbial Communities Formed by Different Upland Fields in Gyeongnam Province. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2014, 47, 100-106.	0.1	9
1073	The Relationship between Microbial Characteristics and Glomalin Concentrations of Controlled Horticultural Soils in Gyeongnam Province. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2014, 47, 107-112.	0.1	0

#	Article	IF	Citations
1074	PLFA-FAME Changes During Bioremediation of Crude Oil Contamination Soil. Konya Journal of Engineering Sciences, 2014, 2, 25-25.	0.1	0
1075	Impacts of Soil Texture on Microbial Community of Orchard Soils in Gyeongnam Province. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2015, 48, 81-86.	0.1	5
1077	Impacts of Soil Organic Matter on Microbial Community of Paddy Soils in Gyeongnam Province. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2016, 49, 783-788.	0.1	0
1078	Chapter 14. Soil Microbial Community and Their Population Dynamics: Altered Agricultural Practices. , 2017, , 383-416.		Ο
1079	Heavy Metal Toxicity and Possible Functional Aspects of Microbial Diversity in Heavy Metal-Contaminated Sites. , 2019, , 255-317.		4
1080	Fatty Acids and Herbal Medicine. Current Traditional Medicine, 2019, 5, 246-256.	0.1	1
1081	Topography is more important than forest type as a determinant for functional trait composition of Collembola community. Pedobiologia, 2022, 90, 150776.	0.5	9
1082	Soil Heavy Metal Pollution and Microbial Communities: Interactions and Response Assessment. , 2008, , 303-315.		1
1083	Changes in Antibiotic Resistance Profile of Soil Bacterial Community in Association with Land Degradation. , 2008, , 317-344.		0
1084	The Arbuscular Mycorrhizal Symbiosis of Trees: Structure, Function, and Regulating Factors. Soil Biology, 2021, , 117-128.	0.6	0
1101	Adaptive and cross-protective responses against cadmium and zinc toxicity in cadmium-resistant bacterium isolated from a zinc mine. Brazilian Journal of Microbiology, 2009, 40, 838-45.	0.8	3
1102	Effects of salinity on microbial utilization of straw carbon and microbial residues retention in newly reclaimed coastal soil. European Journal of Soil Biology, 2021, 107, 103364.	1.4	16
1103	A new method for detecting microâ€fragments of biodegradable mulch films containing poly(butylene) Tj ETQq0	0 0 rgBT / 1.0	Oyerlock 10
1104	Changes in microbial and physicochemical properties under cover crop inclusion in a degraded common bean monoculture system. European Journal of Soil Biology, 2021, 107, 103365.	1.4	4
1105	Cover crop residue diversity enhances microbial activity and biomass with additive effects on microbial structure. Soil Research, 2022, 60, 349-359.	0.6	6
1106	Oil degradation and variation of microbial communities in contaminated soils induced by different bacterivorous nematodes species. Ecotoxicology and Environmental Safety, 2022, 229, 113079.	2.9	5
1107	Microbial community development in tropical constructed wetland soils in Taiwan. Science of the Total Environment, 2022, 812, 152563.	3.9	5
1108	Characterizing soil microbial properties using MIR spectra across 12 ecoclimatic zones (NEON sites). Geoderma, 2022, 409, 115647.	2.3	4

#	Article	IF	CITATIONS
1109	Short-term biochar effect on soil physicochemical and microbiological properties of a degraded alpine grassland. Pedosphere, 2022, 32, 426-437.	2.1	11
1110	Longâ€ŧerm rice cultivation promoted microbial mineralization of organic P in a black soil. Soil Science Society of America Journal, 2022, 86, 540-551.	1.2	5
1111	Seven years of biochar amendment has a negligible effect on soil available P and a progressive effect on organic C in paddy soils. Biochar, 2022, 4, 1.	6.2	27
1112	Testing the environmental controls of microbial nitrogen-mining induced by semi-continuous labile carbon additions in the subarctic. Soil Biology and Biochemistry, 2022, 166, 108562.	4.2	12
1113	The impact of crop diversification, tillage and fertilization type on soil total microbial, fungal and bacterial abundance: A worldwide meta-analysis of agricultural sites. Agriculture, Ecosystems and Environment, 2022, 329, 107867.	2.5	38
1114	Impacts of short-term tillage and crop residue incorporation managements on soil microbial community in a double-cropping rice field. Scientific Reports, 2022, 12, 2093.	1.6	4
1115	Mixture of N2-fixing tree species promotes organic phosphorus accumulation and transformation in topsoil aggregates in a degraded karst region of subtropical China. Geoderma, 2022, 413, 115752.	2.3	11
1117	Shifts in microbial stoichiometry upon nutrient addition do not capture growth-limiting nutrients for soil microorganisms in two subtropical soils. Biogeochemistry, 2022, 159, 33-43.	1.7	9
1118	Migration and Transformation of Multiple Heavy Metals in the Soil–Plant System of E-Waste Dismantling Site. Microorganisms, 2022, 10, 725.	1.6	4
1119	Using a Tropical Elevation Gradient to Evaluate the Impact of Landâ€Use Intensity and Forest Restoration on the Microbial Use of Organic Matter Under Climate Change. Global Biogeochemical Cycles, 2022, 36, .	1.9	3
1120	Microbial formation and stabilisation of soil organic carbon is regulated by carbon substrate identity and mineral composition. Geoderma, 2022, 414, 115762.	2.3	11
1121	The contribution of microbial activity to soil–water interactions and soil microstructural stability of a silty loam soil under moisture dynamics. Geoderma, 2022, 417, 115822.	2.3	6
1122	Effect of Wood-derived Biochar Application on the Soil Microbial Community in Upland Field. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2020, 53, 50-58.	0.1	1
1123	Wetland conversion to cropland alters the microbes along soil profiles and over seasons. Catena, 2022, 214, 106282.	2.2	8
1125	Influence of different temperatures on metal tolerance measurements and growth response in bacterial communities from unpolluted and polluted soils. Biology and Fertility of Soils, 1996, 21, 233-238.	2.3	0
1126	Effects of mycorrhiza and hyphae on the response of soil microbial community to warming in eastern Tibetan Plateau. Science of the Total Environment, 2022, 837, 155498.	3.9	8
1127	Catching change in microbial diversity indicators under different soil organic matter managements: Higher taxonomic resolution, better discrimination?. Ecological Indicators, 2022, 139, 108897.	2.6	2
1128	Variation of microbial activities and communities in petroleum-contaminated soils induced by the addition of organic materials and bacterivorous nematodes. Ecotoxicology and Environmental Safety, 2022, 237, 113559.	2.9	4

#	Article	IF	CITATIONS
1129	Mercury drives microbial community assembly and ecosystem multifunctionality across a Hg contamination gradient in rice paddies. Journal of Hazardous Materials, 2022, 435, 129055.	6.5	23
1130	Response of microorganisms to a 5-year large-scale nitrogen loading in immature volcanic ash soil in an oak-dominated forest. Applied Soil Ecology, 2022, 177, 104537.	2.1	0
1131	Effects of irrigation and fertilization practice on soil nematode communities in arable land. Applied Soil Ecology, 2022, 177, 104546.	2.1	2
1133	Utilization of mussel shell to remediate soils polluted with heavy metals. , 2022, , 221-242.		1
1134	Landâ€use change shifts and magnifies seasonal variations of the decomposer system in lowland tropical landscapes. Ecology and Evolution, 2022, 12, .	0.8	4
1135	Rootstock rescues watermelon from Fusarium wilt disease by shaping protective root-associated microbiomes and metabolites in continuous cropping soils. Plant and Soil, 2022, 479, 423-442.	1.8	10
1136	Field-Scale Evaluation of the Soil Quality Index as Influenced by Dairy Manure and Inorganic Fertilizers. Sustainability, 2022, 14, 7593.	1.6	6
1137	Responsive change of crop-specific soil bacterial community to cadmium in farmlands surrounding mine area of Southeast China. Environmental Research, 2022, 214, 113748.	3.7	20
1138	Can microbial inoculants boost soil food webs and vegetation development on newly constructed extensive green roofs?. Urban Forestry and Urban Greening, 2022, 75, 127684.	2.3	4
1139	Comparison of leaf litter decomposition and microbial decomposer communities in fringe and riverine mangroves in French Guiana. Regional Environmental Change, 2022, 22, .	1.4	0
1140	Semi-continuous C supply reveals that priming due to N-mining is driven by microbial growth demands in temperate forest plantations. Soil Biology and Biochemistry, 2022, 173, 108802.	4.2	8
1141	Soil Pollution Due to Sewage Sludge and Industrial Effluents. Environmental Science and Engineering, 2022, , 345-367.	0.1	1
1142	Winter Cover Crop Impact on Soil Health and Nutrients in Texas Rolling Plains Dryland Cotton. SSRN Electronic Journal, 0, , .	0.4	0
1143	The Effect of Heavy Metals on Microbial Communities in Industrial Soil in the Area of Piekary ÅšlÄ…skie and Bukowno (Poland). Microbiology Research, 2022, 13, 626-642.	0.8	15
1144	Soil mineral fraction influences the bacterial abundance: evidence from a mineral and plant materials incubation study. Biogeochemistry, 2022, 161, 273-287.	1.7	1
1145	Soil Bacteria Mediate Soil Organic Carbon Sequestration under Different Tillage and Straw Management in Rice-Wheat Cropping Systems. Agriculture (Switzerland), 2022, 12, 1552.	1.4	3
1146	Can heavy metal pollution induce soil bacterial community resistance to antibiotics in boreal forests?. Journal of Applied Ecology, 0, , .	1.9	0
1147	Higher resistance and resilience of bacterial growth to drought in grasslands with historically lower precipitation. Soil Biology and Biochemistry, 2023, 177, 108889.	4.2	7

#	Article	IF	CITATIONS
1148	Current and legacy effects of neighborhood communities on plant growth and aboveground herbivory. Basic and Applied Ecology, 2022, , .	1.2	0
1149	Evaluating Different Soil Amendments as Bioremediation Strategy for Wetland Soil Contaminated by Crude Oil. Sustainability, 2022, 14, 16568.	1.6	1
1150	Influence of sediment quality and microbial community on the functioning capacity of a constructed wetland treating alkaline leachate after 5.5 years in operation. Science of the Total Environment, 2023, 867, 161259.	3.9	3
1151	Assessment of the ecotoxicological impact of captan@ZnO35–45nm and captan@SiO2 20–30nm nanopesticide on non-target soil microorganisms – A 100-day case study. Applied Soil Ecology, 2023, 184, 104789.	2.1	5
1152	Reduced phosphorus availability in paddy soils under atmospheric CO2 enrichment. Nature Geoscience, 2023, 16, 162-168.	5.4	9
1153	Environmental stress stimulates microbial activities as indicated by cyclopropane fatty acid enhancement. Science of the Total Environment, 2023, 873, 162338.	3.9	0
1154	Microbial resistance in rhizosphere hotspots under biodegradable and conventional microplastic amendment: Community and functional sensitivity. Soil Biology and Biochemistry, 2023, 180, 108989.	4.2	24
1155	Long-term fertilizer postponing increases soil carbon sequestration by changing microbial composition in paddy soils: A 13CO2 labelling and PLFA study. Soil Biology and Biochemistry, 2023, 180, 108996.	4.2	0
1156	Morphology and distribution of biological soil crusts and their potential role in soil-forming processes under dry high-altitude periglacial conditions (Eastern Pamir, Tajikistan). Geoderma Regional, 2023, 33, e00636.	0.9	0
1157	Bedrock and climate jointly control microbial necromass along a subtropical elevational gradient. Applied Soil Ecology, 2023, 189, 104902.	2.1	1
1158	Dynamic response of microbial communities to thermally remediated oil-bearing drilling waste in wheat soil. Chemosphere, 2023, 329, 138618.	4.2	0
1160	Winter cover crop impact on soil health in Texas Rolling Plains dryland cotton. , 2023, 6, .		1