Cloning of the Aspergillus parasiticus apa-2 gene associ aflatoxin biosynthesis

Applied and Environmental Microbiology 59, 3273-3279 DOI: 10.1128/aem.59.10.3273-3279.1993

Citation Report

#	Article	IF	CITATIONS
1	Mycological Aspects of Aflatoxin Formation. , 1994, , 327-346.		20
2	Characterization of the polyketide synthase gene (pksL1) required for aflatoxin biosynthesis in Aspergillus parasiticus. Journal of Bacteriology, 1995, 177, 6246-6254.	2.2	107
3	TheAspergillus parasiticus polyketide synthase genepksA, a homolog ofAspergillus nidulans wA, is required for aflatoxin B1 biosynthesis. Molecular Genetics and Genomics, 1995, 248, 270-277.	2.4	130
4	Production and characterization of polyclonal antibodies against norsolorinic acid reductase involved in aflatoxin biosynthesis. Food and Agricultural Immunology, 1995, 7, 21-32.	1.4	6
5	From molecular genetics and secondary metabolism to molecular metabolites and secondary genetics. Canadian Journal of Botany, 1995, 73, 917-924.	1.1	17
6	Comparison of the omtA genes encoding O-methyltransferases involved in aflatoxin biosynthesis from Aspergillus parasiticus and A. flavus. Gene, 1995, 163, 121-125.	2.2	48
7	Hybridization of genes involved in aflatoxin biosynthesis to DNA of aflatoxigenic and non-aflatoxigenic aspergilli. Applied Microbiology and Biotechnology, 1995, 44, 439-443.	3.6	57
8	Conservation of structure and function of the aflatoxin regulatory geneaflR fromAspergillus nidulans andA. flavus. Current Genetics, 1996, 29, 549-555.	1.7	236
9	Isolation and Characterization of the Versicolorin B Synthase Gene from Aspergillus parasiticus. Journal of Biological Chemistry, 1996, 271, 13600-13608.	3.4	63
10	Characterization of the Aspergillus parasiticus niaD and niiA gene cluster. Current Genetics, 1996, 30, 68-75.	1.7	54
11	The Aflatoxin Problem with Corn Grain. Advances in Agronomy, 1996, 56, 219-280.	5.2	82
12	Aspergillus nidulans stcL Encodes a Putative Cytochrome P-450 Monooxygenase Required for Bisfuran Desaturation during Aflatoxin/Sterigmatocystin Biosynthesis. Journal of Biological Chemistry, 1997, 272, 1589-1594.	3.4	55
13	Immunochemical identification of AFLR, a regulatory protein, involved in aflatoxin biosynthesis. Food and Agricultural Immunology, 1997, 9, 289-298.	1.4	3
14	Biosynthesis of polyketides. Natural Product Reports, 1997, 14, 523.	10.3	59
15	Northern analysis of aflatoxin biosynthesis genes in Aspergillus parasiticus and Aspergillus sojae. Applied Microbiology and Biotechnology, 1997, 47, 246-249.	3.6	22
16	Genetic organization and function of the aflatoxin B1 biosynthetic genes. FEMS Microbiology Letters, 1998, 160, 169-176.	1.8	94
17	Sequence-specific binding by Aspergillus nidulans AflR, a C6 zinc cluster protein regulating mycotoxin biosynthesis. Molecular Microbiology, 1998, 28, 1355-1365.	2.5	222
18	GENETICS AND PHYSIOLOGY OF AFLATOXIN BIOSYNTHESIS. Annual Review of Phytopathology, 1998, 36, 329-362.	7.8	291

ATION RED

# 19	ARTICLE Alteration of Different Domains in AFLR Affects Aflatoxin Pathway Metabolism inAspergillus	IF 2.1	Citations
20	parasiticusTransformants. Fungal Genetics and Biology, 1998, 23, 279-287. Regulation of <i>aflR</i> and Its Product, AflR, Associated with Aflatoxin Biosynthesis. Applied and Environmental Microbiology, 1998, 64, 3718-3723.	3.1	67
21	Characterization of <i>aflJ</i> , a Gene Required for Conversion of Pathway Intermediates to Aflatoxin. Applied and Environmental Microbiology, 1998, 64, 3713-3717.	3.1	148
22	Characterization of the Critical Amino Acids of an <i>Aspergillus parasiticus</i> Cytochrome P-450 Monooxygenase Encoded by <i>ordA</i> That Is Involved in the Biosynthesis of Aflatoxins B ₁ , G ₁ , B ₂ , and G ₂ . Applied and Environmental Microbiology, 1998, 64, 4834-4841.	3.1	91
23	Production and Characterization of Monoclonal Antibodies against Norsolorinic Acid Reductase Involved in Aflatoxin Biosynthesis. Food and Agricultural Immunology, 1999, 11, 29-42.	1.4	4
24	Aflatoxins in maize: The problem and genetic solutions. Plant Breeding, 1999, 118, 1-16.	1.9	49
25	Repressor-AFLR interaction modulates aflatoxin biosynthesis in Aspergillus parasiticus. Mycopathologia, 1999, 147, 105-112.	3.1	49
26	Isolation and characterization of experimentally induced, aflatoxin biosynthetic pathway deletion mutants of Aspergillus parasiticus. Applied Microbiology and Biotechnology, 1999, 51, 808-812.	3.6	12
27	Characterization of the promoter for the gene encoding the aflatoxin biosynthetic pathway regulatory protein AFLR. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1444, 412-417.	2.4	61
28	Binding of the C6-zinc cluster protein, AFLR, to the promoters of aflatoxin pathway biosynthesis genes in Aspergillus parasiticus. Gene, 1999, 230, 249-257.	2.2	165
29	The effects of selected cotton-leaf volatiles on growth, development and aflatoxin production of Aspergillus parasiticus. Toxicon, 1999, 37, 883-893.	1.6	57
30	Biosynthesis of Aflatoxin. , 1999, , 443-471.		5
31	Genetic and Molecular Analysis of Aflatoxin Biosynthesis. Fungal Genetics and Biology, 1999, 26, 81-98.	2.1	67
32	Value-added food:. Biotechnology Advances, 2000, 18, 459-479.	11.7	464
33	Requirement of Monooxygenase-Mediated Steps for Sterigmatocystin Biosynthesis by <i>Aspergillus nidulans</i> . Applied and Environmental Microbiology, 2000, 66, 359-362.	3.1	48
34	adhA in Aspergillus parasiticus Is Involved in Conversion of 5′-Hydroxyaverantin to Averufin. Applied and Environmental Microbiology, 2000, 66, 4715-4719.	3.1	40
35	Cloning and characterization of avfA and omtB genes involved in aflatoxin biosynthesis in three Aspergillus species. Gene, 2000, 248, 157-167.	2.2	68
36	Effects of Aflastatin A, an Inhibitor of Aflatoxin Production, on Aflatoxin Biosynthetic Pathway and Glucose Metabolism in Aspergillus parasiticus Journal of Antibiotics, 2001, 54, 650-657.	2.0	40

ARTICLE IF CITATIONS # Pre-termination in aflR of Aspergillus sojae inhibits aflatoxin biosynthesis. Applied Microbiology and 37 3.6 53 Biotechnology, 2001, 55, 585-589. Molecular cloning and genetic analysis of an indole-diterpene gene cluster from Penicillium paxilli. 2.5 Molecular Microbiology, 2001, 39, 754-764. 39 Genetics and Biosynthesis of Aflatoxins and Sterigmatocystin., 2002, , 55-69. 18 Nonfunctionality of Aspergillus sojae aflR in a Strain of Aspergillus parasiticus with a Disrupted aflR Gene. Applied and Environmental Microbiology, 2002, 68, 3737-3743. PCR-based detection and quantification of mycotoxigenic fungi. Mycological Research, 2002, 106, 41 2.5 135 1005-1025. Relationship between Secondary Metabolism and Fungal Development. Microbiology and Molecular 6.6 Biology Reviews, 2002, 66, 447-459. Polymerase Chain Reaction–Mediated Characterization of Molds Belonging to the Aspergillus flavus Group and Detection of Aspergillus parasiticus in Peanut Kernels by a Multiplex Polymerase Chain 43 1.7 60 Reaction. Journal of Food Protection, 2002, 65, 840-844. Promoter elements in the aflatoxin pathway polyketide synthase gene. Biochimica Et Biophysica Acta 44 2.4 24 Gene Regulatory Mechanisms, 2002, 1576, 171-175. Molecular and functional characterization of a second copy of the aflatoxin regulatory gene, aflR-2, 45 from Aspergillus parasiticus. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1576, 2.4 25 316-323. Mycotoxin Genetics and Gene Clusters. European Journal of Plant Pathology, 2002, 108, 705-711. 1.7 Molecular genetic analysis and regulation of aflatoxin biosynthesis. Applied Microbiology and 47 3.6 187 Biotechnology, 2003, 61, 83-93. The Aspergillus parasiticus protein AFLJ interacts with the aflatoxin pathway-specific regulator AFLR. 2.1 148 Molecular Genetics and Genomics, 2003, 268, 711-719. Metal ion enhancement of fungal growth, gene expression and aflatoxin synthesis in Aspergillus flavus: RT-PCR characterization. Journal of Applied Microbiology, 2003, 94, 953-961. 49 3.1 53 Substrate-induced lipase gene expression and aflatoxin production in Aspergillus parasiticus and Aspergillus flavus. Journal of Applied Microbiology, 2003, 95, 1334-1342. 3.1 59 Unlocking the Secrets Behind Secondary Metabolism: A Review of Aspergillus flavus from 51 73 1.5 Pathogenicity to Functional Genomics. Toxin Reviews, 2003, 22, 423-459. Genetic analysis of morphological variants of Aspergillus parasiticus deficient in secondary 33 metabolite production. Mycological Research, 2003, 107, 831-840. Identification of genes differentially expressed during aflatoxin biosynthesis in Aspergillus flavus 53 2.1 79 and Aspergillus parasiticus. Fungal Genetics and Biology, 2003, 39, 118-127. Application of Differential Display RTâ€PCR and EST/Microarray Technologies to the Analysis of Gene Expression in Response to Drought Stress and Elimination of Aflatoxin Contamination in Corn and 54 1.5 Peanut. Toxin Reviews, 2003, 22, 287-312.

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
55	Construction and Preliminary Evaluation of an Aspergillus flavus Reporter Gene Construct as a Potential Tool for Screening Aflatoxin Resistance. Journal of Food Protection, 2003, 66, 1927-1931.	1.7	7
56	Chapter eleven Genetics and biochemistry of aflatoxin formation and genomics approach for preventing aflatoxin contamination. Recent Advances in Phytochemistry, 2004, 38, 223-255.	0.5	4
57	veA Is Required for Toxin and Sclerotial Production in Aspergillus parasiticus. Applied and Environmental Microbiology, 2004, 70, 4733-4739.	3.1	249
58	Genomics of Economically Significant Aspergillus and Fusarium Species. Applied Mycology and Biotechnology, 2004, 4, 249-283.	0.3	19
59	Aspergillus flavus expressed sequence tags for identification of genes with putative roles in aflatoxin contamination of crops. FEMS Microbiology Letters, 2004, 237, 333-340.	1.8	76
60	PCR-restriction fragment length analysis of aflR gene for differentiation and detection of Aspergillus flavus and Aspergillus parasiticus in maize. International Journal of Food Microbiology, 2004, 93, 101-107.	4.7	42
61	Distribution and sub-cellular localization of the aflatoxin enzyme versicolorin B synthase in time-fractionated colonies of Aspergillus parasiticus. Archives of Microbiology, 2004, 182, 67-79.	2.2	20
62	Progress in Elucidating the Molecular Basis of the Host Plant—AspergillusFlavusInteraction, a Basis for Devising Strategies to Reduce Aflatoxin Contamination in Crops. Toxin Reviews, 2004, 23, 345-380.	1.5	19
63	Clustered Pathway Genes in Aflatoxin Biosynthesis. Applied and Environmental Microbiology, 2004, 70, 1253-1262.	3.1	713
64	Aflatoxin Biosynthesis Cluster Gene cypA Is Required for G Aflatoxin Formation. Applied and Environmental Microbiology, 2004, 70, 6518-6524.	3.1	169
65	Chapter ten Aspergillus nidulans as a model system to study secondary metabolism. Recent Advances in Phytochemistry, 2004, 38, 197-222.	0.5	3
66	expressed sequence tags for identification of genes with putative roles in aflatoxin contamination of crops. FEMS Microbiology Letters, 2004, 237, 333-340.	1.8	77
67	Completed sequence of aflatoxin pathway gene cluster inAspergillus parasiticus1. FEBS Letters, 2004, 564, 126-130.	2.8	157
68	Lack of interaction between AFLR and AFLJ contributes to nonaflatoxigenicity of Aspergillus sojae. Journal of Biotechnology, 2004, 107, 245-253.	3.8	59
69	Aspergillus flavus genomics: gateway to human and animal health, food safety, and crop resistance to diseases. Revista Iberoamericana De Micologia, 2005, 22, 194-202.	0.9	141
70	Role of cis -Acting Sites NorL , a TATA Box, and AflR1 in nor-1 Transcriptional Activation in Aspergillus parasiticus. Applied and Environmental Microbiology, 2005, 71, 1539-1545.	3.1	13
71	Aflatoxin conducive and non-conducive growth conditions reveal new gene associations with aflatoxin production. Fungal Genetics and Biology, 2005, 42, 506-518.	2.1	79
72	Regulation of Secondary Metabolism in Filamentous Fungi. Annual Review of Phytopathology, 2005, 43, 437-458.	7.8	454

ARTICLE

IF CITATIONS

Comparison of the aflR gene sequences of strains in Aspergillus section Flavi. Microbiology (United) Tj ETQq000 rgBT /Overlock 10 Tf 5

74	Signalling pathways connecting mycotoxin production and sporulation. Molecular Plant Pathology, 2006, 7, 285-301.	4.2	122
75	Aspergillus flavus expressed sequence tags and microarray as tools in understanding aflatoxin biosynthesis. Mycotoxin Research, 2006, 22, 16-21.	2.3	12
76	Regulatory elements in aflatoxin biosynthesis. Mycotoxin Research, 2006, 22, 105-109.	2.3	18
77	Analysis of aflatoxin regulatory factors in serial transfer-induced non-aflatoxigenicAspergillus parasiticus. Food Additives and Contaminants, 2007, 24, 1061-1069.	2.0	13
78	Formation of Atroviridin by <i>Hypocrea atroviridis</i> Is Conidiation Associated and Positively Regulated by Blue Light and the G Protein GNA3. Eukaryotic Cell, 2007, 6, 2332-2342.	3.4	48
79	Function and regulation of <i>aflJ</i> in the accumulation of aflatoxin early pathway intermediate in <i>Aspergillus flavus</i> . Food Additives and Contaminants, 2007, 24, 1043-1050.	2.0	45
80	Natural products of filamentous fungi: enzymes, genes, and their regulation. Natural Product Reports, 2007, 24, 393-416.	10.3	519
81	Gene profiling for studying the mechanism of aflatoxin biosynthesis in <i>Aspergillus flavus</i> and <i>A. parasiticus</i> . Food Additives and Contaminants, 2007, 24, 1035-1042.	2.0	21
82	Gene duplication, modularity and adaptation in the evolution of the aflatoxin gene cluster. BMC Evolutionary Biology, 2007, 7, 111.	3.2	96
83	Elucidation of veA-dependent genes associated with aflatoxin and sclerotial production in Aspergillus flavus by functional genomics. Applied Microbiology and Biotechnology, 2007, 76, 1107-1118.	3.6	79
84	Understanding nonaflatoxigenicity of Aspergillus sojae: a windfall of aflatoxin biosynthesis research. Applied Microbiology and Biotechnology, 2007, 76, 977-984.	3.6	38
85	The effect of temperature on Natural Antisense Transcript (NAT) expression in Aspergillus flavus. Current Genetics, 2008, 54, 241-269.	1.7	41
86	Biosynthetic gene clusters for epipolythiodioxopiperazines in filamentous fungi. Mycological Research, 2008, 112, 162-169.	2.5	76
87	Regulation of secondary metabolite production in filamentous ascomycetes. Mycological Research, 2008, 112, 225-230.	2.5	140
88	Secondary metabolism: regulation and role in fungal biology. Current Opinion in Microbiology, 2008, 11, 481-487.	5.1	387
89	A Zn(II)2Cys6 DNA binding protein regulates the sirodesmin PL biosynthetic gene cluster in Leptosphaeria maculans. Fungal Genetics and Biology, 2008, 45, 671-682.	2.1	42
90	The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genetics and Biology, 2008, 45, 1053-1061.	2.1	226

ARTICLE

IF CITATIONS

91 AFLATOXIN, ASPERGILLUS, MAIZE, AND THE RELEVANCE TO ALTERNATIVE FUELS (OR AFLATOXIN: WHAT IS IT,) TJ ETOqO 0 0 rgBT /Overl

92	REGULATION OFASPERGILLUSMYCOTOXIN BIOSYNTHESIS. Toxin Reviews, 2008, 27, 347-370.	3.4	11
93	<i>Aspergillus flavus</i> genomics as a tool for studying the mechanism of aflatoxin formation. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2008, 25, 1152-1157.	2.3	38
94	Characterization of the <i>Aspergillus ochraceoroseus</i> aflatoxin/sterigmatocystin biosynthetic gene cluster. Mycologia, 2009, 101, 352-362.	1.9	55
95	Strategies in Prevention of Preharvest Aflatoxin Contamination in Peanuts: Aflatoxin Biosynthesis, Genetics and Genomics. Peanut Science, 2009, 36, 11-20.	0.1	36
96	Genetic regulation of aflatoxin biosynthesis: From gene to genome. Fungal Genetics and Biology, 2009, 46, 113-125.	2.1	219
97	Effect of natural maize phytochemicals on Aspergillus section Flavi sclerotia characteristics under different conditions of growth media and water potential. Fungal Ecology, 2009, 2, 44-51.	1.6	9
98	Genetics and Genomics of aspergillus Fla VUS. , 2010, , 51-73.		Ο
99	Molecular Characterization of Mycobiota and Aflatoxin Contamination of Retail Wheat Flours from Jeddah Markets. Foodborne Pathogens and Disease, 2010, 7, 1047-1054.	1.8	23
100	Comparative analysis of the performance of Aspergillus flavus on resistant and susceptible maize genotypes during infection. Fungal Ecology, 2011, 4, 32-41.	1.6	6
101	<i>Aspergillus flavus</i> . Annual Review of Phytopathology, 2011, 49, 107-133.	7.8	521
102	Surveys of non-ribosomal peptide and polyketide assembly lines in fungi and prospects for their analysis in vitro and in vivo. Fungal Genetics and Biology, 2011, 48, 49-61.	2.1	49
103	Regulation of secondary metabolism by chromatin structure and epigenetic codes. Fungal Genetics and Biology, 2011, 48, 62-69.	2.1	217
104	13 Evolution of Special Metabolism in Fungi: Concepts, Mechanisms, and Pathways. , 2011, , 293-329.		4
105	Conserved Regulatory Mechanisms Controlling Aflatoxin and Sterigmatocystin Biosynthesis. , 0, , .		0
106	Aflatoxin Biosynthetic Pathway and Pathway Genes. , 0, , .		6
107	Differentiation betweenâ€, <i>Aspergillus flavus</i> â€,andâ€, <i>Aspergillus parasiticus</i> â€,from Pure Culture and Aflatoxin ontaminated Grapes Using PCRâ€RFLP Analysis ofâ€, <i>aflR</i> â€ <i>aflJ</i> â€,Intergenic Space Journal of Food Science, 2011, 76, M247-53.	r.3.1	36
108	Crop Stress and Aflatoxin Contamination: Perspectives and Prevention Strategies. , 2012, , 399-427.		2

#	Article	IF	CITATIONS
109	Current Understanding on Aflatoxin Biosynthesis and Future Perspective in Reducing Aflatoxin Contamination. Toxins, 2012, 4, 1024-1057.	3.4	258
110	Functional and phylogenetic analysis of the Aspergillus ochraceoroseus aflQ (ordA) gene ortholog. Mycologia, 2012, 104, 857-864.	1.9	9
111	PCR detection of aflatoxin producing fungi and its limitations. International Journal of Food Microbiology, 2012, 156, 1-6.	4.7	56
112	3 Genetics, Biosynthesis, and Regulation of Aflatoxins and other Aspergillus flavus Secondary Metabolites. , 2013, , 59-74.		1
113	Aflatoxins, fumonisins, and trichothecenes: a convergence of knowledge. FEMS Microbiology Reviews, 2013, 37, 94-109.	8.6	139
114	Aflatoxin Biosynthesis: Current Frontiers. Annual Review of Food Science and Technology, 2013, 4, 293-311.	9.9	158
115	Upstream Regulation of Mycotoxin Biosynthesis. Advances in Applied Microbiology, 2014, 86, 251-278.	2.4	21
116	Scientific Opinion on the safety and efficacy of Bacillus subtilis KCCM 10673P and Aspergillus oryzae KCTC 10258BP as feed additives for all animal species. EFSA Journal, 2015, 13, 4230.	1.8	1
117	Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins?. Toxins, 2015, 7, 3785-3804.	3.4	109
118	Transcriptome Analysis of Aspergillus flavus Reveals <i>veA</i> -Dependent Regulation of Secondary Metabolite Gene Clusters, Including the Novel Aflavarin Cluster. Eukaryotic Cell, 2015, 14, 983-997.	3.4	67
119	The global regulator <scp>FfSge</scp> 1 is required for expression of secondary metabolite gene clusters but not for pathogenicity in <scp><i>F</i></scp> <i>usarium fujikuroi</i> . Environmental Microbiology, 2015, 17, 2690-2708.	3.8	26
120	LaeA negatively regulates dothistromin production in the pine needle pathogen Dothistroma septosporum. Fungal Genetics and Biology, 2016, 97, 24-32.	2.1	27
121	Light regulation of mycotoxin biosynthesis: new perspectives for food safety. World Mycotoxin Journal, 2016, 9, 129-146.	1.4	22
122	Revitalization of a Forward Genetic Screen Identifies Three New Regulators of Fungal Secondary Metabolism in the Genus <i>Aspergillus</i> . MBio, 2017, 8, .	4.1	47
123	On being an honorary member of Arny's army: some musings about fungal fermentations, secondary metabolism, and scientific communities. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 507-516.	3.0	2
124	Effect of PR toxin on THP1 and Caco-2 cells: an in vitro study. World Mycotoxin Journal, 2017, 10, 375-386.	1.4	8
125	The Aspergillus flavus Homeobox Gene, hbx1, Is Required for Development and Aflatoxin Production. Toxins, 2017, 9, 315.	3.4	38
126	Aflatoxins: A Global Concern for Food Safety, Human Health and Their Management. Frontiers in Microbiology, 2016, 07, 2170.	3.5	474

#	Article	IF	CITATIONS
127	Identification and functional analysis of the aspergillic acid gene cluster in Aspergillus flavus. Fungal Genetics and Biology, 2018, 116, 14-23.	2.1	30
128	Inferring the presence of aflatoxin-producing Aspergillus flavus strains using RNA sequencing and electronic probes as a transcriptomic screening tool. PLoS ONE, 2018, 13, e0198575.	2.5	13
129	PR Toxin – Biosynthesis, Genetic Regulation, Toxicological Potential, Prevention and Control Measures: Overview and Challenges. Frontiers in Pharmacology, 2018, 9, 288.	3.5	17
130	A unique Zn(II)2-Cys6-type protein, KpeA, is involved in secondary metabolism and conidiation in Aspergillus oryzae. Fungal Genetics and Biology, 2019, 127, 35-44.	2.1	22
131	Regulation of Morphology, Aflatoxin Production, and Virulence of Aspergillus flavus by the Major Nitrogen Regulatory Gene areA. Toxins, 2019, 11, 718.	3.4	22
132	The Transcriptional Regulator Hbx1 Affects the Expression of Thousands of Genes in the Aflatoxin-Producing Fungus <i>Aspergillus flavus</i> . G3: Genes, Genomes, Genetics, 2019, 9, 167-178.	1.8	18
133	A review on biosynthesis and genetic regulation of aflatoxin production by major Aspergillus fungi. Oil Crop Science, 2020, 5, 166-173.	2.0	17
134	Elaborated regulation of griseofulvin biosynthesis in Penicillium griseofulvum and its role on conidiation and virulence. International Journal of Food Microbiology, 2020, 328, 108687.	4.7	13
135	Identification of AflR Binding Sites in the Genome of Aspergillus flavus by ChIP-Seq. Journal of Fungi (Basel, Switzerland), 2020, 6, 52.	3.5	9
136	Evolutionary and Ecological Interactions of Mould and Insects. , 2009, , 131-151.		4
137	Molecular Mechanism of Detection of Aflatoxins and Other Mycotoxins. , 2009, , 21-37.		4
138	Conservation of structure and function of the aflatoxin regulatory gene aflR from Aspergillus nidulans and A. flavus. Current Genetics, 1996, 29, 549-555.	1.7	28
139	Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1418-1422.	7.1	490
140	Aspergillus nidulans Mutants Defective in stc Gene Cluster Regulation. Genetics, 1999, 153, 715-720.	2.9	68
141	Pka, Ras and RGS Protein Interactions Regulate Activity of AflR, a Zn(II)2Cys6 Transcription Factor in <i>Aspergillus nidulans</i> . Genetics, 2003, 165, 1095-1104.	2.9	128
142	Genetic Regulation of Aspergillus Secondary Metabolites and Their Role in Fungal Pathogenesis. , 0, , 185-199.		1
143	Cloning and characterization of a cDNA from Aspergillus parasiticus encoding an O-methyltransferase involved in aflatoxin biosynthesis. Applied and Environmental Microbiology, 1993, 59, 3564-3571.	3.1	135
144	Structural and functional analysis of the nor-1 gene involved in the biosynthesis of aflatoxins by Aspergillus parasiticus. Applied and Environmental Microbiology, 1994, 60, 4078-4085.	3.1	126

#	Article	IF	CITATIONS
145	Aspergillus nidulans verA is required for production of the mycotoxin sterigmatocystin. Applied and Environmental Microbiology, 1994, 60, 1444-1450.	3.1	105
146	Variability among atoxigenic Aspergillus flavus strains in ability to prevent aflatoxin contamination and production of aflatoxin biosynthetic pathway enzymes. Applied and Environmental Microbiology, 1994, 60, 2248-2251.	3.1	116
147	Molecular characterization of aflR, a regulatory locus for aflatoxin biosynthesis. Applied and Environmental Microbiology, 1994, 60, 2408-2414.	3.1	315
148	Sequence variability in homologs of the aflatoxin pathway gene aflR distinguishes species in Aspergillus section Flavi. Applied and Environmental Microbiology, 1995, 61, 40-43.	3.1	71
149	stcS, a putative P-450 monooxygenase, is required for the conversion of versicolorin A to sterigmatocystin in Aspergillus nidulans. Applied and Environmental Microbiology, 1995, 61, 3628-3632.	3.1	59
150	Tri6 encodes an unusual zinc finger protein involved in regulation of trichothecene biosynthesis in Fusarium sporotrichioides. Applied and Environmental Microbiology, 1995, 61, 1923-1930.	3.1	199
151	Comparative mapping of aflatoxin pathway gene clusters in Aspergillus parasiticus and Aspergillus flavus. Applied and Environmental Microbiology, 1995, 61, 2365-2371.	3.1	255
152	Increased expression of Aspergillus parasiticus aflR, encoding a sequence-specific DNA-binding protein, relieves nitrate inhibition of aflatoxin biosynthesis. Applied and Environmental Microbiology, 1995, 61, 2372-2377.	3.1	194
153	Physical and transcriptional map of an aflatoxin gene cluster in Aspergillus parasiticus and functional disruption of a gene involved early in the aflatoxin pathway. Applied and Environmental Microbiology, 1995, 61, 2665-2673.	3.1	140
154	Molecular characterization of the afl-1 locus in Aspergillus flavus. Applied and Environmental Microbiology, 1995, 61, 3019-3023.	3.1	52
155	Isolation and characterization of polygalacturonase genes (pecA and pecB) from Aspergillus flavus. Applied and Environmental Microbiology, 1995, 61, 3316-3322.	3.1	46
156	Identification of aflatoxin biosynthesis genes by genetic complementation in an Aspergillus flavus mutant lacking the aflatoxin gene cluster. Applied and Environmental Microbiology, 1996, 62, 3567-3571.	3.1	43
157	Characterization of the function of the ver-1A and ver-1B genes, involved in aflatoxin biosynthesis in Aspergillus parasiticus. Applied and Environmental Microbiology, 1996, 62, 4568-4575.	3.1	47
158	Molecular characterization of an Aspergillus parasiticus dehydrogenase gene, norA, located on the aflatoxin biosynthesis gene cluster. Applied and Environmental Microbiology, 1996, 62, 360-366.	3.1	68
159	Detection of aflatoxigenic molds in grains by PCR. Applied and Environmental Microbiology, 1996, 62, 3270-3273.	3.1	161
160	Characterization of experimentally induced, nonaflatoxigenic variant strains of Aspergillus parasiticus. Applied and Environmental Microbiology, 1996, 62, 3399-3404.	3.1	67
161	Overexpression of aflR Leads to Upregulation of Pathway Gene Transcription and Increased Aflatoxin Production in Aspergillus flavus. Applied and Environmental Microbiology, 1997, 63, 3995-4000.	3.1	116
162	Analysis of mechanisms regulating expression of the ver-1 gene, involved in aflatoxin biosynthesis. Applied and Environmental Microbiology, 1997, 63, 1058-1065.	3.1	40

#	Article	IF	CITATIONS
163	Development of polyclonal antibodies for detection of aflatoxigenic molds involving culture filtrate and chimeric proteins expressed in Escherichia coli. Applied and Environmental Microbiology, 1997, 63, 990-995.	3.1	17
164	avnA, a gene encoding a cytochrome P-450 monooxygenase, is involved in the conversion of averantin to averufin in aflatoxin biosynthesis in Aspergillus parasiticus. Applied and Environmental Microbiology, 1997, 63, 1349-1356.	3.1	64
165	ord1, an oxidoreductase gene responsible for conversion of O-methylsterigmatocystin to aflatoxin in Aspergillus flavus. Applied and Environmental Microbiology, 1997, 63, 1661-1666.	3.1	76
166	Homologs of Aflatoxin Biosynthesis Genes and Sequence of <i>aflR</i> in <i>Aspergillus oryzae</i> and <i>Aspergillus sojae</i> . Applied and Environmental Microbiology, 1999, 65, 307-310.	3.1	69
167	Cloning and Characterization of the <i>O</i> -Methyltransferase I Gene (<i>dmtA</i>) from <i>Aspergillus parasiticus</i> Associated with the Conversions of Demethylsterigmatocystin to Sterigmatocystin and Dihydrodemethylsterigmatocystin to Dihydrosterigmatocystin in Aflatoxin Biosynthesis. Applied and Environmental Microbiology, 1999, 65, 4987-4994.	3.1	40
168	Sterigmatocystin biosynthesis in Aspergillus nidulans requires a novel type I polyketide synthase. Journal of Bacteriology, 1995, 177, 4792-4800.	2.2	150
169	Mycotoxin genetics and gene clusters. , 2002, , 705-711.		2
170	Genetic and Biochemical Control of Aflatoxigenic Fungi. , 2007, , 417-448.		3
171	Genetic and Biochemical Control of Aflatoxigenic Fungi. , 2007, , .		0
173	<i>Aspergillus nidulans</i> : a Model for Elucidation of <i>Aspergillus fumigatus</i> Secondary Metabolism. , 0, , 235-243.		0
174	Role of aflR Gene Expression from A. flavus to Cause Disease in Human. Journal of Bacteriology & Mycology Open Access, 2017, 5, .	0.2	0
206	Investigation the Effects of Lactobacillus acidophilus and Lactobacillus casei on aflR Gene expression in Aspergillus parasiticus by Real Time-PCR. Iranian Journal of Public Health, 2016, 45, 781-6.	0.5	Ο
207	New Insights of Transcriptional Regulator AflR in Aspergillus flavus Physiology. Microbiology Spectrum, 2022, 10, e0079121.	3.0	14
208	Aflatoxins. , 0, , .		1
211	Hybridization of genes involved in aflatoxin biosynthesis to DNA of aflatoxigenic and non-aflatoxigenic aspergilli. Applied Microbiology and Biotechnology, 1995, 44, 439-443.	3.6	7
212	Gram-Level Production of Balanol through Regulatory Pathway and Medium Optimization in Herb Fungus Tolypocladium ophioglossoides. Journal of Fungi (Basel, Switzerland), 2022, 8, 510.	3.5	1
214	Small NRPS-like enzymes in Aspergillus sections Flavi and Circumdati selectively form substituted pyrazinone metabolites. Frontiers in Fungal Biology, 0, 3, .	2.0	0