Hydrophobicity as an Adhesion Mechanism of Benthic

Applied and Environmental Microbiology 47, 135-143 DOI: 10.1128/aem.47.1.135-143.1984

Citation Report

#	Article	IF	CITATIONS
1	Phormidium J-1 bioflocculant: production and activity. Archives of Microbiology, 1984, 139, 421-426.	2.2	66
2	Microbial interactions in nature and in the laboratory. Antonie Van Leeuwenhoek, 1985, 51, 457-472.	1.7	1
3	Modulation of cell surface hydrophobicity in the benthic cyanobacterium Phormidium J-1. Archives of Microbiology, 1985, 142, 21-27.	2.2	24
4	Unsaturated fatty acid composition and biosynthesis in Oscillatoria limnetica and other cyanobacteria. Archives of Microbiology, 1985, 141, 138-142.	2.2	37
5	Production of emulcyan byPhormidiumJ-1: its activity and function. FEMS Microbiology Letters, 1985, 31, 3-9.	1.8	45
6	Bacterial Adhesion and Fouling of Reverse Osmosis Membranes. Journal - American Water Works Association, 1985, 77, 97-106.	0.3	93
7	Microbial Surfactants. Critical Reviews in Biotechnology, 1985, 3, 109-132.	9.0	134
8	A comparison of five methods for assaying bacterial hydrophobicity. Journal of Microbiological Methods, 1986, 6, 13-19.	1.6	95
9	Evaluation of hydrophobicity and adherence of Neisseria Meningitidis strains and a study of their correlation by analysis of alterations induced by antibiotics. Annales De L'Institut Pasteur Microbiologie, 1986, 137, 37-45.	0.6	5
10	Relevance of Interface with Surface Property, Adhesion, and Activity of Microorganisms. Bulletin of Japanese Society of Microbial Ecology, 1986, 1, 39-49.	0.1	0
11	Hydrophobic Interactions: Role in Bacterial Adhesion. Advances in Microbial Ecology, 1986, , 353-393.	0.1	271
12	Clumping characteristics and hydrophobic behaviour of an isolated bacterial strain from sewage sludge. Applied Microbiology and Biotechnology, 1987, 25, 396.	3.6	16
13	The role of cell-bound flocculants in coflocculation of benthic cyanobacteria with clay particles. FEMS Microbiology Letters, 1988, 53, 169-174.	1.8	24
14	[22] Cellular differentiation: Hormogonia and baeocytes. Methods in Enzymology, 1988, 167, 232-242.	1.0	59
15	[68] Cyanobacterial flocculants. Methods in Enzymology, 1988, 167, 616-622.	1.0	4
16	Cellular growth and reproduction of marine bacteria on surfaceâ€bound substrate. Biofouling, 1988, 1, 163-174.	2.2	46
17	Adhesion ofEnteromorpha swarmers to microbial films. Microbial Ecology, 1989, 17, 39-47.	2.8	52
18	Physical methods for characterization of microbial cell surfaces. Experientia, 1989, 45, 1047-1055.	1.2	42

ATION REDO

ARTICLE IF CITATIONS # Growth and nitrogen fixation by immobilized cyanobacteria. Applied Microbiology and Biotechnology, 19 3.6 7 1989, 31, 138-145. Clogging of groundwater recharge basins by cyanobacterial mats. FEMS Microbiology Letters, 1989, 1.8 62, 231-242 21 Energetics of bacterial adhesion. Experientia, 1990, 46, 817-822. 1.2 52 Planktoneustonic algae in the surface films of Lake Zürich: Occurrence and dependence on phytoplankton succession. Aquatic Sciences, 1990, 52, 269-286. Bacterial Polymers: Physicochemical Aspects of Their Interactions at Interfaces. Journal of 23 2.4 109 Biomaterials Applications, 1990, 5, 107-133. Physical Chemical Description of Bacterial Adhesion. Journal of Biomaterials Applications, 1990, 5, 2.4 114 91-106. Kinetics of adherence of mucoid and non-mucoid pseudomonas aeruginosa to plastic catheters. 25 1.8 45 Journal of Medical Microbiology, 1991, 34, 7-12. Influence of substratum surface tension on biofouling of artificial substrata in Kiel Bay (Western) Tj ETQq1 1 0.784314 rgBT /Qverlock 27 Diversity, Ecology, and Taxonomy of the Cyanobacteria., 1992, , 1-51. 106 The influence of hydrophobic, electrostatic and morphologic properties on the adhesion 2.2 of<i>Bacillus</i>spores. Biofouling, 1992, 5, 335-344. Information spiraling: Movement of bacteria and their genes in streams. Microbial Ecology, 1992, 24, 29 43 2.8 11-24. Buoyancy regulation and aggregate formation in Amoebobacter purpureus from Mahoney Lake. FEMS Microbiology Ecology, 1992, 10, 67-79. Bouyancy regulation and aggregate formation inAmoebobacter purpureus from Mahoney Lake. FEMS $\mathbf{31}$ 1.8 6 Microbiology Letters, 1992, 101, 67-69. Tertiary treatment of wastewater with Phormidium bohneri (Schmidle) under various light and 11.3 temperature conditions. Water Research, 1993, 27, 153-159. Adhesion of Bacillus cereusspores to different solid surfaces: Cleaned or conditioned with various 33 2.2 28 food agents. Biofouling, 1993, 7, 57-65. Hydrophobicity of activated sludge flocs and laboratory-grown bacteria. Water Science and Technology, 1994, 30, 211-218. 118 Differentiation of Hormogonia and Relationships with Other Biological Processes. Advances in 35 1.0 9 Photosynthesis and Respiration, 1994, , 825-842. The influence of low surface energy materials on bioadhesion â€" a review. International Biodeterioration and Biodegradation, 1994, 34, 333-348.

#	Article	IF	CITATIONS
37	Microbial biofilms in the food processing industry—Should they be a concern?. International Journal of Food Microbiology, 1994, 23, 125-148.	4.7	292
38	Effect of chemical fertilizers on the transport ofEscherichia coli, Pseudomonas aeruginosa andSalmonella infantis through sand columns. Folia Microbiologica, 1994, 39, 283-286.	2.3	6
39	Differentiation of Hormogonia and Relationships with Other Biological Processes. , 1994, , 825-842.		47
40	Envelope structure of four gliding filamentous cyanobacteria. Journal of Bacteriology, 1995, 177, 2387-2395.	2.2	140
41	Observations on biofilm bacteria isolated from aluminium panels immersed in estuarine waters. Biofouling, 1995, 8, 243-254.	2.2	19
42	Observations on the mechanisms of attachment of some marine fouling blueâ€green algae. Biofouling, 1996, 10, 161-173.	2.2	27
43	Diversity in surface colonization behavior in marine bacteria. Journal of Industrial Microbiology, 1996, 17, 228-234.	0.9	24
44	Exopolysaccharide production and attachment strength of bacteria and diatoms on substrates with different surface tensions. Microbial Ecology, 1996, 32, 23-33.	2.8	69
45	The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiology Ecology, 1996, 21, 121-130.	2.7	301
46	Cell surface hydrophobicity and attachment of pathogenic and spoilage bacteria to meat surfaces. Meat Science, 1997, 45, 419-425.	5.5	40
47	Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiology Reviews, 1998, 22, 151-175.	8.6	346
48	Adhesion of different bacterial strains to low-temperature plasma-treated sutures. Journal of Biomedical Materials Research Part B, 1998, 41, 349-358.	3.1	23
49	Influence of initial substratum surface tension on marine micro- and macro-fouling in the Gulf of Thailand. Helgolâ^šÂ§nder Meeresuntersuchungen, 1998, 51, 445-461.	0.2	12
50	Role of bacteria and bacterial exopolymer in the attachment of <i>achnanthes longipes</i> (Bacillariophyceae). Biofouling, 1998, 13, 137-156.	2.2	31
51	Adhesion of different bacterial strains to low-temperature plasma treated biomedical PVC catheter surfaces. Journal of Biomaterials Science, Polymer Edition, 1998, 9, 915-929.	3.5	20
52	Adhesion of Different Bacterial Strains to Low-Temperature Plasma Treated Biomedical Silicon Catheter Surfaces. Journal of Bioactive and Compatible Polymers, 1998, 13, 81-101.	2.1	3
53	EQUILIBRIUM MODELING OF PSEUDOMONAD AGGREGATION AND PARTITIONING TO DOLOMITEâ€. Journal of Dispersion Science and Technology, 1998, 19, 1081-1106.	2.4	6
54	Role of particle wettability in capture by a suspension-feeding crab (Emerita talpoida). Marine Biology, 1999, 133, 419-428.	1.5	15

#	Article	IF	CITATIONS
55	Quantitative structure-activity relationship (QSAR) analysis of surfactants influencing attachment of aMycobacterium sp. to cellulose acetate and aromatic polyamide reverse osmosis membranes. Biotechnology and Bioengineering, 1999, 64, 527-544.	3.3	33
56	Paleobiological significance of hydrophobicity and adhesion of phototrophic bacteria from microbial mats. Precambrian Research, 1999, 96, 25-39.	2.7	11
57	Biodeterioration of ornamental marble statues in the Boboli Gardens (Florence, Italy). Journal of Applied Phycology, 2000, 12, 427-433.	2.8	47
58	Molecular Mechanism of Granulation. II: Proton Translocating Activity. Journal of Environmental Engineering, ASCE, 2000, 126, 411-418.	1.4	61
59	Cyanobacterial Exopolysaccharides: Their Nature and Potential Biotechnological Applications. Biotechnology and Genetic Engineering Reviews, 2001, 18, 375-404.	6.2	94
60	Characterization and Implications of the Cell Surface Reactivity of Calothrix sp. Strain KC97. Applied and Environmental Microbiology, 2002, 68, 4827-4834.	3.1	121
61	Synergistic Effect of Deoxyanthocyanins from Symbiotic Fern Azolla spp. on hrmA Gene Induction in the Cyanobacterium Nostoc punctiforme. Molecular Plant-Microbe Interactions, 2002, 15, 875-882.	2.6	45
62	Title is missing!. Microbiology, 2002, 71, 202-204.	1.2	20
63	Extracellular carbohydrate polymers from five desert soil algae with different cohesion in the stabilization of fine sand grain. Carbohydrate Polymers, 2003, 54, 33-42.	10.2	160
64	Kinetics of Adsorption and Desorption of Aflatoxin B1 by Viable and Nonviable Bacteria. Journal of Food Protection, 2003, 66, 426-430.	1.7	77
65	Lipid biomarker and carbon isotopic signatures for stromatolite-forming, microbial mat communities and Phormidium cultures from Yellowstone National Park. Geobiology, 2004, 2, 31-47.	2.4	116
66	Sorption of Copper and Strontium Ions and Fulvinate and Citrate Complexes from Aqueous Solutions by Flocculating Microbocenosis. Colloid Journal, 2004, 66, 557-561.	1.3	0
67	Fractionation of an Aquatic Fulvic Acid upon Adsorption to the Bacterium,Bacillus subtilis. Geomicrobiology Journal, 2004, 21, 69-78.	2.0	33
68	Retention and removal of pathogenic bacteria in wastewater percolating through porous media: a review. Water Research, 2004, 38, 1355-1367.	11.3	384
69	Effect of surface free energy on the adhesion of biofouling and crystalline fouling. Chemical Engineering Science, 2005, 60, 4858-4865.	3.8	158
70	Biofilm diatom community structure: Influence of temporal and substratum variability. Biofouling, 2005, 21, 189-206.	2.2	110
71	Microbial Biofilms. , 2006, , 904-937.		40
72	Planktonic Versus Sessile Life of Prokaryotes. , 2006, , 3-15.		8

#	Article	IF	CITATIONS
73	EXTRACELLULAR MATRIX ASSEMBLY IN DIATOMS (BACILLARIOPHYCEAE). V. ENVIRONMENTAL EFFECTS ON POLYSACCHARIDE SYNTHESIS IN THE MODEL DIATOM, PHAEODACTYLUM TRICORNUTUM1. Journal of Phycology, 2006, 42, 363-378.	2.3	136
74	Resistance to environmental stress by the mucoid and the non-mucoid variant phenotypes of the Comamonas testosteroni strain A20. FEMS Microbiology Ecology, 2006, 24, 371-376.	2.7	2
75	The influence of different reclamation agents and microorganisms on the aggregative stability of the colloidal fraction of meadow chernozem soil. Colloid Journal, 2006, 68, 311-315.	1.3	0
76	Adhesion of façade coating colonisers, as mediated by physico-chemical properties. Biofouling, 2007, 23, 15-24.	2.2	34
77	Transport and Deposition of Metabolically Active and Stationary PhaseDeinococcus radioduransin Unsaturated Porous Media. Environmental Science & Technology, 2007, 41, 1265-1271.	10.0	45
78	E. coli and enterococci attachment to particles and loading rates in pastureland runoff. , 2007, , .		0
79	The extracellular polymeric substances of desmids (Conjugatophyceae, Streptophyta): chemistry, structural analyses and implications in wetland biofilms. Phycologia, 2007, 46, 617-627.	1.4	38
80	Relationships between food quality and fitness in the desert locust, <i>SchistocercaÂgregaria</i> , and its distribution over habitats on the Red Sea coastal plain of Sudan. Entomologia Experimentalis Et Applicata, 2008, 127, 144-156.	1.4	29
81	Baeocytes in the cyanobacterium Pleurocapsa sp.: Characterization of the differentiated cells produced by multiple fission. Microbiology, 2008, 77, 62-68.	1.2	6
82	Acid–base properties of cyanobacterial surfaces. II: Silica as a chemical stressor influencing cell surface reactivity. Geochimica Et Cosmochimica Acta, 2008, 72, 1269-1280.	3.9	15
83	Algae as marine fouling organisms: adhesion damage and prevention. , 2009, , 80-112.		12
84	Microphytobenthos as a biogeomorphological force in intertidal sediment stabilization. Ecological Engineering, 2010, 36, 236-245.	3.6	140
85	Responses of Lyngbya magnifica Gardner to an algaecide exposure in the laboratory and field. Ecotoxicology and Environmental Safety, 2011, 74, 1832-1838.	6.0	15
86	Advantages and Challenges of Microalgae as a Source of Oil for Biodiesel. , 0, , .		7
87	Role of Cell Hydrophobicity on Colony Formation in <i>Microcystis</i> (Cyanobacteria). International Review of Hydrobiology, 2011, 96, 141-148.	0.9	20
88	Cyanobacteria, Oil – and Cyanofuel?. , 2012, , 427-440.		4
89	Responses of Lyngbya wollei to Exposures of Copper-Based Algaecides: The Critical Burden Concept. Archives of Environmental Contamination and Toxicology, 2012, 62, 403-410.	4.1	21
90	Avrami's law based kinetic modeling of colonization of mortar surface by alga Klebsormidium flaccidum. International Biodeterioration and Biodegradation, 2013, 79, 73-80.	3.9	31

#	Article	IF	CITATIONS
91	Physico-chemical surface properties of microalgae. Colloids and Surfaces B: Biointerfaces, 2013, 112, 287-293.	5.0	119
92	Microbial Biofilms. , 2013, , 343-372.		13
93	Planktonic Versus Sessile Life of Prokaryotes. , 2013, , 191-201.		4
94	Cyanobacterial defense mechanisms against foreign DNA transfer and their impact on genetic engineering. Biological Research, 2013, 46, 373-382.	3.4	44
95	Influence of the intrinsic characteristics of mortars on their biofouling by pigmented organisms: Comparison between laboratory and field-scale experiments. International Biodeterioration and Biodegradation, 2014, 86, 334-342.	3.9	38
96	Contrasting hydrological response of coastal and desert biocrusts. Hydrological Processes, 2014, 28, 361-371.	2.6	30
97	Antifouling on Gecko's Feet Inspired Fibrillar Surfaces: Evolving from Land to Marine and from Liquid Repellency to Algae Resistance. Advanced Materials Interfaces, 2015, 2, 1500257.	3.7	56
98	The Potential of the Photoautotroph Synechocystis for Metal Bioremediation. , 2015, , .		2
99	Cell surface reactivity of Synechococcus sp. PCC 7002: Implications for metal sorption from seawater. Geochimica Et Cosmochimica Acta, 2015, 169, 30-44.	3.9	48
100	Efficiency of copper and cupronickel substratum to resist development of diatom biofilms. International Biodeterioration and Biodegradation, 2015, 105, 203-214.	3.9	27
101	Comparative toxicity of sodium carbonate peroxyhydrate to freshwater organisms. Ecotoxicology and Environmental Safety, 2016, 132, 202-211.	6.0	25
102	Thin films of silk fibroin and its blend with chitosan strongly promote biofilm growth of Synechococcus sp. BDU 140432. Journal of Colloid and Interface Science, 2016, 479, 251-259.	9.4	20
103	Characterizing cell surface of blooming Microcystis in Lake Taihu, China. Water Science and Technology, 2016, 73, 2731-2738.	2.5	14
104	Microalgal cultivation in porous substrate bioreactor for extracellular polysaccharide production. Journal of Applied Phycology, 2017, 29, 1115-1122.	2.8	11
105	Could It Be Snowing Microbes on Enceladus? Assessing Conditions in Its Plume and Implications for Future Missions. Astrobiology, 2017, 17, 876-901.	3.0	67
107	Influence of Extracellular Polysaccharides and Calcium Ion on Colony Formation of Unicellular <i>Microcystis aeruginosa</i> . Environmental Engineering Science, 2017, 34, 149-157.	1.6	16
108	Effects of flask configuration on biofilm growth and metabolites of intertidal Cyanobacteria isolated from a mangrove forest. Journal of Applied Microbiology, 2018, 125, 190-202.	3.1	13
109	Biocrust research: A critical view on eight common hydrologicalâ€related paradigms and dubious theses. Ecohydrology, 2019, 12, e2061.	2.4	24

#	Article	IF	CITATIONS
110	Fouling in microalgal membrane bioreactor containing nitrate-enriched wastewater under different trophic conditions. Algal Research, 2018, 36, 167-174.	4.6	12
111	Cyanobacteria in Diverse Habitats. , 2019, , 1-28.		20
112	Effects of different types of extracellular polysaccharides isolated from cyanobacterial blooms on the colony formation of unicellular Microcystis aeruginosa. Environmental Science and Pollution Research, 2019, 26, 3741-3750.	5.3	10
113	<i>Diopatra cuprea</i> worm burrow parchment: a cautionary tale of infaunal surface reactivity. Lethaia, 2020, 53, 47-61.	1.4	7
114	Physiological differences between free-floating and periphytic filamentous algae, and specific submerged macrophytes induce proliferation of filamentous algae: A novel implication for lake restoration. Chemosphere, 2020, 239, 124702.	8.2	17
115	The released polysaccharide inhibits cell aggregation and biofilm formation in the cyanobacterium <i>Synechocystis</i> sp. PCC 6803. European Journal of Phycology, 2021, 56, 119-128.	2.0	8
116	Special issue on advanced corrosion-resistance materials and emerging applications. The progress on antifouling organic coating: From biocide to biomimetic surface. Journal of Materials Science and Technology, 2021, 61, 46-62.	10.7	62
117	Substrate properties as controlling parameters in attached algal cultivation. Applied Microbiology and Biotechnology, 2021, 105, 1823-1835.	3.6	9
118	Improving the water barrier properties of alginate packaging films by submicron coating with drying linseed oil. Packaging Technology and Science, 2021, 34, 283-295.	2.8	22
119	The impact of cell-bound exopolysaccharide on flocculation of the cyanobacterium Synechocystis PCC6803 with ferric chloride and chitosan. Journal of Applied Phycology, 2021, 33, 2947-2955.	2.8	2
120	Difference in temporal and spatial distribution pattern of cyanobacteria between the sediment and water column in Lake Chaohu. Environmental Pollution, 2021, 291, 118163.	7.5	8
122	Microbial Mats in Australian Coastal Environments. Advances in Microbial Ecology, 1990, , 461-498.	0.1	24
123	Applications of Acinetobacter as an Industrial Microorganism. , 1991, , 411-441.		25
124	Activity on Surfaces. , 1984, , 202-221.		9
125	Mechanisms of Adhesion. , 1984, , 4-19.		12
126	Cyanobacteria. Brock/Springer Series in Contemporary Bioscience, 1989, , 134-146.	0.3	2
127	Role of Bacterial Adhesion in Biofilm Formation and Biocorrosion. , 1991, , 29-46.		17
128	Laboratory studies on adhesion of microalgae to hard substrates. , 2004, , 109-116.		15

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
129	Benthic Microbial Communities of Australian Saline Lakes. Monographiae Biologicae, 1986, , 95-111.	0.1	17
130	COMPARISON OF THE CELL SURFACE HYDROPHOBICITY OF BACTERIAL FISH PATHOGENS BY DIFFERENT PROCEDURES. , 1990, , 101-115.		13
131	TWO CAUSES FOR RUNOFF INITIATION ON MICROBIOTIC CRUSTS: HYDROPHOBICITY AND PORE CLOGGING. Soil Science, 1999, 164, 18-27.	0.9	132
133	Influence of <i>Serratia marcescens</i> Pigmentation on Cell Concentrations in Aerosols Produced by Bursting Bubbles. Applied and Environmental Microbiology, 1985, 49, 173-178.	3.1	17
134	Evidence for Separate Adhesion Mechanisms for Hydrophilic and Hydrophobic Surfaces in <i>Vibrio proteolytica</i> . Applied and Environmental Microbiology, 1985, 50, 431-437.	3.1	141
135	Electrophoretic mobility and hydrophobicity as a measured to predict the initial steps of bacterial adhesion. Applied and Environmental Microbiology, 1987, 53, 1898-1901.	3.1	658
136	Characterization of Macromolecular Flocculants Produced by <i>Phormidium</i> sp. Strain J-1 and by <i>Anabaenopsis circularis</i> PCC 6720. Applied and Environmental Microbiology, 1987, 53, 2226-2230.	3.1	93
137	Cell Surface Characteristics of Bacteriophage-Resistant <i>Lactococcus lactis</i> subsp. <i>cremoris</i> SK110 and Its Bacteriophage-Sensitive Variant SK112. Applied and Environmental Microbiology, 1990, 56, 3230-3233.	3.1	28
138	Kinetics of Pseudomonas aeruginosa adhesion to 304 and 316-L stainless steel: role of cell surface hydrophobicity. Applied and Environmental Microbiology, 1990, 56, 788-795.	3.1	185
139	Relationship between Cell Surface Properties and Transport of Bacteria through Soil. Applied and Environmental Microbiology, 1991, 57, 190-193.	3.1	300
140	Comparison of the adhesion properties of Deleya marina and the exopolysaccharide-defective mutant strain DMR. Applied and Environmental Microbiology, 1991, 57, 3107-3113.	3.1	31
141	Hydrophobicity, Adhesion, and Surface-Exposed Proteins of Gliding Bacteria. Applied and Environmental Microbiology, 1991, 57, 3193-3199.	3.1	63
142	Selective Adhesion of <i>Thiobacillus ferrooxidans</i> to Pyrite. Applied and Environmental Microbiology, 1993, 59, 4044-4050.	3.1	130
143	Plasmid Transfer between Marine Bacteria in the Aqueous Phase and Biofilms in Reactor Microcosms. Applied and Environmental Microbiology, 1993, 59, 843-850.	3.1	87
144	Isolation of pigmented and nonpigmented mutants of Serratia marcescens with reduced cell surface hydrophobicity. Journal of Bacteriology, 1984, 160, 480-482.	2.2	34
145	Photosensory behavior in procaryotes. Microbiological Reviews, 1987, 51, 1-21.	10.1	120
146	Desiccation tolerance of prokaryotes. Microbiological Reviews, 1994, 58, 755-805.	10.1	986
147	Chemical characteristics of capsular polysaccharide and water-soluble released exopolysaccharide from <i>Microcystis</i> . Hupo Kexue/Journal of Lake Sciences, 2016, 28, 609-615.	0.8	3

#	Article	IF	CITATIONS
149	Results of the evaluation of the semi-empirical model on the selection of optimal constructive and technological parameters for a granulated loading filter. , 2020, , 154-163.	0.3	0
165	Protein, phycocyanin, and polysaccharide production by Arthrospira platensis grown with LED light in annular photobioreactors. Journal of Applied Phycology, 2022, 34, 1189-1199.	2.8	10
166	Influence of wettability and surface design on the adhesion of terrestrial cyanobacteria to additive manufactured biocarriers. Bioprocess and Biosystems Engineering, 2022, 45, 931-941.	3.4	4
167	Spatio-Temporal Monitoring of Benthic Anatoxin-a-Producing Tychonema sp. in the River Lech, Germany. Toxins, 2022, 14, 357.	3.4	5
168	Polycyclic aromatic hydrocarbon sequestration by intertidal phototrophic biofilms cultivated in hydrophobic and hydrophilic biofilm-promoting culture vessels. Journal of Hazardous Materials, 2022, 437, 129318.	12.4	1
169	Mechanisms for biocrust-modulated runoff generation – A review. Earth-Science Reviews, 2022, 231, 104100.	9.1	21
170	An internally LED illuminated photobioreactor to increase energy conversion efficiency: Design and operation. Energy Conversion and Management, 2022, 270, 116224.	9.2	2
171	Effect of light intensity on bound EPS characteristics of two Microcystis morphospecies: the role of bEPS in the proliferation of Microcystis. Journal of Oceanology and Limnology, 2022, 40, 1706-1719.	1.3	3
172	Natural and oil surface slicks as microbial habitats in marine systems: A mini review. Frontiers in Marine Science, 0, 9, .	2.5	3
173	Cyanobacterial biofilms: Perspectives from origin to applications. , 2023, , 23-39.		1
174	Diffuse reflectance spectroscopy (DRS) and infrared (IR) measurements for studying biofilm formation on common plastic litter polymer (LDPE and PET) surfaces in three different laboratory aquatic environments. Environmental Science and Pollution Research, 2023, 30, 67499-67512.	5.3	1
175	Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils and Strata, 1994, , 1-84.	4.0	125