Response of microbial adhesives and biofilm matrix pol determined by interference reflection microscopy and l

Applied and Environmental Microbiology 55, 2827-2831 DOI: 10.1128/aem.55.11.2827-2831.1989

Citation Report

#	ARTICLE	IF	CITATIONS
1	Bacterial surface adhesives and biofilm matrix polymers of marine and freshwater bacteriaâ€. Biofouling, 1991, 4, 129-140.	0.8	48
2	Biofilm formation in the industry: A review. Food Reviews International, 1992, 8, 573-603.	4.3	220
3	Aquatic Biofilms and Their Responses to Disinfection and Invading Species. , 1992, , .		0
4	Biofilms and their consequences, with particular reference to hygiene in the food industry. Journal of Applied Bacteriology, 1993, 75, 499-511.	1.1	475
5	Isolation and Characterization of Metabolites from <i>Pseudomonas fluorescens</i> -D7 for Control of Downy Brome (<i>Bromus tectorum</i>). Weed Science, 1994, 42, 492-501.	0.8	58
6	Biofilms, Naturally Occurring Communities of Immobilized Cells. , 1994, , 289-335.		2
7	Reversibility and mechanism of bacterial adhesion. Colloids and Surfaces B: Biointerfaces, 1995, 4, 5-22.	2.5	230
8	The isoelectric point of bacteria as an indicator for the presence of cell surface polymers that inhibit adhesion. Colloids and Surfaces B: Biointerfaces, 1995, 4, 191-197.	2.5	181
9	Biofilms in food processing. Food Control, 1995, 6, 9-18.	2.8	180
10	In situ Characterization of Biofilm Exopolymers Involved in the Accumulation of Chlorinated Organics. Microbial Ecology, 1998, 35, 213-223.	1.4	90
11	Function of EPS. , 1999, , 171-200.		81
12	Microbial attachment to food and food contact surfaces. Advances in Food and Nutrition Research, 2001, 43, 319-370.	1.5	109
13	Biogeochemical controls on metal behaviour in freshwater environments. Earth-Science Reviews, 2001, 54, 261-320.	4.0	245
14	Adaptation or Resistance Responses of Microorganisms to Stresses in the Food Processing Environment. , 2002, , .		0
15	Direct Infrared Spectroscopic Evidence of pH- and Ionic Strength-Induced Changes in Distance of Attached Pseudomonas aeruginosa from ZnSe Surfaces. Langmuir, 2002, 18, 1904-1907.	1.6	24
16	Effect of Polymer Surface Properties on the Reversibility of Attachment ofPseudomonas aeruginosain the Early Stages of Biofilm Development. Biofouling, 2002, 18, 65-71.	0.8	72
17	Role of electrostatic interactions in cohesion of bacterial biofilms. Applied Microbiology and Biotechnology, 2002, 59, 718-720.	1.7	120
18	Kinetics and Forces of Adhesion for a Pair of Capsular/Unencapsulated Staphylococcus Mutant Strains. Langmuir, 2003, 19, 154-159.	1.6	27

#	Article	IF	CITATIONS
19	Interactions of biopolymers with silica surfaces: Force measurements and electronic structure calculation studies. Geochimica Et Cosmochimica Acta, 2006, 70, 3803-3819.	1.6	35
20	Analysis of aggregative behavior of Pseudomonas sp. 30-3 isolated from Antarctic soil. Soil Biology and Biochemistry, 2006, 38, 3152-3157.	4.2	9
21	Effect of pH on the Efficacy of Sodium Hypochlorite Solution as Cleaning and Bactericidal Agents. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2007, 58, 465-469.	0.1	25
22	Influence of Nonionic Surfactant on Attached Biofilm Formation and Phenanthrene Bioavailability during Simulated Surfactant Enhanced Bioremediation. Environmental Science & Technology, 2007, 41, 7107-7113.	4.6	45
23	Physiology of Microbes in Biofilms. Current Topics in Microbiology and Immunology, 2008, 322, 17-36.	0.7	35
24	Antibacterial protection of suture material by chlorhexidine-functionalized polyelectrolyte multilayer films. Journal of Materials Science: Materials in Medicine, 2009, 20, 185-193.	1.7	28
25	The application of a mulch biofilm barrier for surfactant enhanced polycyclic aromatic hydrocarbon bioremediation. Environmental Pollution, 2009, 157, 95-101.	3.7	38
26	In vitro antimicrobial activity of Caesalpinia ferrea Martius fruits against oral pathogens. Journal of Ethnopharmacology, 2009, 124, 289-294.	2.0	91
27	Influence of Extracellular Polymeric Substances (EPS) on Deposition Kinetics of Bacteria. Environmental Science & Technology, 2009, 43, 2308-2314.	4.6	122
28	Contribution of Extracellular Polymeric Substances on Representative Gram Negative and Gram Positive Bacterial Deposition in Porous Media. Environmental Science & Technology, 2010, 44, 2393-2399.	4.6	55
29	Poly(oxazoline) for the design of amphiphilic silicone coatings. Progress in Organic Coatings, 2021, 153, 106116.	1.9	12
30	Effect of exopolysaccharides produced by dairy starter cultures on biofilms formed on reverse osmosis membranes. JDS Communications, 2021, 2, 104-109.	0.5	2
32	Behavioral Strategies of Surface-Colonizing Bacteria. Advances in Microbial Ecology, 1995, , 1-75.	0.1	48
33	CASE: Complex Adaptive Systems Ecology. Advances in Microbial Ecology, 1997, , 27-79.	0.1	14
34	Do Bacterial Communities Transcend Darwinism?. Advances in Microbial Ecology, 1997, , 105-191.	0.1	58
35	The challenge to analyse extracellular polymers in biofilms. , 1994, , 221-227.		12
36	Extracellular Polymers in Biofilms. , 1992, , 137-147.		41
38	Bioaccumulation of the Herbicide Diclofop in Extracellular Polymers and Its Utilization by a Biofilm Community during Starvation. Applied and Environmental Microbiology, 1995, 61, 152-158.	1.4	97

CITATION REPORT

#	Article	IF	CITATIONS
39	Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiological Reviews, 1996, 60, 151-166.	10.1	498
40	Microbial Biofilms: Modern Concepts. Antibiotiki I Khimioterapiya, 2020, 65, 70-77.	0.1	2
42	Out of control: The need for standardised solvent approaches and data reporting in antibiofilm assays incorporating dimethyl-sulfoxide (DMSO). Biofilm, 2022, 4, 100081.	1.5	4
43	Influence of extracellular polymeric substances on electrochemical behaviours of stainless steels in circulating cooling water. Materials Chemistry and Physics, 2023, 293, 126892.	2.0	4