Impact of strain relaxation on performance of \hat{I} +-formacells

Science 370, 108-112 DOI: 10.1126/science.abc4417

Citation Report

#	Article	IF	CITATIONS
1	Visualizing the Invisible in Perovskites. Joule, 2020, 4, 2545-2548.	24.0	7
2	Enhancing Photovoltaic and Photosensing Performances in Bismuth Ferrite via Polar Order Engineering. ACS Applied Electronic Materials, 2020, 2, 3773-3782.	4.3	17
3	Temperature-Assisted Crystal Growth of Photovoltaic α-Phase FAPbI ₃ Thin Films by Sequential Blade Coating. ACS Applied Materials & Interfaces, 2020, 12, 55830-55837.	8.0	11
4	Is the strain responsible to instability of inorganic perovskites and their photovoltaic devices?. Materials Today Energy, 2021, 19, 100601.	4.7	17
5	Roles of MACl in Sequentially Deposited Bromineâ€Free Perovskite Absorbers for Efficient Solar Cells. Advanced Materials, 2021, 33, e2007126.	21.0	112
6	Effects of A site doping on the crystallization of perovskite films. Journal of Materials Chemistry A, 2021, 9, 1372-1394.	10.3	43
7	Highly electroluminescent and stable inorganic CsPbI2Br perovskite solar cell enabled by balanced charge transfer. Chemical Engineering Journal, 2021, 417, 128053.	12.7	24
8	Strain Engineering of Metal–Halide Perovskites toward Efficient Photovoltaics: Advances and Perspectives. Solar Rrl, 2021, 5, 2000672.	5.8	33
9	Moistureâ€Resistant FAPbI ₃ Perovskite Solar Cell with 22.25 % Power Conversion Efficiency through Pentafluorobenzyl Phosphonic Acid Passivation. ChemSusChem, 2021, 14, 1176-1183.	6.8	101
10	Defect mitigation using <scp>d</scp> -penicillamine for efficient methylammonium-free perovskite solar cells with high operational stability. Chemical Science, 2021, 12, 2050-2059.	7.4	88
11	Towards highly stable and efficient planar perovskite solar cells: Materials development, defect control and interfacial engineering. Chemical Engineering Journal, 2021, 420, 127599.	12.7	37
12	Vacancy defects on optoelectronic properties of double perovskite Cs2AgBiBr6. Materials Science in Semiconductor Processing, 2021, 123, 105541.	4.0	27
13	Mixed formamidinium–methylammonium lead iodide perovskite from first-principles: hydrogen-bonding impact on the electronic properties. Physical Chemistry Chemical Physics, 2021, 23, 7376-7385.	2.8	25
14	Recent progress of metal-halide perovskite-based tandem solar cells. Materials Chemistry Frontiers, 2021, 5, 4538-4564.	5.9	15
15	Efficient, Stable Solar Cells and Minimodules Enabled by Dual-Functional Isobutylammonium Dithiocarbamate Induced Formamidinium-Cesium Perovskite Crystallization Regulation. SSRN Electronic Journal, 0, , .	0.4	0
16	Two birds with one stone: dual grain-boundary and interface passivation enables >22% efficient inverted methylammonium-free perovskite solar cells. Energy and Environmental Science, 2021, 14, 5875-5893.	30.8	180
17	Formamidine disulfide oxidant as a localised electron scavenger for >20% perovskite solar cell modules. Energy and Environmental Science, 2021, 14, 4903-4914.	30.8	63
18	Substance and shadow of formamidinium lead triiodide based solar cells. Physical Chemistry Chemical Physics, 2021, 23, 9049-9060.	2.8	7

ITATION REDO

#	Article	IF	CITATIONS
19	Low-Cost, High-Performance Organic Small Molecular Hole-Transporting Materials for Perovskite Solar Cells. Chinese Journal of Organic Chemistry, 2021, 41, 1447.	1.3	5
20	Improved efficiency and carrier dynamic transportation behavior in perovskite solar cells with CuInS ₂ quantum dots as hole-transport materials. Dalton Transactions, 2021, 50, 8837-8844.	3.3	6
21	Two-dimensional halide perovskites: synthesis, optoelectronic properties, stability, and applications. Nanoscale, 2021, 13, 12394-12422.	5.6	38
22	Graphdiyne oxide doped SnO ₂ electron transport layer for high performance perovskite solar cells. Materials Chemistry Frontiers, 2021, 5, 6913-6922.	5.9	7
23	Perovskite-type stabilizers for efficient and stable formamidinium-based lead iodide perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 20807-20815.	10.3	23
24	Microstructure and lattice strain control towards high-performance ambient green-printed perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 13297-13305.	10.3	29
25	Defect tolerant device geometries for lead-halide perovskites. Materials Advances, 2021, 2, 3655-3670.	5.4	17
26	Facile Synthesis of Spherical TiO2 Hollow Nanospheres with a Diameter of 150 nm for High-Performance Mesoporous Perovskite Solar Cells. Materials, 2021, 14, 629.	2.9	8
27	Nondestructive passivation of the TiO ₂ electron transport layer in perovskite solar cells by the PEIE-2D MOF interfacial modified layer. Journal of Materials Chemistry C, 2021, 9, 7057-7064.	5.5	25
28	Improved stability and efficiency of perovskite/organic tandem solar cells with an all-inorganic perovskite layer. Journal of Materials Chemistry A, 2021, 9, 19778-19787.	10.3	50
29	Cost-efficient, Effect of Low-Quality PbI2 Purification to Enhance Performances of Perovskite Quantum Dots and Perovskite Solar Cells. Energies, 2021, 14, 201.	3.1	10
30	Water and oxygen co-induced microstructure relaxation and evolution in CH ₃ NH ₃ PbI ₃ . Physical Chemistry Chemical Physics, 2021, 23, 17242-17247.	2.8	5
31	Leadâ€free metal halide perovskites for lightâ€emitting diodes. EcoMat, 2021, 3, e12082.	11.9	18
32	Composition-tuned MAPbBr3 nanoparticles with addition of Cs+ cations for improved photoluminescence. RSC Advances, 2021, 11, 24137-24143.	3.6	3
33	Using steric hindrance to manipulate and stabilize metal halide perovskites for optoelectronics. Chemical Science, 2021, 12, 7231-7247.	7.4	31
34	Metal halide perovskite solar cells by modified chemical vapor deposition. Journal of Materials Chemistry A, 2021, 9, 22759-22780.	10.3	22
35	A saddle-shaped <i>o</i> -tetraphenylene based molecular semiconductor with a high glass transition temperature for perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 9927-9936.	10.3	6
36	Polyhydroxy Ester Stabilized Perovskite for Low Noise and Large Linear Dynamic Range of Self-Powered Photodetectors. Nano Letters, 2021, 21, 1500-1507.	9.1	33

#	Article	IF	CITATIONS
37	Low-Temperature-Processed Perovskite Solar Cells Fabricated from Presynthesized CsFAPbl ₃ Powder. ACS Applied Energy Materials, 2021, 4, 2600-2606.	5.1	25
38	Capturing Mobile Lithium Ions in a Molecular Hole Transporter Enhances the Thermal Stability of Perovskite Solar Cells. Advanced Materials, 2021, 33, e2007431.	21.0	64
39	Effects of Allâ€Organic Interlayer Surface Modifiers on the Efficiency and Stability of Perovskite Solar Cells. ChemSusChem, 2021, 14, 1524-1533.	6.8	5
40	A Triple Axial Chirality, Racemic Molecular Semiconductor Based on Thiahelicene and Ethylenedioxythiophene for Perovskite Solar Cells: Microscopic Insights on Performance Enhancement. Advanced Functional Materials, 2021, 31, 2009854.	14.9	23
41	Excellent Intrinsic Longâ€Term Thermal Stability of Coâ€Evaporated MAPbI ₃ Solar Cells at 85 °C. Advanced Functional Materials, 2021, 31, 2100557.	14.9	36
42	Synergistic Effect of Fluorinated Passivator and Hole Transport Dopant Enables Stable Perovskite Solar Cells with an Efficiency Near 24%. Journal of the American Chemical Society, 2021, 143, 3231-3237.	13.7	152
43	Controlled Crystallization of CsRbâ€Based Multiâ€Cation Perovskite Using a Blended Sequential Process for Highâ€Performance Solar Cells. Solar Rrl, 2021, 5, 2100050.	5.8	10
44	Advances to Highâ€Performance Blackâ€Phase FAPbl ₃ Perovskite for Efficient and Stable Photovoltaics. Small Structures, 2021, 2, 2000130.	12.0	81
45	Guanidinium Chloride Passivated Perovskites for Efficient Solar Cells: The Role of Passivating Solvent. Journal of Physical Chemistry C, 2021, 125, 2866-2874.	3.1	18
46	Nonpolar Solventâ€Dispersible Alkylated Reduced Graphene Oxide for Hole Transport Material in nâ€iâ€p Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100087.	5.8	7
47	Coordination Strategy Driving the Formation of Compact CuSCN Holeâ€Transporting Layers for Efficient Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000777.	5.8	11
48	Investigation of Defectâ€Tolerant Perovskite Solar Cells with Longâ€Term Stability via Controlling the Selfâ€Doping Effect. Advanced Energy Materials, 2021, 11, 2100555.	19.5	38
49	Doubleâ€layered SnO ₂ /NH ₄ Cl‣nO ₂ for efficient planar perovskite solar cells with improved operational stability. Nano Select, 2021, 2, 1779-1787.	3.7	17
50	Efficient and Stable Carbon-Based Perovskite Solar Cells via Passivation by a Multifunctional Hydrophobic Molecule with Bidentate Anchors. ACS Applied Materials & Interfaces, 2021, 13, 16485-16497.	8.0	30
51	Strain in perovskite solar cells: origins, impacts and regulation. National Science Review, 2021, 8, nwab047.	9.5	127
52	Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. Science, 2021, 371, 1359-1364.	12.6	508
53	A Facile Surface Passivation Enables Thermally Stable and Efficient Planar Perovskite Solar Cells Using a Novel IDTTâ€Based Small Molecule Additive. Advanced Energy Materials, 2021, 11, 2003829.	19.5	72
54	Enhanced Selective Charge Collection with Metal–Insulator–Semiconductor Junction in Electron Transport Layerâ€Free Perovskite Solar Cells. Advanced Electronic Materials, 2021, 7, 2100006.	5.1	5

#	Article	IF	CITATIONS
55	Interface Optimization via Fullerene Blends Enables Open ircuit Voltages of 1.35ÂV in CH ₃ NH ₃ Pb(I _{0.8} Br _{0.2}) ₃ Solar Cells. Advanced Energy Materials, 2021, 11, 2003386.	19.5	57
56	Multifunctional Chemical Bridge and Defect Passivation for Highly Efficient Inverted Perovskite Solar Cells. ACS Energy Letters, 0, , 1596-1606.	17.4	115
57	Engineering of Halide Cation in All-Inorganic Perovskite with Full-Color Luminescence. Coatings, 2021, 11, 330.	2.6	2
58	Mesoscopic TiO ₂ /Nb ₂ O ₅ Electron Transfer Layer for Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2100177.	3.7	20
59	Efficiency Improvement of Bournonite CuPbSbS ₃ Solar Cells via Crystallinity Enhancement. ACS Applied Materials & Interfaces, 2021, 13, 13273-13280.	8.0	13
60	Tailoring the Dimensionality of Hybrid Perovskites in Mesoporous Carbon Electrodes for Typeâ€II Band Alignment and Enhanced Performance of Printable Hole onductorâ€Free Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2100292.	19.5	85
61	Highly Efficient Halide Perovskite Lightâ€Emitting Diodes via Molecular Passivation. Angewandte Chemie, 2021, 133, 8418-8424.	2.0	9
62	Highly Efficient Halide Perovskite Lightâ€Emitting Diodes via Molecular Passivation. Angewandte Chemie - International Edition, 2021, 60, 8337-8343.	13.8	47
63	Suppressing the δ-Phase and Photoinstability through a Hypophosphorous Acid Additive in Carbon-Based Mixed-Cation Perovskite Solar Cells. Journal of Physical Chemistry C, 2021, 125, 6585-6592.	3.1	9
64	A Synergistic Precursor Regulation Strategy for Scalable Fabrication of Perovskite Solar Cells. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000613.	2.4	3
65	Multifunctional Two-Dimensional Conjugated Materials for Dopant-Free Perovskite Solar Cells with Efficiency Exceeding 22%. ACS Energy Letters, 0, , 1521-1532.	17.4	103
66	Suppression of Nonradiative Recombination by Vacuumâ€Assisted Process for Efficient Leadâ€Free Tin Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2100135.	3.7	20
67	Efficient p–n Heterojunction Perovskite Solar Cell without a Redundant Electron Transport Layer and Interface Engineering. Journal of Physical Chemistry Letters, 2021, 12, 2266-2272.	4.6	11
68	Formation of Highâ€Performance Multiâ€Cation Halide Perovskites Photovoltaics by δâ€CsPbl ₃ /δâ€RbPbl ₃ Seedâ€Assisted Heterogeneous Nucleation. Advanced Energy Materials, 2021, 11, 2003785.	19.5	32
69	Strain in Metal Halide Perovskites: The Critical Role of A-Site Cation. ACS Applied Energy Materials, 2021, 4, 2068-2072.	5.1	14
70	High-Efficiency, Low-Hysteresis Planar Perovskite Solar Cells by Inserting the NaBr Interlayer. ACS Applied Materials & Interfaces, 2021, 13, 20251-20259.	8.0	15
71	Stabilization of formamidinium lead triiodide α-phase with isopropylammonium chloride for perovskite solar cells. Nature Energy, 2021, 6, 419-428.	39.5	157
72	Perovskite Quantum Dots as Multifunctional Interlayers in Perovskite Solar Cells with Dopant-Free Organic Hole Transporting Layers. Journal of the American Chemical Society, 2021, 143, 5855-5866.	13.7	59

#	Article	IF	CITATIONS
73	Progresses on Novel B‧ite Perovskite Nanocrystals. Advanced Optical Materials, 2021, 9, 2100261.	7.3	10
74	Characterization on Highly Efficient Perovskite Solar Cells Made from Oneâ€Step and Twoâ€Step Solution Processes. Solar Rrl, 2021, 5, 2100109.	5.8	3
75	Centralâ€Core Engineering of Dopantâ€Free Hole Transport Materials for Efficient nâ€iâ€p Structured Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100184.	5.8	14
76	Structural Stability of Formamidinium- and Cesium-Based Halide Perovskites. ACS Energy Letters, 2021, 6, 1942-1969.	17.4	76
77	A Helicene-Based Molecular Semiconductor Enables 85 °C Stable Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 1764-1772.	17.4	31
78	A facile route toward carbon paste modification, for high-performing bi-functional hole extracting counter electrodes in C-based PSCs. Applied Physics Letters, 2021, 118, .	3.3	3
79	Surface Reconstruction of Halide Perovskites During Post-treatment. Journal of the American Chemical Society, 2021, 143, 6781-6786.	13.7	109
80	Lead-free tin perovskite solar cells. Joule, 2021, 5, 863-886.	24.0	134
81	Vapor-deposited CsPbI3 solar cells demonstrate an efficiency of 16%. Science Bulletin, 2021, 66, 757-760.	9.0	16
82	Ink Engineering for Blade Coating FA-Dominated Perovskites in Ambient Air for Efficient Solar Cells and Modules. ACS Applied Materials & Interfaces, 2021, 13, 18724-18732.	8.0	20
83	Minimizing hydrogen vacancies to enable highly efficient hybrid perovskites. Nature Materials, 2021, 20, 971-976.	27.5	92
84	Polysilicon passivated junctions: The next technology for silicon solar cells?. Joule, 2021, 5, 811-828.	24.0	88
85	Efficient and stable inverted perovskite solar cells incorporating 4-Fluorobenzylammonium iodide. Organic Electronics, 2021, 92, 106124.	2.6	10
86	Recycling Spent Lead-Acid Batteries into Lead Halide for Resource Purification and Multifunctional Perovskite Diodes. Environmental Science & Technology, 2021, 55, 8309-8317.	10.0	23
87	Cobalt Chloride Hexahydrate Assisted in Reducing Energy Loss in Perovskite Solar Cells with Record Open-Circuit Voltage of 1.20 V. ACS Energy Letters, 2021, 6, 2121-2128.	17.4	117
88	Metalâ€Halide Perovskite Crystallization Kinetics: A Review of Experimental and Theoretical Studies. Advanced Energy Materials, 2021, 11, 2100784.	19.5	35
89	Tinâ€Lead Perovskite Fabricated via Ethylenediamine Interlayer Guides to the Solar Cell Efficiency of 21.74%. Advanced Energy Materials, 2021, 11, 2101069.	19.5	110
90	Exploring the Synthesis, Band Edge Insights, and Photoelectrochemical Water Splitting Properties of Lead Vanadates. ACS Applied Materials & Interfaces, 2021, 13, 25906-25917.	8.0	12

# 91	ARTICLE Understanding the Effects of Fluorine Substitution in Lithium Salt on Photovoltaic Properties and Stability of Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 2218-2228.	IF 17.4	CITATIONS
92	Photonic crystals for perovskiteâ€based optoelectronic applications. Nano Select, 2022, 3, 39-50.	3.7	4
93	Perspectives of Open-Air Processing to Enable Perovskite Solar Cell Manufacturing. Frontiers in Energy Research, 2021, 9, .	2.3	10
94	Regulating the Film Growth and Reducing the Defects for Efficient CsPblBr ₂ Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 24654-24661.	8.0	21
95	Architecturing 1Dâ€2Dâ€3D Multidimensional Coupled CsPbI ₂ Br Perovskites toward Highly Effective and Stable Solar Cells. Small, 2021, 17, e2100888.	10.0	17
96	Defect Passivation by a D–A–D Type Hole-Transporting Interfacial Layer for Efficient and Stable Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 2030-2037.	17.4	50
97	Highly efficient and stable carbon-based perovskite solar cells with the polymer hole transport layer. Solar Energy, 2021, 220, 491-497.	6.1	15
98	Efficient Direct Band Gap Photovoltaic Material Predicted <i>Via</i> Doping Double Perovskites Cs ₂ AgBiX ₆ (X = Cl, Br). Journal of Physical Chemistry C, 2021, 125, 10868-10875.	3.1	37
99	Water Stable Haloplumbate Modulation for Efficient and Stable Hybrid Perovskite Photovoltaics. Advanced Energy Materials, 2021, 11, 2101082.	19.5	21
100	The benefits of ionic liquids for the fabrication of efficient and stable perovskite photovoltaics. Chemical Engineering Journal, 2021, 411, 128461.	12.7	70
101	Heteroatom effect on linear-shaped dopant-free hole transporting materials for perovskite solar cells. Solar Energy, 2021, 221, 323-331.	6.1	18
102	Effect of reaction time on the morphology and efficiency of ambient-air-processed CsFAMAPbIBr triple cation-mixed perovskite solar cells. Materials Letters, 2021, 292, 129623.	2.6	4
103	Gravity-Guided Growth of Large-Area High-Quality Two-Dimensional Ruddlesden–Popper Perovskite Thin Films for Stable Ultraviolet Photodetectors. Journal of Physical Chemistry C, 2021, 125, 13909-13916.	3.1	5
104	Additive Engineering by 6-Aminoquinoline Monohydrochloride for High-Performance Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 7083-7090.	5.1	9
105	Design of Low Bandgap CsPb _{1â^`} <i>_x</i> Sn <i>_x</i> l ₂ Br Perovskite Solar Cells with Excellent Phase Stability. Small, 2021, 17, e2101380.	10.0	42
106	A Pyrrole-Bridged Bis(oxa[5]helicene)-Based Molecular Semiconductor for Efficient and Durable Perovskite Solar Cells: Microscopic Insights. , 2021, 3, 947-955.		11
107	Multifunctional Crosslinkingâ€Enabled Strainâ€Regulating Crystallization for Stable, Efficient αâ€FAPbI ₃ â€Based Perovskite Solar Cells. Advanced Materials, 2021, 33, e2008487.	21.0	106
108	Analysis of short time dynamics of time resolved photoluminescence applied on perovskite absorbers. , 2021, , .		0

#	Article	IF	CITATIONS
109	Facilitating the formation of SnO2 film via hydroxyl groups for efficient perovskite solar cells. Applied Surface Science, 2021, 552, 149459.	6.1	22
110	Tailored Key Parameters of Perovskite for High-Performance Photovoltaics. Accounts of Materials Research, 2021, 2, 447-457.	11.7	5
111	Efficient Thermally Evaporated γ sPbI ₃ Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2100299.	19.5	35
112	Recent Progress on Formamidiniumâ€Dominated Perovskite Photovoltaics. Advanced Energy Materials, 2022, 12, 2100690.	19.5	45
113	Highly Efficient and Thickness Insensitive Inverted Triple-Cation Perovskite Solar Cells Fabricated by Gas Pumping Method. Journal of Physical Chemistry Letters, 2021, 12, 5580-5586.	4.6	6
114	Recent progress in stabilizing perovskite solar cells through two-dimensional modification. APL Materials, 2021, 9, .	5.1	12
115	Single-crystal halide perovskites: Opportunities and challenges. Matter, 2021, 4, 2266-2308.	10.0	35
116	Unraveling Allâ€Inorganic CsPbI ₃ and CsPbI ₂ Br Perovskite Thin Films Formation – Black Phase Stabilization by Cs ₂ PbCl ₂ I ₂ Addition and Flashâ€Annealing. European Journal of Inorganic Chemistry, 2021, 2021, 3059-3073.	2.0	9
117	Up-Scalable Fabrication of SnO2 with Multifunctional Interface for High Performance Perovskite Solar Modules. Nano-Micro Letters, 2021, 13, 155.	27.0	40
118	Perovskite crystals redissolution strategy for affordable, reproducible, efficient and stable perovskite photovoltaics. Materials Today, 2021, 50, 199-223.	14.2	43
119	Light emission from halide perovskite semiconductors: bulk crystals, thin films, and nanocrystals. Journal Physics D: Applied Physics, 2021, 54, 383001.	2.8	17
120	Perovskitoidâ€Templated Formation of a 1D@3D Perovskite Structure toward Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101018.	19.5	85
121	Carrier management makes perovskite solar cells approaching Shockley-Queisser limit. Science Bulletin, 2021, 66, 1372-1374.	9.0	12
122	π-π conjugate structure enabling the channel construction of carrier-facilitated transport in 1D–3D multidimensional CsPbl2Br solar cells with high stability. Nano Energy, 2021, 89, 106340.	16.0	20
123	Understanding the Influence of Cation and Anion Migration on Mixed omposition Perovskite Solar Cells via Transient Ion Drift. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100225.	2.4	8
124	Efficient MAPbI ₃ solar cells made via drop-coating at room temperature. Journal of Semiconductors, 2021, 42, 072201.	3.7	17
125	Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility. Science, 2021, 373, 561-567.	12.6	227
126	The Optical Origin of Nearâ€Unity External Quantum Efficiencies in Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100371.	5.8	14

#	Article	IF	CITATIONS
127	Interfacial Molecular Doping and Energy Level Alignment Regulation for Perovskite Solar Cells with Efficiency Exceeding 23%. ACS Energy Letters, 2021, 6, 2690-2696.	17.4	96
128	Significant enhancement of output performance of piezoelectric nanogenerators based on CsPbBr3 quantum dots-NOA63 nanocomposites. Nano Energy, 2021, 85, 105975.	16.0	12
129	Interfaces and Interfacial Carrier Dynamics in Perovskites. Journal of Physical Chemistry C, 2021, 125, 15113-15124.	3.1	8
130	The Main Progress of Perovskite Solar Cells in 2020–2021. Nano-Micro Letters, 2021, 13, 152.	27.0	250
131	Enhancing Thermoelectric Power Factor of 2D Organometal Halide Perovskites by Suppressing 2D/3D Phase Separation. Advanced Materials, 2021, 33, e2102797.	21.0	19
132	Defect Passivation of Perovskite Films for Highly Efficient and Stable Solar Cells. Solar Rrl, 2021, 5, 2100295.	5.8	58
133	Simultaneous passivation of bulk and interface defects through synergistic effect of anion and cation toward efficient and stable planar perovskite solar cells. Journal of Energy Chemistry, 2021, 63, 452-460.	12.9	105
134	Enhanced perovskite electronic properties via A-site cation engineering. Fundamental Research, 2021, 1, 385-392.	3.3	34
135	Beyond the Limit of Goldschmidt Tolerance Factor: Crystal Surface Engineering to Boost the αâ€Phase Stability of Formamidiniumâ€Only Hybrid Inorganic–Organic Perovskites. Solar Rrl, 2021, 5, 2100188.	5.8	8
136	Circularly Polarized Emission from Organic–Inorganic Hybrid Perovskites <i>via</i> Chiral Fano Resonances. ACS Nano, 2021, 15, 13781-13793.	14.6	28
137	Understanding of the Photoluminescence Mechanism Based on Zero-Dimensional Cs ₄ PbBr _{6–<i>m</i>} X _{<i>m</i>} (X = Cl, I) Single Crystals. Journal of Physical Chemistry C, 2021, 125, 15223-15232.	3.1	9
138	Manipulated Crystallization and Passivated Defects for Efficient Perovskite Solar Cells via Addition of Ammonium Iodide. ACS Applied Materials & amp; Interfaces, 2021, 13, 34053-34063.	8.0	18
139	Highâ€Performance Stable Perovskite Solar Cell via Defect Passivation With Constructing Tunable Graphitic Carbon Nitride. Solar Rrl, 2021, 5, 2100257.	5.8	9
140	Stability of Perovskite Solar Cells: Degradation Mechanisms and Remedies. Frontiers in Electronics, 2021, 2, .	3.2	75
141	Rationally Designed Window Layers for High Efficiency Perovskite/Si Tandem Solar Cells. Advanced Optical Materials, 2021, 9, 2100788.	7.3	7
142	Optoelectronic Properties of Lowâ€Bandgap Halide Perovskites for Solar Cell Applications. Advanced Materials, 2021, 33, e2102300.	21.0	36
143	Synthetic and Post-Synthetic Strategies to Improve Photoluminescence Quantum Yields in Perovskite Quantum Dots. Catalysts, 2021, 11, 957.	3.5	1
144	Simultaneously Enhancing Efficiency and Stability of Perovskite Solar Cells Through Crystal Crossâ€Linking Using Fluorophenylboronic Acid. Small, 2021, 17, e2102090.	10.0	15

#	Article	IF	CITATIONS
145	Fast Light-Cured TiO ₂ Layers for Low-Cost Carbon-Based Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 7800-7810.	5.1	9
146	Perovskite Passivation with a Bifunctional Molecule 1,2â€Benzisothiazolinâ€3â€One for Efficient and Stable Planar Solar Cells. Solar Rrl, 2021, 5, 2100472.	5.8	5
147	Synergistic passivation of MAPbI3 perovskite solar cells by compositional engineering using acetamidinium bromide additives. Journal of Energy Chemistry, 2021, 59, 755-762.	12.9	21
148	Amorphous TiO ₂ Coatings Stabilize Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 3332-3341.	17.4	38
149	Two‣tep Deposition Approach for Lead Free (NH ₄) ₃ Sb ₂ I ₉ Perovskite Solar Cells with Enhanced Open Circuit Voltage and Performance. ChemElectroChem, 2021, 8, 3150-3154.	3.4	31
150	Ion migration in halide perovskite solar cells: Mechanism, characterization, impact and suppression. Journal of Energy Chemistry, 2021, 63, 528-549.	12.9	76
151	Tuning Laser Threshold within the Large Optical Gain Bandwidth of Halide Perovskite Thin Films. ACS Photonics, 2021, 8, 2548-2554.	6.6	12
152	Minimizing Open-Circuit voltage deficit via interface engineering for highly efficient CsPbI2Br perovskite solar cells. Chemical Engineering Journal, 2021, 417, 129247.	12.7	16
153	Ultrafast femtosecond pressure modulation of structure and exciton kinetics in 2D halide perovskites for enhanced light response and stability. Nature Communications, 2021, 12, 4879.	12.8	26
154	Ionic liquids in perovskite solar cells. Journal of Semiconductors, 2021, 42, 080201.	3.7	7
155	Low-Temperature Fabrication of Phase-Pure α-FAPbI3 Films by Cation Exchange from Two-Dimensional Perovskites for Solar Cell Applications. Energy & Fuels, 0, , .	5.1	11
156	Complementary bulk and surface passivations for highly efficient perovskite solar cells by gas quenching. Cell Reports Physical Science, 2021, 2, 100511.	5.6	21
157	Material, Phase, and Interface Stability of Photovoltaic Perovskite: A Perspective. Journal of Physical Chemistry C, 2021, 125, 19088-19096.	3.1	7
158	Antisolvent Engineering to Optimize Grain Crystallinity and Holeâ€Blocking Capability of Perovskite Films for Highâ€Performance Photovoltaics. Advanced Materials, 2021, 33, e2102816.	21.0	61
159	Printable and Homogeneous NiO <i>_x</i> Hole Transport Layers Prepared by a Polymerâ€Network Gel Method for Largeâ€Area and Flexible Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2106495.	14.9	51
160	Phase stabilization for high-performance perovskite light-emitting diodes. , 2021, , .		0
161	Chlorides, other Halides, and Pseudoâ€Halides as Additives for the Fabrication of Efficient and Stable Perovskite Solar Cells. ChemSusChem, 2021, 14, 3665-3692.	6.8	14
162	Highly efficient wide-band-gap perovskite solar cells fabricated by sequential deposition method. Nano Energy, 2021, 86, 106114.	16.0	34

#	Article	IF	CITATIONS
163	Optimizing Vertical Crystallization for Efficient Perovskite Solar Cells by Buried Composite Layers. Solar Rrl, 2021, 5, 2100457.	5.8	14
164	Revealing phase evolution mechanism for stabilizing formamidinium-based lead halide perovskites by a key intermediate phase. CheM, 2021, 7, 2513-2526.	11.7	49
165	Heterostructural perovskite solar cell constructed with Li-doped p-MAPbI3/n-TiO2 PN junction. Solar Energy, 2021, 226, 446-454.	6.1	7
166	Efficient perovskite solar mini-modules fabricated via bar-coating using 2-methoxyethanol-based formamidinium lead tri-iodide precursor solution. Joule, 2021, 5, 2420-2436.	24.0	85
167	Enhanced charge transport in low temperature carbon-based n-i-p perovskite solar cells with NiOx-CNT hole transport material. Solar Energy Materials and Solar Cells, 2021, 230, 111241.	6.2	19
168	Ternary Hybrid Perovskite Solid Solution Single Crystals: Growth, Composition Determination and Phase Stability in Highly Moist Atmosphere. Chemistry - A European Journal, 2021, 27, 13765-13773.	3.3	2
169	Integrated Quasiâ€2D Perovskite/Organic Solar Cells with Efficiency over 19% Promoted by Interface Passivation. Advanced Functional Materials, 2021, 31, 2107129.	14.9	20
170	Mechanism of bifunctional p-amino benzenesulfonic acid modified interface in perovskite solar cells. Chemical Engineering Journal, 2021, 420, 129579.	12.7	44
171	Removal of residual compositions by powder engineering for high efficiency formamidinium-based perovskite solar cells with operation lifetime over 2000Ah. Nano Energy, 2021, 87, 106152.	16.0	41
172	Boosting interfacial charge transfer by constructing rare earth–doped WOx nanorods/SnO2 hybrid electron transport layer for efficient perovskite solar cells. Materials Today Energy, 2021, 21, 100724.	4.7	8
173	Efficient and Stable 2D@3D/2D Perovskite Solar Cells Based on Dual Optimization of Grain Boundary and Interface. ACS Energy Letters, 2021, 6, 3614-3623.	17.4	113
174	Additive effects of methyl ammonium bromide or formamidinium bromide in methylammonium lead iodide perovskite solar cells using decaphenylcyclopentasilane. Journal of Materials Science: Materials in Electronics, 2021, 32, 26449-26464.	2.2	24
175	Dopantâ€Free Hole Transport Materials Based on a Large Conjugated Electronâ€Deficient Core for Efficient Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2105458.	14.9	33
176	Modulating Oxygen Vacancies in BaSnO ₃ for Printable Carbon-Based Mesoscopic Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 11032-11040.	5.1	17
177	Air fabrication of SnO2 based planar perovskite solar cells with an efficiency approaching 20%: Synergistic passivation of multi-defects by choline chloride. Ceramics International, 2022, 48, 212-223.	4.8	6
178	Highly efficient and stable perovskite solar cells enabled by a fluoro-functionalized TiO2 inorganic interlayer. Matter, 2021, 4, 3301-3312.	10.0	21
179	Improvement of interfacial contact for efficient PCBM/MAPbI3 planar heterojunction solar cells with a binary antisolvent mixture treatment. Nanotechnology, 2021, 32, 485401.	2.6	5
180	Unraveling the influence of CsCl/MACl on the formation of nanotwins, stacking faults and cubic supercell structure in FA-based perovskite solar cells. Nano Energy, 2021, 87, 106226.	16.0	27

#	Article	IF	CITATIONS
181	Efficient and Stable CsPbl ₃ Inorganic Perovskite Photovoltaics Enabled by Crystal Secondary Growth. Advanced Materials, 2021, 33, e2103688.	21.0	104
182	All-in-One Lewis Base for Enhanced Precursor and Device Stability in Highly Efficient Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 3425-3434.	17.4	41
183	Multiple-Function Surface Engineering of SnO ₂ Nanoparticles to Achieve Efficient Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 9142-9148.	4.6	19
184	Recent advances of organometallic complexes in emerging photovoltaics. Journal of Polymer Science, 2022, 60, 865-916.	3.8	23
185	Simultaneous Improvement of the Power Conversion Efficiency and Stability of Perovskite Solar Cells by Doping PMMA Polymer in Spiroâ€OMeTADâ€Based Holeâ€Transporting Layer. Solar Rrl, 2021, 5, 2100408.	5.8	14
186	Boosting Long-Term Stability of Pure Formamidinium Perovskite Solar Cells by Ambient Air Additive Assisted Fabrication. ACS Energy Letters, 2021, 6, 3511-3521.	17.4	56
187	Functionalized SnO2 films by using EDTA-2ÂM for high efficiency perovskite solar cells with efficiency over 23%. Chemical Engineering Journal, 2022, 430, 132683.	12.7	38
188	Favorable grain growth of thermally stable formamidinium-methylammonium perovskite solar cells by hydrazine chloride. Chemical Engineering Journal, 2022, 430, 132730.	12.7	21
189	Polymerized Hybrid Perovskites with Enhanced Stability, Flexibility, and Lattice Rigidity. Advanced Materials, 2021, 33, e2104842.	21.0	45
190	Strain engineering in metal halide perovskite materials and devices: Influence on stability and optoelectronic properties. Chemical Physics Reviews, 2021, 2, .	5.7	23
191	Strain analysis and engineering in halide perovskite photovoltaics. Nature Materials, 2021, 20, 1337-1346.	27.5	220
192	Lattice relaxation effect in CsxMA(1-x)PbBr3 single crystal to enhance optoelectronic performance of perovskite photodetectors. Ceramics International, 2022, 48, 436-445.	4.8	5
193	Regulating the Surface Passivation and Residual Strain in Pure Tin Perovskite Films. ACS Energy Letters, 2021, 6, 3555-3562.	17.4	45
194	Hydrolysis-Regulated Chemical Bath Deposition of Tin-Oxide-Based Electron Transport Layers for Efficient Perovskite Solar Cells with a Reduced Potential Loss. Chemistry of Materials, 2021, 33, 8194-8204.	6.7	22
195	Nearâ€Infrared Photoactive Semiconductor Quantum Dots for Solar Cells. Advanced Energy Materials, 2021, 11, 2101923.	19.5	20
196	Anion regulation engineering for efficient Ruddlesden-Popper inverted perovskite solar cells. Solar Energy Materials and Solar Cells, 2021, 232, 111345.	6.2	5
197	Use of local density approximation within range separated hybrid exchange–correlation functional to investigate Pb doped SnO <mml:math altimg="si94.svg" display="inline" id="d1e1360" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtp: 1998="" altimg="si94.svg" display="inline" id="d1e1360" math="" mathml"="" www.w3.org=""><mml:mtp: 1998="" altimg="si94.svg" display="inline" id="d1e1360" math="" mathml"="" www.w3.org=""><mml:msub><mml:mrow 1998="" altimg="si94.svg" display="inline" id="d1e1360" math="" mathml"="" www.w3.org=""><mml:msub><mml:mrow 1998="" altimg="si94.svg" display="inline" id="d1e1360" math="" mathml"="" www.w3.org=""><mml:msub><mml:mrow 1998="" altimg="si94.svg" display="inline" id="d1e1360" math="" mathml"="" www.w3.org=""><mml:msub><mml:msub><mml:mrow 1998="" altimg="si94.svg" display="inline" id="d1e1360" math="" mathml"="" www.w3.org=""><mml:msub><mml:msub></mml:msub></mml:msub></mml:mrow></mml:msub></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub>>><td>2.7</td><td>2</td></mml:mtp:></mml:mtp:></mml:math>	2.7	2
198	Matter, 2021, 619, 413236. Stability of mixed-halide wide bandgap perovskite solar cells: Strategies and progress. Journal of Energy Chemistry, 2021, 61, 395-415.	12.9	34

#	Article	IF	CITATIONS
199	Cation-size mismatch and interface stabilization for efficient NiOx-based inverted perovskite solar cells with 21.9% efficiency. Nano Energy, 2021, 88, 106285.	16.0	66
200	Embossed transparent electrodes assembled by bubble templates for efficient flexible perovskite solar cells. Nano Energy, 2021, 89, 106384.	16.0	28
201	Optical properties of thin film Sb2Se3 and identification of its electronic losses in photovoltaic devices. Solar Energy, 2021, 228, 38-44.	6.1	11
202	Self-powered strain sensor based on the piezo-transmittance of a mechanical metamaterial. Nano Energy, 2021, 89, 106447.	16.0	30
203	High-performance perovskite solar cells using the graphene quantum dot–modified SnO2/ZnO photoelectrode. Materials Today Energy, 2021, 22, 100853.	4.7	37
204	Methylammonium- and bromide-free perovskites enable efficient and stable photovoltaics. Journal of Energy Chemistry, 2021, 63, 12-24.	12.9	1
205	Reducing carrier transport barrier in anode interface enables efficient and stable inverted mesoscopic methylammonium-free perovskite solar cells. Chemical Engineering Journal, 2021, 425, 131499.	12.7	17
206	Anti-solvent engineering via potassium bromide additive for highly efficient and stable perovskite solar cells. Organic Electronics, 2021, 99, 106310.	2.6	38
207	Facile lattice tensile strain compensation in mixed-cation halide perovskite solar cells. Journal of Energy Chemistry, 2022, 66, 422-428.	12.9	29
208	Post-treatment by an ionic tetrabutylammonium hexafluorophosphate for improved efficiency and stability of perovskite solar cells. Journal of Energy Chemistry, 2022, 64, 8-15.	12.9	19
209	Performance of photovoltaic-driven electrochemical cell systems for CO2 reduction. Chemical Engineering Journal, 2022, 428, 130259.	12.7	17
210	MoO3 doped PTAA for high-performance inverted perovskite solar cells. Applied Surface Science, 2022, 571, 151301.	6.1	19
211	Electrodeposited ternary AgCuO2 nanocrystalline films as hole transport layers for inverted perovskite solar cells. Journal of Alloys and Compounds, 2022, 890, 161879.	5.5	13
212	Improved mixed-dimensional 3D/2D perovskite layer with formamidinium bromide salt for highly efficient and stable perovskite solar cells. Chemical Engineering Journal, 2022, 428, 131185.	12.7	63
213	Enlarging grain sizes for efficient perovskite solar cells by methylamine chloride assisted recrystallization. Journal of Energy Chemistry, 2022, 65, 55-61.	12.9	15
214	Functional molecule modified SnO2 nanocrystal films toward efficient and moisture-stable perovskite solar cells. Journal of Alloys and Compounds, 2022, 890, 161912.	5.5	5
215	Preparation of Micron-sized Methylamine-PbCl3 perovskite grains by controlling phase transition engineering for selective Ultraviolet-harvesting transparent photovoltaics. Journal of Colloid and Interface Science, 2022, 607, 1083-1090.	9.4	3
216	Solution-processed NiO _x nanoparticles with a wide pH window as an efficient hole transport material for high performance tin-based perovskite solar cells. Journal Physics D: Applied Physics, 2021, 54, 144002.	2.8	8

#	Article	IF	CITATIONS
217	Formamide iodide: a new cation additive for inhibiting l´-phase formation of formamidinium lead iodide perovskite. Materials Advances, 2021, 2, 2272-2277.	5.4	2
218	Lead‣ess Halide Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000616.	5.8	25
219	22.8%-Efficient single-crystal mixed-cation inverted perovskite solar cells with a near-optimal bandgap. Energy and Environmental Science, 2021, 14, 2263-2268.	30.8	149
220	Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review. Journal of Materials Chemistry A, 2021, 9, 4589-4625.	10.3	149
221	Highly Efficient and Tunable Emission of Leadâ€Free Manganese Halides toward White Lightâ€Emitting Diode and Xâ€Ray Scintillation Applications. Advanced Functional Materials, 2021, 31, 2009973.	14.9	160
222	Bandgap tuning strategy by cations and halide ions of lead halide perovskites learned from machine learning. RSC Advances, 2021, 11, 15688-15694.	3.6	36
223	Merged interface construction toward ultra-low <i>V</i> _{oc} loss in inverted two-dimensional Dion–Jacobson perovskite solar cells with efficiency over 18%. Journal of Materials Chemistry A, 2021, 9, 12566-12573.	10.3	32
224	Fundamentals of tin iodide perovskites: a promising route to highly efficient, lead-free solar cells. Journal of Materials Chemistry A, 2021, 9, 11812-11826.	10.3	32
225	Multifunctional organic ammonium salt-modified SnO ₂ nanoparticles toward efficient and stable planar perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 3940-3951.	10.3	146
226	The crucial roles of the configurations and electronic properties of organic hole-transporting molecules to the photovoltaic performance of perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 18148-18163.	10.3	24
227	Engineering inorganic lead halide perovskite deposition toward solar cells with efficiency approaching 20%. Aggregate, 2021, 2, 66-83.	9.9	24
228	Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics. Energy and Environmental Science, 2021, 14, 5552-5562.	30.8	69
229	Precursor Engineering of the Electron Transport Layer for Application in Highâ€Performance Perovskite Solar Cells. Advanced Science, 2021, 8, e2102845.	11.2	62
230	Giant Enhancement of Radiative Recombination in Perovskite Light-Emitting Diodes with Plasmonic Core-Shell Nanoparticles. Nanomaterials, 2021, 11, 45.	4.1	12
231	Flexible transparent electrodes based on metallic micro–nano architectures for perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 2349-2363.	5.5	4
232	Depth-dependent defect manipulation in perovskites for high-performance solar cells. Energy and Environmental Science, 2021, 14, 6526-6535.	30.8	114
233	Designs from single junctions, heterojunctions to multijunctions for high-performance perovskite solar cells. Chemical Society Reviews, 2021, 50, 13090-13128.	38.1	91
234	Achieving Efficient and Stable Perovskite Solar Cells in Ambient Air Through Nonâ€Halide Engineering. Advanced Energy Materials, 2021, 11, 2102169.	19.5	35

#	Article	IF	CITATIONS
235	Multifunctional Polymer Framework Modified SnO ₂ Enabling a Photostable α-FAPbI ₃ Perovskite Solar Cell with Efficiency Exceeding 23%. ACS Energy Letters, 2021, 6, 3824-3830.	17.4	93
236	Layered Dion–Jacobson-Type Chalcogenide Perovskite CsLaM ₂ X ₇ (M = Ta/Nb; X) Tj E ACS Applied Materials & Interfaces, 2021, 13, 48971-48980.	TQq1 1 0 8.0	.784314 rg 3
237	Improvement of Thiourea (Lewis Base)-Modified SnO ₂ Electron-Transport Layer for Carbon-Based CsPbIBr ₂ Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 10958-10967.	5.1	8
238	Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature, 2021, 598, 444-450.	27.8	2,065
239	A Peryleneâ€Based Conjugated Polymer Endows Perovskite Solar Cells with 85°C Durability: The Control of Gas Permeation. Advanced Functional Materials, 2022, 32, 2108855.	14.9	19
240	Simulating the Performance of a Formamidinium Based Mixed Cation Lead Halide Perovskite Solar Cell. Materials, 2021, 14, 6341.	2.9	19
241	Ambient-environment processed perovskite solar cells: A review. Materials Today Physics, 2021, 21, 100557.	6.0	12
242	Semitransparent Perovskite Solar Cells for Building Integration and Tandem Photovoltaics: Design Strategies and Challenges. Solar Rrl, 2021, 5, 2100702.	5.8	31
243	Highâ€Quality αâ€FAPbI ₃ Film Assisted by Lead Acetate for Efficient Solar Cells. Solar Rrl, 2021, 5, 2100747.	5.8	10
244	Humidityâ€Induced Defectâ€Healing of Formamidiniumâ€Based Perovskite Films. Small, 2021, 17, e2104165.	10.0	10
245	Hydrophobic Fluorinated Conjugated Polymer as a Multifunctional Interlayer for High-Performance Perovskite Solar Cells. ACS Photonics, 2021, 8, 3185-3192.	6.6	17
246	Lowâ€Bandgap Organic Bulkâ€Heterojunction Enabled Efficient and Flexible Perovskite Solar Cells. Advanced Materials, 2021, 33, e2105539.	21.0	89
247	Comprehensive device simulation of 23.36% efficient two-terminal perovskite-PbS CQD tandem solar cell for low-cost applications. Scientific Reports, 2021, 11, 19829.	3.3	40
248	Interface Engineering of Mesoscopic Perovskite Solar Cells by Atomic Layer Deposition of Ta ₂ O ₅ . ACS Applied Energy Materials, 2021, 4, 10433-10441.	5.1	9
249	Over 21% Efficiency Stable 2D Perovskite Solar Cells. Advanced Materials, 2022, 34, e2107211.	21.0	160
250	Advancing 2D Perovskites for Efficient and Stable Solar Cells: Challenges and Opportunities. Advanced Materials, 2022, 34, e2105849.	21.0	104
251	Combined Precursor Engineering and Grain Anchoring Leading to MAâ€Free, Phaseâ€Pure, and Stable αâ€Formamidinium Lead Iodide Perovskites for Efficient Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 27299-27306.	13.8	46
252	Investigation on Film Quality and Photophysical Properties of Narrow Bandgap Molecular Semiconductor Thin Film and Its Solar Cell Application. Coatings, 2021, 11, 1300.	2.6	0

#	Article	IF	CITATIONS
253	Propylammonium Chloride Additive for Efficient and Stable FAPbI ₃ Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2102538.	19.5	84
254	Dual-functional passivators for highly efficient and hydrophobic FA-based perovskite solar cells. Chemical Engineering Journal, 2022, 433, 133227.	12.7	11
255	Numerical simulations of 22% efficient all-perovskite tandem solar cell utilizing lead-free and low lead content halide perovskites. Journal of Micromechanics and Microengineering, 2022, 32, 014004.	2.6	14
256	Mapping Transport Properties of Halide Perovskites via Short-Time-Dynamics Scaling Laws and Subnanosecond-Time-Resolution Imaging. Physical Review Applied, 2021, 16, .	3.8	4
257	Efficient and stable mesoscopic perovskite solar cell in high humidity by localized Dion-Jacobson 2Dâ€3D heterostructures. Nano Energy, 2022, 91, 106666.	16.0	42
258	Combined precursor engineering and grain anchoring leading to MAâ€free, phaseâ€pure and stable αâ€formamidinium lead iodide perovskites for efficient solar cells. Angewandte Chemie, 0, , .	2.0	11
259	Progress in Perovskite Solar Cells towards Commercialization—A Review. Materials, 2021, 14, 6569.	2.9	10
260	Review—Research Needs for Photovoltaics in the 21st Century. ECS Journal of Solid State Science and Technology, 2020, 9, 125010.	1.8	14
261	In-Situ polymerization of PEDOT in perovskite Thin films for efficient and stable photovoltaics. Chemical Engineering Journal, 2022, 430, 133109.	12.7	7
262	Deciphering the effect of replacing thiophene with selenophene in diketopyrrolopyrrole (DPP)-based low cost hole transport materials on the performance of perovskite solar cells. Sustainable Energy and Fuels, 2021, 5, 5994-6003.	4.9	6
264	Confronting the Air Instability of Cesium Tin Halide Perovskites by Metal Ion Incorporation. Journal of Physical Chemistry Letters, 2021, 12, 10996-11004.	4.6	8
265	Tailoring Interlayer Spacers for Efficient and Stable Formamidiniumâ€Based Lowâ€Dimensional Perovskite Solar Cells. Advanced Materials, 2022, 34, e2106380.	21.0	42
266	Charge transport affected by energy level alignment in perovskite solar cells. Journal of Renewable and Sustainable Energy, 2021, 13, 063501.	2.0	2
267	Bifunctional spiro-fluorene/heterocycle cored hole-transporting materials: Role of the heteroatom on the photovoltaic performance of perovskite solar cells. Chemical Engineering Journal, 2022, 431, 133371.	12.7	11
268	Polymer Hole Transport Materials for Perovskite Solar Cells via Buchwald–Hartwig Amination. ACS Applied Polymer Materials, 2021, 3, 5578-5587.	4.4	14
269	Ni2+ doping induced structural phase transition and photoluminescence enhancement of CsPbBr3. AIP Advances, 2021, 11, .	1.3	3
270	Growth of 1D Nanorod Perovskite for Surface Passivation in FAPbI ₃ Perovskite Solar Cells. Small, 2022, 18, e2104100.	10.0	23
271	Investigations aimed at producing 33% efficient perovskite–silicon tandem solar cells through device simulations. RSC Advances, 2021, 11, 37366-37374.	3.6	34

#	Article	IF	CITATIONS
272	Large synergy effects of doping, a site substitution, and surface passivation in wide bandgap Pb-free ASnI2Br perovskite solar cells on efficiency and stability enhancement. Journal of Power Sources, 2022, 520, 230848.	7.8	13
273	Advanced Development of Sustainable PECVD Semitransparent Photovoltaics: A Review. Frontiers in Materials, 2021, 8, .	2.4	9
274	Retainable Bandgap Narrowing and Enhanced Photoluminescence in Mnâ€Doped and Undoped Cs ₂ NaBiCl ₆ Double Perovskites by Pressure Engineering. Advanced Optical Materials, 2022, 10, 2101892.	7.3	13
275	Updated Progresses in Perovskite Solar Cells. Chinese Physics Letters, 2021, 38, 107801.	3.3	11
277	Improved Performance and Stability of Perovskite Solar Modules by Regulating Interfacial Ion Diffusion with Nonionic Cross‣inked 1D Leadâ€Iodide. Advanced Energy Materials, 2022, 12, .	19.5	24
278	Nanoscale chemical heterogeneity dominates the optoelectronic response of alloyed perovskite solar cells. Nature Nanotechnology, 2022, 17, 190-196.	31.5	75
279	Minimizing the Voltage Loss in Holeâ€Conductorâ€Free Printable Mesoscopic Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	41
280	Lowâ€Cost Dopantâ€Free Carbazole Enamine Holeâ€Transporting Materials for Thermally Stable Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	7
281	Methodologies for >30% Efficient Perovskite Solar Cells via Enhancement of Voltage and Fill Factor. Solar Rrl, 2022, 6, 2100767.	5.8	21
282	Simultaneous Synthesis, Modification, and DFT Calculation of Threeâ€Color Lead Halide Perovskite Phosphors for Improving Stability and Luminous Efficiency of WLEDs. Advanced Optical Materials, 2022, 10, 2101765.	7.3	11
283	A-Site Mixing to Adjust the Photovoltaic Performance of a Double-Cation Perovskite: It Is Not Always the Simple Way. Journal of Physical Chemistry Letters, 2021, 12, 11206-11213.	4.6	2
284	Toward Stable and Efficient Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, 2109495.	14.9	77
285	Lead-Sealed Stretchable Underwater Perovskite-Based Optoelectronics <i>via</i> Self-Recovering Polymeric Nanomaterials. ACS Nano, 2021, 15, 20127-20135.	14.6	8
286	A review on advances in doping with alkali metals in halide perovskite materials. SN Applied Sciences, 2021, 3, 1.	2.9	12
287	Low Temperature Producing Copperâ€Doped Gallium Oxide as Hole Transport Layers of Perovskite Solar Cells Enhanced by Impurity Levels. Solar Rrl, 0, , 2100861.	5.8	4
288	Mechanochemistry Advances Highâ€Performance Perovskite Solar Cells. Advanced Materials, 2022, 34, e2107420.	21.0	51
289	Triphenylamineâ€Based Conjugated Polyelectrolyte as a Hole Transport Layer for Efficient and Scalable Perovskite Solar Cells. Small, 2022, 18, e2104933.	10.0	6
290	Radiation-processed perovskite solar cells with fullerene-enhanced performance and stability. Cell Reports Physical Science, 2021, 2, 100646.	5.6	10

		CITATION RE	PORT	
#	ARTICLE		IF	CITATIONS
291	Stabilization Techniques of Lead Halide Perovskite for Photovoltaic Applications. Solar Rrl, 2	022, 6, .	5.8	8
292	Hole transporting materials in inorganic CsPbI3â^'Br solar cells: Fundamentals, criteria and opportunities. Materials Today, 2022, 52, 250-268.		14.2	20
293	Chemical insights into perovskite ink stability. CheM, 2022, 8, 31-45.		11.7	19
294	CsI Enhanced Buried Interface for Efficient and UVâ€Robust Perovskite Solar Cells. Advance Materials, 2022, 12, 2103151.	d Energy	19.5	91
295	The evolution and future of metal halide perovskite-based optoelectronic devices. Matter, 2 3814-3834.	021, 4,	10.0	35
296	Mechanism of the Dimethylammonium Cation in Hybrid Perovskites for Enhanced Performa Stability of Printable Perovskite Solar Cells. Solar Rrl, 2022, 6, 2100923.	nce and	5.8	6
297	Organic-inorganic hybrid hole transport layers with SnS doping boost the performance of persolar cells. Journal of Energy Chemistry, 2022, 68, 637-645.	erovskite	12.9	9
298	Universal Dynamic Liquid Interface for Healing Perovskite Solar Cells. SSRN Electronic Journ	al, O, , .	0.4	0
299	Thermodynamic stability screening of IR-photonic processed multication halide perovskite t Journal of Materials Chemistry A, 2021, 9, 26885-26895.	hin films.	10.3	4
300	Identifying high-performance and durable methylammonium-free lead halide perovskites <i>high-throughput synthesis and characterization. Energy and Environmental Science, 2021, 26638-6654.</i>		30.8	20
301	A self-assembled hierarchical structure to keep the 3D crystal dimensionality in <i>n</i> -butylammonium cation-capped Pb–Sn perovskites. Journal of Materials Chemis 27541-27550.	stry A, 2021, 9,	10.3	5
302	Crystallization kinetics modulation and defect suppression of all-inorganic CsPbX _{3<td>ub></td><td>30.8</td><td>53</td>}	ub>	30.8	53
303	Multistrategy Toward Highly Efficient and Stable CsPbI ₂ Br Perovskite Solar Ce on Dopantâ€Free Poly(3â€Hexylthiophene). Solar Rrl, 2022, 6, .	ls Based	5.8	16
304	Strain relaxation and domain enlargement <i>via</i> phase transition towards efficient CsPbI ₂ Br solar cells. Journal of Materials Chemistry A, 2022, 10, 3513-3521.		10.3	11
305	Control of Hot Carrier Relaxation in CsPbBr ₃ Nanocrystals Using Damping Liga Angewandte Chemie - International Edition, 2022, 61, .	nds.	13.8	9
306	Atomistic origin of lattice softness and its impact on structural and carrier dynamics in three dimensional perovskites. Energy and Environmental Science, 2022, 15, 660-671.	2	30.8	24
307	Control of Hot Carrier Relaxation in CsPbBr ₃ Nanocrystals Using Damping Liga Angewandte Chemie, 2022, 134, .	nds.	2.0	3
308	A counter electrode modified with renewable carbonized biomass for an all-inorganic CsPbB perovskite solar cell. Journal of Alloys and Compounds, 2022, 902, 163725.	r3	5.5	11

#	Article	IF	CITATIONS
309	Growth of 2D passivation layer in FAPbI3 perovskite solar cells for high open-circuit voltage. Nano Today, 2022, 42, 101357.	11.9	24
310	Neutron irradiated perovskite films and solar cells on PET substrates. Nano Energy, 2022, 93, 106879.	16.0	15
311	Annealing free tin oxide electron transport layers for flexible perovskite solar cells. Nano Energy, 2022, 94, 106919.	16.0	29
312	Colloidal Quantum Dot Solar Cells: Progressive Deposition Techniques and Future Prospects on Largeâ€Area Fabrication. Advanced Materials, 2022, 34, e2107888.	21.0	39
313	Scalable Flexible Perovskite Solar Cells Based on a Crystalline and Printable Template with Intelligent Temperature Sensitivity. Solar Rrl, 2022, 6, .	5.8	9
314	Physical Fields Manipulation for Highâ€Performance Perovskite Photovoltaics. Small, 2022, , 2107556.	10.0	6
315	Quasi-Two-Dimensional Perovskite Solar Cells with Efficiency Exceeding 22%. ACS Energy Letters, 2022, 7, 757-765.	17.4	114
316	Role of electrochemical reactions in the degradation of formamidinium lead halide hybrid perovskite quantum dots. Analyst, The, 2022, 147, 841-850.	3.5	2
317	A universal co-solvent dilution strategy enables facile and cost-effective fabrication of perovskite photovoltaics. Nature Communications, 2022, 13, 89.	12.8	77
318	Constructing Monolithic Perovskite/Organic Tandem Solar Cell with Efficiency of 22.0% via Reduced Openâ€Circuit Voltage Loss and Broadened Absorption Spectra. Advanced Materials, 2022, 34, e2108829.	21.0	56
319	Development of formamidinium lead iodide-based perovskite solar cells: efficiency and stability. Chemical Science, 2022, 13, 2167-2183.	7.4	37
320	Facet Orientation and Intermediate Phase Regulation via a Green Antisolvent for Highâ€Performance Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	12
321	Ionic Liquid Treatment for Highestâ€Efficiency Ambient Printed Stable Allâ€Inorganic CsPbI ₃ Perovskite Solar Cells. Advanced Materials, 2022, 34, e2106750.	21.0	97
322	Interface Regulation by an Ultrathin Wide-Bandgap Halide for Stable and Efficient Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 6702-6713.	8.0	6
323	Fabrication and characterization of CH ₃ NH ₃ PbI ₃ solar cells with added guanidinium and inserted with decaphenylpentasilane. Japanese Journal of Applied Physics, 2022, 61, SB1024.	1.5	23
324	Lattice relaxation effect in RbxMA(1â^`x)PbBr3 single crystal to enhance optoelectronic performance of perovskite photodetectors. Journal of Materials Science: Materials in Electronics, 2022, 33, 3438-3451.	2.2	2
325	Organometal halide perovskite photovoltaics. , 2022, , 273-317.		1
326	Defects and stability of perovskite solar cells: a critical analysis. Materials Chemistry Frontiers, 2022, 6, 400-417.	5.9	68

#	Article	IF	CITATIONS
327	In Situ Formation of δ-FAPbI ₃ at the Perovskite/Carbon Interface for Enhanced Photovoltage of Printable Mesoscopic Perovskite Solar Cells. Chemistry of Materials, 2022, 34, 728-735.	6.7	24
328	Challenges for Thermally Stable Spiro-MeOTAD toward the Market Entry of Highly Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 34220-34227.	8.0	17
329	Organic molecular dynamics and charge-carrier lifetime in lead iodide perovskite MAPbI ₃ . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	14
330	Recent Progress in Semitransparent Organic and Perovskite Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	1.8	6
331	Defect calculations using a combined SCAN and hybrid functional in Î ³ -CsPbI ₃ . Physical Chemistry Chemical Physics, 2022, 24, 3420-3428.	2.8	4
332	How Ternary Cations and Binary Halogens Stabilize Trigonal FA _{1–<i>x</i>–<i>y</i>} MA _{<i>x</i>} Cs _{<i>y</i>} PbI _{3–<i>z</i>} Perovskites: From a Single Crystal Perspective. Chemistry of Materials, 2022, 34, 1179-1190.	/sudo≯Br <s< td=""><td>ub¤@i>z</td></s<>	ub¤@i>z
333	Toward stable lead halide perovskite solar cells: A knob on the A/X sites components. IScience, 2022, 25, 103599.	4.1	13
334	An ultrahigh 84.3% fill factor for efficient CH3NH3PbI3 P-i-N perovskite film solar cell. Solar Energy, 2022, 233, 271-277.	6.1	5
335	Facile synthesis of g-C3N4/Ag2C2O4 heterojunction composite membrane with efficient visible light photocatalytic activity for water disinfection. Chemosphere, 2022, 295, 133841.	8.2	15
336	FAPbI ₃ Perovskite Films Prepared by Solvent Self-Volatilization for Photovoltaic Applications. ACS Applied Energy Materials, 2022, 5, 1487-1495.	5.1	18
337	Regioregularity effects of p-type P3CT-Na polymers on inverted perovskite photovoltaic cells. Organic Electronics, 2022, 102, 106449.	2.6	8
338	Boost the efficiency of nickel oxide-based formamidinium-cesium perovskite solar cells to 21% by using coumarin 343 dye as defect passivator. Nano Energy, 2022, 94, 106935.	16.0	49
339	Bulky ammonium iodide and in-situ formed 2D Ruddlesden-Popper layer enhances the stability and efficiency of perovskite solar cells. Journal of Colloid and Interface Science, 2022, 614, 247-255.	9.4	12
340	Understanding the effect of mechanical strains on the catalytic activity of transition metals. Physical Chemistry Chemical Physics, 2022, 24, 4832-4842.	2.8	5
341	Inhibiting Ion Migration by Guanidinium Cation Doping for Efficient Perovskite Solar Cells with Enhanced Operational Stability. Solar Rrl, 2022, 6, .	5.8	5
342	Molecularly Tailored SnO ₂ /Perovskite Interface Enabling Efficient and Stable FAPbI ₃ Solar Cells. ACS Energy Letters, 2022, 7, 929-938.	17.4	52
343	Effects of Adding Alkali Metals and Organic Cations to Cu-Based Perovskite Solar Cells. Applied Sciences (Switzerland), 2022, 12, 1710.	2.5	26
344	Tin–Lead Perovskite Solar Cells Fabricated on Hole Selective Monolayers. ACS Energy Letters, 2022, 7, 966-974.	17.4	111

#	Article	IF	CITATIONS
345	Thermal Dynamic Selfâ€Healing Supramolecular Dopant Towards Efficient and Stable Flexible Perovskite Solar Cells. Angewandte Chemie, 0, , .	2.0	3
346	Thermal Dynamic Selfâ€Healing Supramolecular Dopant Towards Efficient and Stable Flexible Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	38
347	From Structural Design to Functional Construction: Amine Molecules in Highâ€Performance Formamidiniumâ€Based Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .	2.0	17
348	From Structural Design to Functional Construction: Amine Molecules in Highâ€Performance Formamidiniumâ€Based Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	63
349	Exploring Structural Nuances in Germanium Halide Perovskites Using Solid-State ⁷³ Ge and ¹³³ Cs NMR Spectroscopy. Journal of Physical Chemistry Letters, 2022, 13, 1687-1696.	4.6	9
350	Synergistic effect of surface active agent in defect passivation by for ambient air-synthesized halide perovskite solar cells. Journal of Power Sources, 2022, 524, 231038.	7.8	5
351	1Â+Â1 > 2: Dual strategies of quinolinic acid passivation and DMF solvent annealing for high-performance inverted perovskite solar cell. Chemical Engineering Journal, 2022, 435, 135107.	12.7	14
352	Reducing Trap Densities of Perovskite Films by Adding Hypoxanthine for High-Performance and Stable Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
353	All Green Solvent Engineering of Organic-Inorganic Hybrid Perovskite Layer for High-Performance Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
354	Strain coupling and Jahn–Teller effect in efficient and stable sky-blue germanium–lead perovskites. Journal of Materials Chemistry C, 2022, 10, 6827-6836.	5.5	5
355	The structural complexity of perovskites. Physical Chemistry Chemical Physics, 2022, 24, 9196-9202.	2.8	4
356	Efficient MA-free perovskite solar cells with balanced carrier transport achieved using 4-trifluorophenylammonium iodide. Journal of Materials Chemistry A, 2022, 10, 9161-9170.	10.3	8
357	Optoelectronic Modeling of All-Perovskite Tandem Solar Cells with Design Rules to Achieve >30% Efficiency. SSRN Electronic Journal, 0, , .	0.4	0
358	Origin of the anisotropic-strain-driven photoresponse enhancement in inorganic halide-based self-powered flexible photodetectors. Materials Horizons, 2022, 9, 1207-1215.	12.2	11
359	Stronger Binding Force Improving Surface Passivation of Perovskites for High-Performance Inverted Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
360	Lead-free layered Aurivillius-type Sn-based halide perovskite Ba ₂ X ₂ [Cs _{<i>n</i>¹2/sub>Sn_{<i>n</i>}X_{3<i>n</i>+1}] (X = I/Br/CI) with an optimal band gap of â¹/41.26 eV and theoretical efficiency beyond 27% for photovoltaics. Journal of Materials Chemistry A. 2022, 10, 10682-10691.}	10.3	1
361	Sustainable development of perovskite solar cells: keeping a balance between toxicity and efficiency. Journal of Materials Chemistry A, 2022, 10, 8159-8171.	10.3	19
362	Boosting Radiation of Stacked Halide Layer for Perovskite Solar Cells With Efficiency Over 25%. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
363	A triple helicene based molecular semiconductor characteristic of a fully fused conjugated backbone for perovskite solar cells. Energy and Environmental Science, 2022, 15, 1630-1637.	30.8	28
364	Electric Field Enhanced with Cds/Zns Quantum Dots Passivation for Efficient and Stable Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
365	Strategies for highly efficient and stable cesium lead iodide perovskite photovoltaics: mechanisms and processes. Journal of Materials Chemistry C, 2022, 10, 4999-5023.	5.5	19
366	Regioregularity Effects of P-Type P3ct-Na Polymers on Inverted Perovskite Photovoltaic Cells. SSRN Electronic Journal, 0, , .	0.4	0
367	Intermediate phase engineering of halide perovskites for photovoltaics. Joule, 2022, 6, 315-339.	24.0	60
368	Unveiling Charge Carrier Recombination, Extraction, and Hotâ€Carrier Dynamics in Indium Incorporated Highly Efficient and Stable Perovskite Solar Cells. Advanced Science, 2022, 9, e2103491.	11.2	15
369	Rethinking the A cation in halide perovskites. Science, 2022, 375, eabj1186.	12.6	207
370	Phase-Pure α-FAPbI ₃ for Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2022, 13, 1845-1854.	4.6	27
371	Efficient and Stable Large Bandgap MAPbBr ₃ Perovskite Solar Cell Attaining an Open Circuit Voltage of 1.65 V. ACS Energy Letters, 2022, 7, 1112-1119.	17.4	21
372	Low-Temperature Microwave Processed TiO ₂ as an Electron Transport Layer for Enhanced Performance and Atmospheric Stability in Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 2679-2696.	5.1	11
373	Construction of Stable Donor–Acceptor Type Covalent Organic Frameworks as Functional Platform for Effective Perovskite Solar Cell Enhancement. Advanced Functional Materials, 2022, 32, .	14.9	46
374	Bismuth Stabilizes the α-Phase of Formamidinium Lead Iodide Perovskite Single Crystals. , 2022, 4, 707-712.		10
375	FAPbI ₃ Perovskite Solar Cells: From Film Morphology Regulation to Device Optimization. Solar Rrl, 2022, 6, .	5.8	19
376	Effects of <scp>ï€â€conjugation</scp> on the <scp>chargeâ€transport</scp> properties of <scp>holeâ€transporting</scp> materials featuring diphenylamine― <scp>l€â€quinacridone</scp> for perovskite solar cells: A theoretical study. Bulletin of the Korean Chemical Society, 0, , .	1.9	1
377	Dualâ€Phase Regulation for Highâ€Efficiency Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, .	14.9	33
378	Efficient, stable formamidinium-cesium perovskite solar cells and minimodules enabled by crystallization regulation. Joule, 2022, 6, 676-689.	24.0	110
379	Coevaporation of Doped Inorganic Carrierâ€5elective Layers for Highâ€Performance Inverted Planar Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	4
380	Nitrogenâ€doped tin oxide electron transport layer for stable perovskite solar cells with efficiency over 23%. , 2022, 1, 309-315.		47

#	Article	IF	CITATIONS
381	Balancing the film strain of organic semiconductors for ultrastable organic transistors with a five-year lifetime. Nature Communications, 2022, 13, 1480.	12.8	26
382	Crystal Growth Regulation of 2D/3D Perovskite Films for Solar Cells with Both High Efficiency and Stability. Advanced Materials, 2022, 34, e2200705.	21.0	91
383	Surface Defect Engineering of Metal Halide Perovskites for Photovoltaic Applications. ACS Energy Letters, 2022, 7, 1230-1239.	17.4	46
384	Quadruple-Cation Wide-Bandgap Perovskite Solar Cells with Enhanced Thermal Stability Enabled by Vacuum Deposition. ACS Energy Letters, 2022, 7, 1355-1363.	17.4	24
385	Revealing the Correlation of Light Soaking Effect with Ion Migration in Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	9
386	Efficient and stable TiO2 nanorod array structured perovskite solar cells in air: Co-passivation and synergistic mechanism. Ceramics International, 2022, 48, 17950-17959.	4.8	9
387	Ion diffusion-induced double layer doping toward stable and efficient perovskite solar cells. Nano Research, 2022, 15, 5114-5122.	10.4	47
388	Airâ€Processed Carbonâ€Based Cs _{0.5} FA _{0.5} Pbl ₃ –Cs ₄ Pbl ₆ Heterostructure Perovskite Solar Cells with Efficiency Over 16%. Solar Rrl, 2022, 6, .	5.8	11
389	Fullâ€Dimensional Grain Boundary Stress Release for Flexible Perovskite Indoor Photovoltaics. Advanced Materials, 2022, 34, e2200320.	21.0	55
390	Flexible Perovskite Solar Cells: From Materials and Device Architectures to Applications. ACS Energy Letters, 2022, 7, 1412-1445.	17.4	54
391	Influence of Halide Choice on Formation of Lowâ€Dimensional Perovskite Interlayer in Efficient Perovskite Solar Cells. Energy and Environmental Materials, 2022, 5, 670-682.	12.8	9
392	Searching for High-Quality Halide Perovskite Single Crystals toward X-ray Detection. Journal of Physical Chemistry Letters, 2022, 13, 2851-2861.	4.6	24
393	Unveiling the Critical Role of Oxidants and Additives in Doped Spiro-OMeTAD toward Stable and Efficient Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 3595-3604.	5.1	24
394	Pressure-Assisted Space-Confinement Strategy to Eliminate Pbl ₂ in Perovskite Layers toward Improved Operational Stability. ACS Applied Materials & Interfaces, 2022, 14, 12442-12449.	8.0	6
395	Selenium: A Unique Member in the Chalcogen Family for Conjugated Materials Used in Perovskite and Organic Solar Cells. Solar Rrl, 2022, 6, .	5.8	19
396	Phaseâ€Pure Engineering for Efficient and Stable Formamidiniumâ€Based Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	16
397	Preâ€Buried Additive for Cross‣ayer Modification in Flexible Perovskite Solar Cells with Efficiency Exceeding 22%. Advanced Materials, 2022, 34, e2109879.	21.0	128
398	Crowning Lithium Ions in Holeâ€Transport Layer toward Stable Perovskite Solar Cells. Advanced Materials, 2022, 34, e2200978.	21.0	39

#	Article	IF	CITATIONS
399	Plasmonic Local Heating Induced Strain Modulation for Enhanced Efficiency and Stability of Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	18
400	Stable αâ€FAPbI ₃ in Inverted Perovskite Solar Cells with Efficiency Exceeding 22% via a Selfâ€Passivation Strategy. Advanced Functional Materials, 2022, 32, .	14.9	47
401	Defect Healing in FAPb(I _{1â€} <i>_x</i> Br <i>_x</i>) ₃ Perovskites: Multifunctional Fluorinated Sulfonate Surfactant Anchoring Enables >21%ÂModules with Improved Operation Stability. Advanced Energy Materials, 2022, 12, .	19.5	32
402	Minimizing and Controlling Hydrogen for Highly Efficient Formamidinium Lead Triiodide Solar Cells. Journal of the American Chemical Society, 2022, 144, 6770-6778.	13.7	10
403	Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nature Photonics, 2022, 16, 352-358.	31.4	233
404	A Selective Targeting Anchor Strategy Affords Efficient and Stable Idealâ€Bandgap Perovskite Solar Cells. Advanced Materials, 2022, 34, e2110241.	21.0	44
405	Reducing trap densities of perovskite films by the addition of hypoxanthine for high-performance and stable perovskite solar cells. Chemical Engineering Journal, 2022, 436, 135269.	12.7	17
406	Rational design of phenothiazine-based hole transport material with fluorene-containing asymmetric peripheral donor group for perovskite solar cells. Dyes and Pigments, 2022, 202, 110279.	3.7	9
407	Passivating buried interface with multifunctional novel ionic liquid containing simultaneously fluorinated anion and cation yielding stable perovskite solar cells over 23% efficiency. Journal of Energy Chemistry, 2022, 69, 659-666.	12.9	52
408	All green solvent engineering of organic–inorganic hybrid perovskite layer for high-performance solar cells. Chemical Engineering Journal, 2022, 437, 135458.	12.7	28
409	Electron transport interface engineering with pyridine functionalized perylene diimide-based material for inverted perovskite solar cell. Chemical Engineering Journal, 2022, 438, 135410.	12.7	21
410	α-Phase intermediate for efficient and stable narrow bandgap triple cation perovskite solar cells. Journal of Alloys and Compounds, 2022, 910, 164722.	5.5	2
411	Stronger binding force improving surface passivation of perovskites for High-Performance inverted solar cells. Chemical Engineering Journal, 2022, 440, 135974.	12.7	18
412	Wideâ€Gap Perovskite via Synergetic Surface Passivation and Its Application toward Efficient Stacked Tandem Photovoltaics. Small, 2022, 18, e2103887.	10.0	3
413	Correlating carrier lifetime with device design and photovoltaic performance of perovskite solar cells. Applied Physics Letters, 2021, 119, .	3.3	1
414	Efficient and Stable Wideâ€Bandgap Perovskite Solar Cells Derived from a Thermodynamic Phaseâ€Pure Intermediate. Solar Rrl, 2022, 6, .	5.8	11
415	Perovskite Bifunctional Diode with High Photovoltaic and Electroluminescent Performance by Holistic Defect Passivation. Small, 2022, 18, e2105196.	10.0	9
416	Improved Performance of Perovskite Solar Cells by Suppressing the Energy-Level Shift of the PEDOT:PSS Hole Transport Layer. ACS Applied Energy Materials, 2021, 4, 14590-14598.	5.1	4

#	Article	IF	CITATIONS
417	Polymethyl Methacrylate as an Interlayer Between the Halide Perovskite and Copper Phthalocyanine Layers for Stable and Efficient Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	14.9	30
418	Toward ecoâ€friendly and stable halide perovskiteâ€inspired materials for lightâ€emitting devices applications by dimension classification: Recent advances and opportunities. EcoMat, 2022, 4, .	11.9	6
419	Unveiling the brittleness of hybrid organic–inorganic 0-D histammonium zinc chlorometallate by nanoindentation. Applied Physics Letters, 2021, 119, 241903.	3.3	2
420	β-Diketone Coordination Strategy for Highly Efficient and Stable Pb–Sn Mixed Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 11772-11778.	4.6	14
421	Stabilized tilted-octahedra halide perovskites inhibit local formation of performance-limiting phases. Science, 2021, 374, 1598-1605.	12.6	115
422	Sulfonated Graphene Aerogels Enable Safeâ€toâ€Use Flexible Perovskite Solar Modules. Advanced Energy Materials, 2022, 12, .	19.5	46
423	Efficient FAPbI3 perovskite solar cells using PMACl additives in two-step deposition method. , 2021, , .		0
424	Interface compatibility: how to outperform classical spiro-OMeTAD in perovskite solar cells with carbazole derivatives. Journal of Materials Chemistry C, 2022, 10, 7680-7689.	5.5	9
425	A Multifunctional Ionic Liquid Additive Enabling Stable and Efficient Perovskite Lightâ€Emitting Diodes. Small, 2022, 18, e2200498.	10.0	24
426	Recent Advances on the Strategies to Stabilize the α-Phase of Formamidinium Based Perovskite Materials. Crystals, 2022, 12, 573.	2.2	2
427	Strain Modulation for Light‣table n–i–p Perovskite/Silicon Tandem Solar Cells. Advanced Materials, 2022, 34, e2201315.	21.0	45
428	Buried Interface Modification in Perovskite Solar Cells: A Materials Perspective. Advanced Energy Materials, 2022, 12, .	19.5	87
429	Steric Engineering Enables Efficient and Photostable Wideâ€Bandgap Perovskites for Allâ€Perovskite Tandem Solar Cells. Advanced Materials, 2022, 34, e2110356.	21.0	48
430	Sputtered SnO ₂ as an interlayer for efficient semitransparent perovskite solar cells. Chinese Physics B, 2022, 31, 118801.	1.4	3
431	Organic-semiconductor-assisted dielectric screening effect for stable and efficient perovskite solar cells. Science Bulletin, 2022, 67, 1243-1252.	9.0	23
432	Halide exchange in the passivation of perovskite solar cells with functionalized ionic liquids. Cell Reports Physical Science, 2022, 3, 100848.	5.6	9
433	Metal Oxide Based Photoelectrodes in Photoelectrocatalysis: Advances and Challenges. ChemPlusChem, 2022, 87, e202200097.	2.8	11
434	Pseudohalide Anions to Suppress Oxidative Degradation for Efficient Formamidinium-Based Sn–Pb Halide Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 18302-18312.	8.0	16

ARTICLE IF CITATIONS # Nacre inspired robust self-encapsulating flexible perovskite photodetector. Nano Energy, 2022, 98, 435 16.0 17 107254. Universal Dynamic Liquid Interface for Healing Perovskite Solar Cells. Advanced Materials, 2022, 34, 21.0 e2202301. Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules. Nature 437 31.5 121 Nanotechnology, 2022, 17, 598-605. Structure–property relationships of diketopyrrolopyrrole- and thienoacene-based A–D–A type hole transport materials for efficient perovskite solar cells. New Journal of Chemistry, 0, , . Effects of guanidinium addition to CH<sub&gt;3&lt;/sub&gt;NH&lt;sub&gt;3&lt;/sub&gt;Pbl&lt;sub&gt;3&lt;/sub 439 perovskite solar cells inserted with decaphenylpentasilane., 0, , . Fabrication and characterization of perovskite solar cells using copper phthalocyanine complex with tetracyanoquinodimethane., 0,,. Efficient and Stable FAâ€Rich Perovskite Photovoltaics: From Material Properties to Device 441 19.5 16 Optimization. Advanced Energy Materials, 2022, 12, . Rational selection of the polymeric structure for interface engineering of perovskite solar cells. 24.0 Joule, 2022, 6, 1032-1048. Indigo: A Natural Molecular Passivator for Efficient Perovskite Solar Cells. Advanced Energy 443 19.5 60 Materials, 2022, 12, . Simultaneous Passivation of Bulk and Interface Defects with Gradient 2D/3D Heterojunction Engineering for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 444 8.0 2022, 14, 2107<u>9-210</u>88. A Facile Centrifuge Coating Method for High-Performance CsPbBr3 Compact and Crack-Free 445 2.2 2 Nanocrystal Thin Film Photodetector. Crystals, 2022, 12, 587. SnO₂â€"TiO₂ Hybrid Electron Transport Layer for Efficient and Flexible 446 17.4 Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 1864-1870. Organic–Inorganic Hybrid Electron Transport Layer for Rigid or Flexible Perovskite Solar Cells under 447 6.7 5 Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2022, 10, 6826-6834. Pulsatile therapy for perovskite solar cells. Joule, 2022, 6, 1087-1102. 448 24.0 NiO_x Nanocrystals with Tunable Size and Energy Levels for Efficient and UV Stable 449 14.9 32 Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, . Perovskite hetero-bilayer for efficient charge-transport-layer-free solar cells. Joule, 2022, 6, 1277-1289. 24.0 Supramolecular Interactions of Flexible 2D Perovskite in Microstrain Releasing and Optoelectronic 451 14.9 13 Properties Recovery. Advanced Functional Materials, 2022, 32, . Crosslinkable and Chelatable Organic Ligand Enables Interfaces and Grains Collaborative Passivation for Efficient and Stable Perovskite Solar Cells. Small, 2022, 18, e2201820.

#	Article	IF	CITATIONS
453	Dataâ€Driven Investigation of the Synthesizability and Bandgap of Double Perovskite Halides. Advanced Theory and Simulations, 2022, 5, .	2.8	7
454	Electric field enhanced with CdS/ZnS quantum dots passivation for efficient and stable perovskite solar cells. Journal of Power Sources, 2022, 537, 231519.	7.8	2
455	Improving the performance and stability of large-area carbon-based perovskite solar cells using N, O co-doped biomass porous carbon. Journal of Alloys and Compounds, 2022, 912, 165123.	5.5	14
456	Optoelectronic modeling of all-perovskite tandem solar cells with design rules to achieve >30% efficiency. Solar Energy Materials and Solar Cells, 2022, 242, 111780.	6.2	13
457	Reducing the interfacial voltage loss in tin halides perovskite solar cells. Chemical Engineering Journal, 2022, 445, 136769.	12.7	30
458	Minimizing voltage deficit in Methylammonium-Free perovskite solar cells via surface reconstruction. Chemical Engineering Journal, 2022, 444, 136622.	12.7	22
459	Improvement of nanopore structure SnO2 electron-transport layer for carbon-based CsPbIBr2 perovskite solar cells. Materials Science in Semiconductor Processing, 2022, 148, 106787.	4.0	5
460	Ionic Liquid Engineering in Perovskite Photovoltaics. Energy and Environmental Materials, 2023, 6, .	12.8	18
461	Analytical Review of Spiroâ€OMeTAD Hole Transport Materials: Paths Toward Stable and Efficient Perovskite Solar Cells. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	53
462	Recent Advances in Lead Chemisorption for Perovskite Solar Cells. Transactions of Tianjin University, 2022, 28, 341-357.	6.4	11
463	Spectroscopic indications of room-temperature electron-hole droplets in optically excited CH3NH3PbBr3 single crystals. Cell Reports Physical Science, 2022, 3, 100896.	5.6	1
464	A Bionic Interface to Suppress the Coffeeâ€Ring Effect for Reliable and Flexible Perovskite Modules with a Nearâ€90% Yield Rate. Advanced Materials, 2022, 34, e2201840.	21.0	54
465	Degradation and Self-Healing in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 24073-24088.	8.0	20
466	Microstrain and Urbach Energy Relaxation in FAPbI ₃ -Based Solar Cells through Powder Engineering and Perfluoroalkyl Phosphate Ionic Liquid Additives. ACS Applied Materials & Interfaces, 2022, 14, 24546-24556.	8.0	10
467	Suppressing Halide Segregation in Wide-Band-Gap Mixed-Halide Perovskite Layers through Post-Hot Pressing. ACS Applied Materials & Interfaces, 2022, , .	8.0	4
468	Ionic Dopant-Free Polymer Alloy Hole Transport Materials for High-Performance Perovskite Solar Cells. Journal of the American Chemical Society, 2022, 144, 9500-9509.	13.7	85
469	A facile healing of two-step deposited MAPbI3 perovskite on TiO2 nanorod through dynamic methylamine treatment. Materials Today Communications, 2022, 31, 103744.	1.9	1
470	X-ray diffraction of photovoltaic perovskites: Principles and applications. Applied Physics Reviews, 2022, 9, .	11.3	28

#	Article	IF	CITATIONS
471	Dual Optimization of Bulk and Surface via Guanidine Halide for Efficient and Stable 2D/3D Hybrid Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	30
472	Controlling Intrinsic Quantum Confinement in Formamidinium Lead Triiodide Perovskite through Cs Substitution. ACS Nano, 2022, 16, 9640-9650.	14.6	8
473	Solution-processed perovskite crystals for electronics: Moving forward. Matter, 2022, 5, 1700-1733.	10.0	3
474	Ionic liquid-mediated reconstruction of perovskite surface for highly efficient photovoltaics. Chemical Engineering Journal, 2022, 446, 137351.	12.7	5
475	Two-dimensional Dion-Jacobson halide perovskites as new-generation light absorbers for perovskite solar cells. Renewable and Sustainable Energy Reviews, 2022, 166, 112614.	16.4	39
476	Mixed dimensionality of 2D/3D heterojunctions for improving charge transport and long-term stability in high-efficiency 1.63 eV bandgap perovskite solar cells. Materials Advances, 2022, 3, 5786-5795.	5.4	1
477	Benzimidazole Based Holeâ€Transporting Materials for Highâ€performance Inverted Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	14.9	19
478	Zwitterionâ€Functionalized SnO ₂ Substrate Induced Sequential Deposition of Blackâ€Phase FAPbI ₃ with Rearranged PbI ₂ Residue. Advanced Materials, 2022, 34, .	21.0	75
480	Universal Bifacial Stamping Approach Enabling Reverseâ€Graded Ruddlesdenâ€Popper 2D Perovskite Solar Cells. Small, 2022, 18, .	10.0	6
481	Thermal Shock Fabrication of Ionâ€Stabilized Perovskite and Solar Cells. Advanced Materials, 2022, 34, .	21.0	15
482	The effect of chloride atoms to induce organohalide perovskite intermediate crystal phase: a simulation rationale. Applied Physics Express, 2022, 15, 075504.	2.4	2
483	Accurately Quantifying Stress during Metal Halide Perovskite Thin Film Formation. ACS Applied Materials & Interfaces, 2022, 14, 27791-27798.	8.0	3
484	Cs-content-dependent organic cation exchange in FA1-Cs PbI3 perovskite. Journal of Energy Chemistry, 2022, 72, 539-544.	12.9	12
485	Recent advancements and future insight of lead-free non-toxic perovskite solar cells for sustainable and clean energy production: A review. Sustainable Energy Technologies and Assessments, 2022, 53, 102433.	2.7	20
486	Heterogeneous lead iodide obtains perovskite solar cells with efficiency of 24.27%. Chemical Engineering Journal, 2022, 448, 137676.	12.7	29
487	Recent Progress in Mixed A‣ite Cation Halide Perovskite Thinâ€Films and Nanocrystals for Solar Cells and Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	7.3	47
488	Bandgap tuning of a CsPbBr ₃ perovskite with synergistically improved quality <i>via</i> Sn ²⁺ doping for high-performance carbon-based inorganic perovskite solar cells. Inorganic Chemistry Frontiers, 2022, 9, 4359-4368.	6.0	7
489	Stabilizing wide-bandgap halide perovskites through hydrogen bonding. Science China Chemistry, 2022, 65, 1650-1660.	8.2	9

#	Article	IF	CITATIONS
490	Revealing Stericâ€Hindranceâ€Dependent Buried Interface Defect Passivation Mechanism in Efficient and Stable Perovskite Solar Cells with Mitigated Tensile Stress. Advanced Functional Materials, 2022, 32, .	14.9	83
491	27.6% Perovskite/câ€6i Tandem Solar Cells Using Industrial Fabricated TOPCon Device. Advanced Energy Materials, 2022, 12, .	19.5	22
492	Revealing the Transient Formation Dynamics and Optoelectronic Properties of 2D Ruddlesdenâ€₽opper Phases on 3D Perovskites. Advanced Energy Materials, 2023, 13, .	19.5	14
493	KBF ₄ Additive for Alleviating Microstrain, Improving Crystallinity, and Passivating Defects in Inverted Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	14.9	40
494	Physics of defects in metal halide perovskites. Reports on Progress in Physics, 2022, 85, 096501.	20.1	13
495	Impact of Strain Relaxation on 2D Ruddlesden–Popper Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	35
496	Impact of Strain Relaxation on 2D Ruddlesden–Popper Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .	2.0	2
497	Decoupling engineering of formamidinium–cesium perovskites for efficient photovoltaics. National Science Review, 2022, 9, .	9.5	22
498	Balanced-Strength Additive for High-Efficiency Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 8034-8041.	5.1	10
499	Future Research Directions in Perovskite Solar Cells: Exquisite Photon Management and Thermodynamic Phase Stability. Advanced Materials, 2023, 35, .	21.0	7
500	Hot astingâ€Assisted Liquid Additive Engineering for Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2022, 34, .	21.0	21
501	Solution Processable Benzotrithiophene (BTT)â€Based Organic Semiconductors: Recent Advances and Review. Macromolecular Rapid Communications, 2022, 43, .	3.9	8
502	Defect Passivation by a Multifunctional Phosphate Additive toward Improvements of Efficiency and Stability of Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2022, 14, 31911-31919.	8.0	6
503	A charge transfer framework that describes supramolecular interactions governing structure and properties of 2D perovskites. Nature Communications, 2022, 13, .	12.8	16
504	3D Networkâ€Assisted Crystallization for Fully Printed Perovskite Solar Cells with Superior Irradiation Stability. Advanced Functional Materials, 2022, 32, .	14.9	8
505	Surface defect passivation by 1,8-Naphthyridine for efficient and stable Formamidinium-based 2D/3D perovskite solar cells. Chemical Engineering Journal, 2022, 449, 137806.	12.7	15
506	Multifunctional molecule of potassium nonafluoro-1-butanesulfonate for high-efficient perovskite solar cells. Chemical Engineering Journal, 2022, 449, 137851.	12.7	24
507	Ultra-high moisture stability perovskite films, soaking in water over 360Âmin. Chemical Engineering Journal, 2022, 450, 138028.	12.7	5

#	Article	IF	CITATIONS
508	Relaxation of externally strained halide perovskite thin layers with neutral ligands. Joule, 2022, 6, 2175-2185.	24.0	35
509	Oxidation of Spiro-OMeTAD in High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 34303-34327.	8.0	34
510	Nâ€Type Conductive Small Molecule Assisted 23.5% Efficient Inverted Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	25
511	The effect of multiple ion substitutions on halide ion migration in perovskite solar cells. Materials Advances, 2022, 3, 7918-7924.	5.4	9
512	Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science, 2022, 377, 495-501.	12.6	148
513	Synchronous Surface Reconstruction and Defect Passivation for Highâ€Performance Inorganic Perovskite Solar Cells. Small, 2022, 18, .	10.0	9
514	Management of Donor and Acceptor Building Blocks in Dopantâ€Free Polymer Hole Transport Materials for Highâ€Performance Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	39
515	Dually-passivated planar SnO2 based perovskite solar cells with ˃2,700h ambient stability: Facile fabrication, high performance and mechanism. Ceramics International, 2022, 48, 33934-33942.	4.8	3
516	Recent Progress on the Phase Stabilization of FAPbI ₃ for Highâ€Performance Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	25
517	Fill Factor Losses and Deviations from the Superposition Principle in Lead Halide Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	22
518	Interstitial Hydrogen Anions: A Cause of p-Type Conductivity in CsSnI ₃ . Journal of Physical Chemistry C, 0, , .	3.1	1
519	Progress of Solution-Processed Metal Oxides as Charge Transport Layers towards Efficient and Stable Perovskite Solar Cells and Modules. Materials Today Nano, 2022, , 100252.	4.6	2
520	Management of Donor and Acceptor Building Blocks in Dopantâ€Free Polymer Hole Transport Materials for Highâ€Performance Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .	2.0	1
521	Chemical Strain Engineering of MAPbI ₃ Perovskite Films. Advanced Energy Materials, 2022, 12, .	19.5	12
522	Ultrastable near-infrared perovskite light-emitting diodes. Nature Photonics, 2022, 16, 637-643.	31.4	125
523	Application of Ionic Liquids and Derived Materials to High-Efficiency and Stable Perovskite Solar Cells. , 2022, 4, 1684-1715.		18
524	Direct and stable \hat{l}_{\pm} -phase formation via ionic liquid solvation for formamidinium-based perovskite solar cells. Joule, 2022, 6, 2203-2217.	24.0	51
525	A shape memory scaffold for body temperature selfâ€repairing wearable perovskite solar cells with efficiency exceeding 21%. InformaÄnÃ-Materiály, 2022, 4, .	17.3	19

#	Article	IF	CITATIONS
526	Ethanol-based green-solution processing of α-formamidinium lead triiodide perovskite layers. Nature Energy, 2022, 7, 828-834.	39.5	53
527	Design and Cost Analysis of 100 MW Perovskite Solar Panel Manufacturing Process in Different Locations. ACS Energy Letters, 2022, 7, 3039-3044.	17.4	31
528	Enhanced Phase Stability of Compressive Strain-Induced Perovskite Crystals. ACS Applied Materials & Interfaces, 2022, 14, 39996-40004.	8.0	6
529	Additive engineering for improving the stability of tin-based perovskite (FASnI3) solar cells. Solar Energy, 2022, 243, 134-141.	6.1	7
530	Futuristic kusachiite solar cells of CuBi2O4 absorber and metal sulfide buffer Layers: Theoretical efficiency approaching 28 %. Solar Energy, 2022, 244, 75-83.	6.1	15
531	Efficient surface treatment based on an ionic imidazolium hexafluorophosphate for improving the efficiency and stability of perovskite solar cells. Applied Surface Science, 2022, 604, 154486.	6.1	4
532	Fabrication and Modification Strategies of Metal Halide Perovskite Absorbers. Journal of Renewable Materials, 2023, 11, 61-77.	2.2	1
533	Alleviating defects in perovskites using single-walled carbon nanotubes. JPhys Energy, 2022, 4, 042004.	5.3	3
534	Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power-conversion efficiency. Innovation(China), 2022, 3, 100310.	9.1	24
535	Trap passivation and suppressed electrochemical dynamics in perovskite solar cells with C60 interlayers. Electrochimica Acta, 2022, 433, 141215.	5.2	5
536	Inducing crystal-oriented growth while inhibiting grain boundary migration with multifunctional ionic liquid for high-efficiency perovskite solar cells. Journal of Alloys and Compounds, 2022, 929, 167051.	5.5	8
537	Dual-passivation strategy on CsPbI2Br perovskite solar cells for reduced voltage deficit and enhanced stability. Nano Energy, 2022, 103, 107792.	16.0	4
538	Improving the performance of perovskite solar cells via TiO2 electron transport layer prepared by direct current pulsed magnetron sputtering. Journal of Alloys and Compounds, 2022, 929, 167278.	5.5	6
539	Passivation of positively charged cationic defects in perovskite with nitrogen-donor crown ether enabling efficient perovskite solar cells. Chemical Engineering Journal, 2023, 451, 138962.	12.7	14
540	Understanding the role of inorganic carrier transport layer materials and interfaces in emerging perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 15725-15780.	5.5	17
541	Strain Regulating Mechanical Stability and Photoelectric Properties of Ch3nh3pbi3 Containing the Asymmetric Ch3nh3 Cations. SSRN Electronic Journal, 0, , .	0.4	0
542	Strain effects on halide perovskite solar cells. Chemical Society Reviews, 2022, 51, 7509-7530.	38.1	89
543	Recent advancements in poly-Si/SiO _{<i>x</i>} passivating contacts for high-efficiency silicon solar cells: technology review and perspectives. Journal of Materials Chemistry A, 2022, 10, 20147-20173.	10.3	11

#	Article	IF	CITATIONS
544	An enhanced couette flow printing strategy to recover efficiency losses by area and substrate differences in perovskite solar cells. Energy and Environmental Science, 2022, 15, 4313-4322.	30.8	5
545	Passivation of Positively Charged Cationic Defects in Perovskite with Nitrogen-Donor Crown Ether Enabling Efficient Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
546	[PbX ₆] ^{4â^'} modulation and organic spacer construction for stable perovskite solar cells. Energy and Environmental Science, 2022, 15, 4470-4510.	30.8	16
547	Pressure-induced non-radiative losses in halide perovskite light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 12560-12568.	5.5	6
548	Modulating the deep-level defects and charge extraction for efficient perovskite solar cells with high fill factor over 86%. Energy and Environmental Science, 2022, 15, 4813-4822.	30.8	54
549	The influence of compression on the lattice stability of α-FAPbI ₃ revealed by numerical simulation. New Journal of Chemistry, 2022, 46, 16130-16137.	2.8	3
550	Stabilizing black-phase FAPbI ₃ in humid air with secondary ammoniums. Journal of Materials Chemistry A, 2022, 10, 21422-21429.	10.3	3
551	Difluorine‣ubstituted Moleculeâ€Based Lowâ€Dimensional Structure for Highly Stable Tin Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	6
553	Balancing Lattice Strain by Embedded Ionic Liquid for the Stabilization of Formamidinium-Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 43298-43307.	8.0	4
554	Strain Control to Stabilize Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .	2.0	2
555	Strain Control to Stabilize Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	37
556	F-doping-Enhanced Carrier Transport in the SnO ₂ /Perovskite Interface for High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 42093-42101.	8.0	19
557	Improved Absorber Phase Stability, Performance, and Lifetime in Inorganic Perovskite Solar Cells with Alkyltrimethoxysilane Strain-Release Layers at the Perovskite/TiO ₂ Interface. ACS Energy Letters, 2022, 7, 3531-3538.	17.4	17
558	Impacts of the Lattice Strain on Perovskite Lightâ€Emitting Diodes. Advanced Energy Materials, 2023, 13, .	19.5	11
559	Hole-Transporting Vanadium-Containing Oxide (V ₂ O _{5–<i>x</i>}) Interlayers Enhance Stability of α-FAPbI ₃ -Based Perovskite Solar Cells (â^¼23%). ACS Applied Materials & Interfaces, 2022, 14, 42007-42017.	8.0	9
560	Perovskites: Emergence of highly efficient thirdâ€generation solar cells. International Journal of Energy Research, 2022, 46, 21856-21883.	4.5	13
561	Efficient Semitransparent Perovskite Solar Cells Based on Thin Compact Vacuum Deposited CH ₃ NH ₃ PbI ₃ Films. Advanced Materials Interfaces, 2022, 9, .	3.7	3
562	Solar Cell Efficiency Exceeding 25% through Rb-Based Perovskitoid Scaffold Stabilizing the Buried Perovskite Surface. ACS Energy Letters, 2022, 7, 3685-3694.	17.4	44

#	Article	IF	CITATIONS
563	Microstructural, Optical, and Work Function Tuning of Fullerene (C ₆₀) Modified Zinc Oxide Films for Optoelectronic Devices. ECS Journal of Solid State Science and Technology, 2022, 11, 104002.	1.8	1
564	Toward Stable and Efficient Solar Cells with Electropolymerized Films. ACS Sustainable Chemistry and Engineering, 2022, 10, 13555-13567.	6.7	4
565	Chlorobenzene solvent annealing of perovskite thin films for improving efficiency and reproducibility of perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2022, 33, 24208-24219.	2.2	1
566	Formate as Antiâ€Oxidation Additives for Pbâ€Free FASnI ₃ Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	4
567	Strain regulating mechanical stability and photoelectric properties of CH3NH3PbI3 containing the asymmetric CH3NH3 cations. Materials Today Communications, 2022, 33, 104527.	1.9	1
568	Organic–Inorganic Hybrid Devices—Perovskite-Based Devices. , 2022, , 283-307.		0
569	Efficient and hysteresis-free mixed-dimensional 2D/3D perovskite solar cells using ethyl lactate as a green additive to perovskite precursor solutions. Journal of Materials Chemistry C, 2022, 10, 16480-16491.	5.5	26
570	Controllable synthesis of Cu-based quantum dots/nanocrystals and application in white light-emitting diodes. Dalton Transactions, 2022, 51, 17883-17894.	3.3	5
571	Inorganic frameworks of low-dimensional perovskites dictate the performance and stability of mixed-dimensional perovskite solar cells. Materials Horizons, 2023, 10, 536-546.	12.2	5
572	Multication Tinâ€Lead Perovskite Photodiodes with Engineered Lattice Strain for Ultrasensitive Broadband Photodetection. Advanced Optical Materials, 2022, 10, .	7.3	4
573	Self-assembly of porphyrins on perovskite film for blade-coating stable large-area methylammonium-free solar cells. Chinese Chemical Letters, 2023, 34, 107883.	9.0	4
574	Recent Advances in Leadâ \in Safe Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	14.9	19
575	Volatile 2D Ruddlesdenâ€Popper Perovskite: A Gift for αâ€Formamidinium Lead Triiodide Solar Cells. Advanced Functional Materials, 2022, 32, .	14.9	13
576	Integrated 4-Terminal All-Inorganic Perovskite Tandem Solar Cell with Open-Circuit Voltage Exceeding 2.1 V for Water Splitting. ACS Energy Letters, 2022, 7, 4215-4223.	17.4	15
577	Ultra-Efficient Optical Gain and Lasing in MDACl ₂ -Doped Perovskite Thin Films. Chemistry of Materials, 2022, 34, 9786-9794.	6.7	0
578	Laser Manufactured Nanoâ€MXenes with Tailored Halogen Terminations Enable Interfacial Ionic Stabilization of High Performance Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	15
579	Intrinsic Phase Stability and Inherent Bandgap of Formamidinium Lead Triiodide Perovskite Single Crystals. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
580	Intrinsic Phase Stability and Inherent Bandgap of Formamidinium Lead Triiodide Perovskite Single Crystals. Angewandte Chemie, 2022, 134, .	2.0	6

#	Article	IF	CITATIONS
581	Multifunctional anchoring of Oâ€ligands for highâ€performance and stable inverted perovskite solar cells. InformaÄnÃ-MateriA¡ly, 2023, 5, .	17.3	14
582	Strain‧tabilized CsPbl ₃ Perovskite via Organopolysilazane for Efficient Solar Cells with Efficiency over 19%. Advanced Optical Materials, 0, , 2201672.	7.3	2
583	Opportunities and Challenges for Perovskite Solar Cells Based on Vacuum Thermal Evaporation. Advanced Materials Technologies, 2023, 8, .	5.8	10
584	Predicting the device performance of the perovskite solar cells from the experimental parameters through machine learning of existing experimental results. Journal of Energy Chemistry, 2023, 77, 200-208.	12.9	21
585	Fabrication and Characterization of SnCl2- and CuBr-Added Perovskite Photovoltaic Devices. Technologies, 2022, 10, 112.	5.1	10
586	Additive Engineering for Highâ€Performance Twoâ€Dimensional Dion–Jacobson Pb–Sn Alloyed Perovskite Solar Cells. Energy Technology, 2022, 10, .	3.8	3
587	Precursor engineering for efficient and stable perovskite solar cells. Nanotechnology, 2023, 34, 055402.	2.6	5
588	Strategies for the preparation of high-performance inorganic mixed-halide perovskite solar cells. RSC Advances, 2022, 12, 32925-32948.	3.6	11
589	High efficiency perovskite solar cells via NaCl modified tin oxide electron transport layer. Organic Electronics, 2023, 113, 106677.	2.6	2
590	Evaluation and Demonstration of Slot-Die Coating for Perovskite Thin Film Mini-Modules for Space Photovoltaics. , 2022, , .		0
591	Semitransparent Perovskite Solar Cells for Photovoltaic Application. Solar Rrl, 2023, 7, .	5.8	2
592	Amplifying the Performance and Stability of Perovskite Solar Cells Using Fluorinated Salt as the Surface Passivator. Energy Technology, 2023, 11, .	3.8	4
593	Recent progress in perovskite solar cells: from device to commercialization. Science China Chemistry, 2022, 65, 2369-2416.	8.2	53
594	Minimizing the Voltage Deficit of Tin Halide Perovskite Solar Cells with Hydroxyureaâ€Doped PEDOT:PSS. Solar Rrl, 2023, 7, .	5.8	7
595	High-quality all-inorganic CsPbI2Br thin films derived from phase-pure intermediate for efficient wide-bandgap perovskite solar cells. Journal of Solid State Chemistry, 2023, 317, 123728.	2.9	6
596	Highly Efficient Flexible Perovskite Solar Cells through Pentylammonium Acetate Modification with Certified Efficiency of 23.35%. Advanced Materials, 2023, 35, .	21.0	58
597	Conformal Imidazolium 1D Perovskite Capping Layer Stabilized 3D Perovskite Films for Efficient Solar Modules. Advanced Science, 2022, 9, .	11.2	11
598	Strain Release and Defect Passivation in Formamidinium-Dominated Perovskite via a Novel in-Plane Thermal Gradient Assisted Crystallization Strategy. ACS Applied Materials & Interfaces, 2022, 14, 52007-52016.	8.0	6

#	Article	IF	CITATIONS
599	The effect of CO ₂ -doped spiro-OMeTAD hole transport layer on FA _(1â^'<i>x</i>) Cs _{<i>x</i>} PbI ₃ perovskite solar cells. Journal of Chemical Research, 2022, 46, 174751982211360.	1.3	0
600	Initializing film homogeneity to retard phase segregation for stable perovskite solar cells. Science, 2022, 378, 747-754.	12.6	81
601	Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations. Nature Materials, 2022, 21, 1396-1402.	27.5	74
602	Modulation of nucleation and crystallization in Pbl ₂ films promoting preferential perovskite orientation growth for efficient solar cells. Energy and Environmental Science, 2023, 16, 252-264.	30.8	49
603	Halogen engineering of 2D/3D tin halide perovskite for enhanced structural stability. Chemical Engineering Journal, 2023, 455, 140862.	12.7	11
604	Study of lead-free double perovskites X2AgBil6 (X = K, Rb, Cs) for solar cells and thermoelectric applications. Journal of Materials Research and Technology, 2023, 22, 913-922.	5.8	17
605	A residual strain regulation strategy based on quantum dots for efficient perovskite solar cells. Journal of Materials Chemistry A, 2023, 11, 868-877.	10.3	2
606	Functionalized polymer modified buried interface for enhanced efficiency and stability of perovskite solar cells. Nanoscale, 2023, 15, 2054-2060.	5.6	6
607	The effect of B-site doping in all-inorganic CsPbl _{<i>x</i>} Br _{3â^²<i>x</i>} absorbers on the performance and stability of perovskite photovoltaics. Energy and Environmental Science, 2023, 16, 372-403.	30.8	38
608	The race between complicated multiple cation/anion compositions and stabilization of FAPbI ₃ for halide perovskite solar cells. Journal of Materials Chemistry C, 2023, 11, 2449-2468.	5.5	3
609	High-performance flexible and self-powered perovskite photodetector enabled by interfacial strain engineering. Journal of Materials Chemistry C, 2023, 11, 600-608.	5.5	2
610	The progress and efficiency of CsPbI ₂ Br perovskite solar cells. Journal of Materials Chemistry C, 2023, 11, 426-455.	5.5	9
611	Chemical approaches for electronic doping in photovoltaic materials beyond crystalline silicon. Chemical Society Reviews, 2022, 51, 10016-10063.	38.1	11
612	Additive-associated antisolvent engineering of perovskite films for highly stable and efficient p–i–n perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 18303-18311.	5.5	5
613	Emerging Chalcohalide Materials for Energy Applications. Chemical Reviews, 2023, 123, 327-378.	47.7	34
614	A Selfâ€Assembled Verticalâ€Gradient and Wellâ€Dispersed MXene Structure for Flexible Largeâ€Area Perovskite Modules. Advanced Functional Materials, 2023, 33, .	14.9	3
615	Thienothiopheneâ€Assisted Property Optimization for Dopantâ€Free Ï€â€Conjugation Polymeric Hole Transport Material Achieving Over 23% Efficiency in Perovskite Solar Cells. Advanced Energy Materials, 2023, 13, .	19.5	18
616	Reconfiguration toward Selfâ€Assembled Monolayer Passivation for Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2023, 13, .	19.5	13

#	Article	IF	CITATIONS
617	Recent Progress Toward Commercialization of Flexible Perovskite Solar Cells: From Materials and Structures to Mechanical Stabilities. Advanced Energy and Sustainability Research, 2023, 4, .	5.8	10
618	Highly Selective Pd Nanosheet Aerogel Catalyst with Hybrid Strain Induced by Laser Irradiation and P Doping Postprocess. Small, 2023, 19, .	10.0	9
619	Boosting radiation of stacked halide layer for perovskite solar cells with efficiency over 25%. Joule, 2023, 7, 112-127.	24.0	27
620	Electrically Reliable Perovskite Photovoltaic Cells Against Instantaneous Kilovolt Stress. Advanced Energy Materials, 2023, 13, .	19.5	4
621	Antisolvent Choice Determines the Domain Distribution of Quasiâ€2D Perovskite for Blueâ€Emitting Perovskitesâ€Based Light Emitting Devices. Advanced Optical Materials, 2023, 11, .	7.3	5
622	Air Annealing Facilitates Crystallization Reconstruction of Quasiâ€2D Perovskite. Solar Rrl, 2023, 7, .	5.8	2
623	Molten Salt Strategy for Reproducible Evaporation of Efficient Perovskite Solar Cells. Advanced Functional Materials, 2023, 33, .	14.9	9
624	Green-solvent-soluble, highly efficient dopant-free hole-transporting material for perovskite solar cells. Applied Physics Express, 2023, 16, 016502.	2.4	2
625	CsPbBr ₃ :Na with an Adjustable Bandgap, Improved Luminescence Stability, and its Application in WLEDs with Excellent Color Quality and Vision Performance. Advanced Functional Materials, 2023, 33, .	14.9	5
626	Strain Relaxation for Perovskite Lattice Reconfiguration. Advanced Energy and Sustainability Research, 2023, 4, .	5.8	7
627	A Core@Dual–Shell Nanostructured SnO ₂ to Modulate the Buried Interfaces Toward Stable Perovskite Solar Cells With Minimized Energy Losses. Advanced Energy Materials, 2023, 13, .	19.5	14
628	Observation of abnormal photoluminescence upon structural phase competence and transition-induced disorder of stable α-FAPbI ₃ . Optical Materials Express, 2023, 13, 263.	3.0	2
629	Recent Progress and Challenges of Bismuthâ€Based Halide Perovskites for Emerging Optoelectronic Applications. Advanced Optical Materials, 2023, 11, .	7.3	19
630	Atomic Layer Deposited ZnO–SnO ₂ Electron Transport Bilayer for Wideâ€Bandgap Perovskite Solar Cells. Solar Rrl, 2023, 7, .	5.8	2
631	Inorganic lead-based halide perovskites: From fundamental properties to photovoltaic applications. Materials Today, 2022, 61, 191-217.	14.2	25
632	Improvement in Efficiency and Reproducibility for FAPbl ₃ Solar Cells with Rapid Crystallization. Energy & Fuels, 2023, 37, 791-797.	5.1	2
633	Stabilization of the Alkylammonium Cations in Halide Perovskite Thin Films by Waterâ€Mediated Proton Transfer. Advanced Materials, 2023, 35, .	21.0	1
634	Stabilizing CsPbI3 perovskite for photovoltaic applications. Matter, 2023, 6, 691-727.	10.0	14

#	Article	IF	CITATIONS
635	Suppressing non-radiative recombination in metal halide perovskite solar cells by synergistic effect of ferroelasticity. Nature Communications, 2023, 14, .	12.8	9
636	Rational Selection of the Lewis Base Molecules Targeted for Lead-Based Defects of Perovskite Solar Cells: The Synergetic Co-passivation of Carbonyl and Carboxyl Groups. Journal of Physical Chemistry Letters, 2023, 14, 653-662.	4.6	7
637	High‣fficiency Carbonâ€based CsPbI ₂ Br Perovskite Solar Cells from Dual Direction Thermal Diffusion Treatment with Cadmium Halides. Small, 2023, 19, .	10.0	8
638	Highly Efficient and Stable Wideâ€Bandgap Perovskite Solar Cells via Strain Management. Advanced Functional Materials, 2023, 33, .	14.9	17
639	Interfacial α-FAPbI3 phase stabilization by reducing oxygen vacancies in SnO2â^'x. Joule, 2023, 7, 380-397.	24.0	21
640	Highâ€ŧhroughput compositional mapping of tripleâ€cation tin–lead perovskites for highâ€efficiency solar cells. InformaÄnÃ-Materiály, 2023, 5, .	17.3	5
641	Naphthalene-imide Self-assembled Monolayers as a Surface Modification of ITO for Improved Thermal Stability of Perovskite Solar Cells. ACS Applied Energy Materials, 2023, 6, 667-677.	5.1	4
642	Simultaneous passivation on both A and X sites of halogen perovskite with magnesium benzoate. RSC Advances, 2023, 13, 2411-2417.	3.6	1
643	Modulating Interfacial Carrier Dynamics via Spatial Conformation toward Efficient and Stable Perovskite Solar Cells. Advanced Optical Materials, 2023, 11, .	7.3	5
644	Stacking Interactions and Photovoltaic Performance of Cs ₂ AgBiBr ₆ Perovskite. Solar Rrl, 2023, 7, .	5.8	4
645	Bulk Incorporation with 4â€Methylphenethylammonium Chloride for Efficient and Stable Methylammoniumâ€Free Perovskite and Perovskiteâ€6ilicon Tandem Solar Cells. Advanced Energy Materials, 2023, 13, .	19.5	14
646	Non-toxic solvent-processed tin-halide perovskite solar cells <i>via</i> weak coordination. Green Chemistry, 2023, 25, 1150-1156.	9.0	3
647	Toward commercialization with lightweight, flexible perovskite solar cells for residential photovoltaics. Joule, 2023, 7, 257-271.	24.0	23
648	Cetrimonium bromide and potassium thiocyanate assisted post-vapor treatment approach to enhance power conversion efficiency and stability of FAPbI ₃ perovskite solar cells. RSC Advances, 2023, 13, 1402-1411.	3.6	8
649	Lattice disorder influences the photocarrier dynamics in lead halide perovskites. Materials Horizons, 2023, 10, 875-880.	12.2	1
650	Hydrazone dye passivator for high-performance and stable perovskite solar cells. Dalton Transactions, 2023, 52, 1702-1710.	3.3	3
651	Optimization of All-Inorganic CsPbI3-Based Inverted Perovskite Solar Cells by Numerical Simulation. Journal of Electronic Materials, 2023, 52, 2216-2226.	2.2	7
652	Probing the stability of perovskite solar cell under working condition through an ultra-thin silver electrode: Beyond the halide ion diffusion and metal diffusion. Chemical Engineering Journal, 2023, 458, 141405.	12.7	4

#	Article	IF	CITATIONS
653	High-efficiency α-FAPbI3 perovskite solar cells based on one-dimensional TiO2 nanorod array scaffolds. Organic Electronics, 2023, 114, 106750.	2.6	3
654	Improved photovoltaic performance and stability of perovskite solar cells with device structure of (ITO/SnO2/CH3NH3Pbl3/rGO+spiro-MeOTAD/Au). Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 289, 116227.	3.5	12
655	A Complete Picture of Cation Dynamics in Hybrid Perovskite Materials from Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2023, 145, 978-990.	13.7	6
656	Binary Microcrystal Additives Enabled Antisolventâ€Free Perovskite Solar Cells with High Efficiency and Stability. Advanced Energy Materials, 2023, 13, .	19.5	12
657	Backbone Engineering Enables Highly Efficient Polymer Holeâ€Transporting Materials for Inverted Perovskite Solar Cells. Advanced Materials, 2023, 35, .	21.0	29
658	Phase-segregation free quasi-2D perovskite/organic tandem solar cells with low <i>V</i> _{oc} loss and efficiency beyond 21%. Journal of Materials Chemistry A, 2023, 11, 6877-6885.	10.3	3
659	The Influence of Different Recombination Pathways on Hysteresis in Perovskite Solar Cells with Ion Migration. Inorganics, 2023, 11, 52.	2.7	0
660	Lowâ€Temperature Synthesis of SnO ₂ Nanocrystals as Electron Transport Layers for Highâ€Efficiency CsPbI ₂ Br Perovskite Solar Cells. Small Science, 2023, 3, .	9.9	1
661	A vertical antioxidant strategy for high performance wide band gap tin perovskite photovoltaics. Journal of Materials Chemistry A, 2023, 11, 4579-4586.	10.3	8
662	Stabilization of Perovskite Lattice and Suppression of Sn ²⁺ /Sn ⁴⁺ Oxidation via Formamidine Acetate for High Efficiency Tin Perovskite Solar Cells. Advanced Functional Materials, 2023, 33, .	14.9	24
663	Low-dimensional halide perovskite for solar cell applications. , 2023, , 239-265.		1
664	Challenges in the development of metal-halide perovskite single crystal solar cells. Journal of Materials Chemistry A, 2023, 11, 3822-3848.	10.3	3
665	A conformally bonded molecular interface retarded iodine migration for durable perovskite solar cells. Energy and Environmental Science, 2023, 16, 1597-1609.	30.8	18
666	Zn ²⁺ ion doping for structural modulation of lead-free Sn-based perovskite solar cells. Journal of Materials Chemistry A, 2023, 11, 10605-10611.	10.3	2
667	Hybrid 1D/3D-Structured Perovskite as a Highly Selective and Stable Sensor for NO2 Detection at Room Temperature. Molecules, 2023, 28, 2615.	3.8	4
668	Mitigating lattice strain and phase segregation of mixed-halide perovskite films via dual chloride additive strategy toward highly efficient and stable perovskite solar cells. Journal of Power Sources, 2023, 561, 232753.	7.8	6
669	Photoexcitation of perovskite precursor solution to induce high-valent iodoplumbate species for wide bandgap perovskite solar cells with enhanced photocurrent. Scientific Reports, 2023, 13, .	3.3	3
670	Highly Stable Perovskite Solar Cells by Reducing Residual <scp>Waterâ€Induced</scp> Decomposition of Perovskite. Chinese Journal of Chemistry, 2023, 41, 1594-1602.	4.9	1

		CITATION REPORT		
#	ARTICLE Benzothiadiazole-based materials for organic solar cells. Chinese Chemical Letters, 2024	1 35 108438	IF	Citations
671	benzornadiazoie-based materiais for organic solar cells. Chinese Chemical Letters, 2024	·, 55, 100450.	9.0	1
672	Room temperature synthesis of highly stable near-infrared FAPbI3@TEOS perovskite pho light-emitting diodes. Ceramics International, 2023, 49, 15802-15810.	osphor for NIR	4.8	2
673	Enhanced moisture-resistant and highly efficient perovskite solar cells via surface treatm long-chain alkylammonium iodide. Applied Surface Science, 2023, 623, 157003.	ient with	6.1	2
674	Self-crystallization mechanism of perovskite films for improving performance of perovsk cells. Materials Research Bulletin, 2023, 162, 112209.	ite solar	5.2	0
675	Structure stabilized with robust molecular cation N(CH3)4+ in high efficiency perovskite Materials Today Chemistry, 2023, 30, 101511.	2 solar cells.	3.5	1
676	Low dark current and high stability X-ray detector based on FAPbI3/Ga2O3 heterojunctic Alloys and Compounds, 2023, 941, 168989.	on. Journal of	5.5	2
677	Springâ€Like Ammonium Salt Assisting Stress Release for Lowâ€Temperature Deposited Films Toward Flexible Photovoltaic Application. Advanced Functional Materials, 2023, 33	l FAPbI ₃ }, .	14.9	13
678	Reduced <i>V</i> _{OC} Deficit of Mixed Lead–Tin Perovskite Solar Cells via and Synergistic Passivation Additives. Small Methods, 2023, 7, .	Strainâ€Releasing	8.6	6
679	Instability of solution-processed perovskite films: origin and mitigation strategies. Mater 2023, 2, 012102.	ials Futures,	8.4	11
680	A Polymer Strategy toward Highâ€Performance Multifunctional Perovskite Optoelectror Polymer Matrix to Device Applications. Advanced Optical Materials, 2023, 11, .	nics: From	7.3	4
681	Highly Efficient and Stable FAâ€Based Quasiâ€2D Ruddlesden–Popper Perovskite Sola Incorporation of βâ€Fluorophenylethanamine Cations. Advanced Materials, 2023, 35, .	ar Cells by the	21.0	23
682	Current Understanding of Band-Edge Properties of Halide Perovskites: Urbach Tail, Rash and Exciton Binding Energy. Journal of Physical Chemistry Letters, 2023, 14, 1592-1603	ba Splitting, ,	4.6	15
683	Additive engineering for highly efficient and stable perovskite solar cells. Applied Physics 2023, 10, .	; Reviews,	11.3	13
684	Additive effects of CuPcX4-TCNQ on CH3NH3PbI3 perovskite solar cells. Journal of Mate Materials in Electronics, 2023, 34, .	erials Science:	2.2	1
685	Probing proton diffusion as a guide to environmental stability in powder-engineered FAF CsFAPbI3 perovskites. Cell Reports Physical Science, 2023, 4, 101304.	'bI3 and	5.6	2
686	Nearâ€Stoichiometric and Homogenized Perovskite Films for Solar Cells with Minimized Variation. Angewandte Chemie - International Edition, 2023, 62, .	Performance	13.8	13
687	Near‣toichiometric and Homogenized Perovskite Films for Solar Cells with Minimized Variation. Angewandte Chemie, 2023, 135, .	Performance	2.0	3
688	Doping organic hole-transport materials for high-performance perovskite solar cells. Jour Semiconductors, 2023, 44, 020202.	nal of	3.7	0

#	Article	IF	CITATIONS
689	A multifunctional additive strategy to stabilize the precursor solution and passivate film defects for MA-free perovskite solar cells with an efficiency of 22.75%. Materials Today Energy, 2023, 33, 101269.	4.7	3
690	Fully Methylammonium-Free Stable Formamidinium Lead Iodide Perovskite Solar Cells Processed under Humid Air Conditions. ACS Applied Materials & Interfaces, 2023, 15, 13353-13362.	8.0	5
691	Halide-chalcogenide hetero-structure for efficient and stable perovskite solar cells. Chemical Engineering Journal, 2023, 462, 142214.	12.7	2
692	Efficient Inorganic Vaporâ€Assisted Defects Passivation for Perovskite Solar Module. Advanced Materials, 2023, 35, .	21.0	10
693	Multifunctional Green Solvent for Efficient Perovskite Solar Cells. Electronic Materials Letters, 2023, 19, 462-470.	2.2	4
694	In-situ growth of low-dimensional perovskite-based insular nanocrystals for highly efficient light emitting diodes. Light: Science and Applications, 2023, 12, .	16.6	17
695	<i>In Situ</i> and <i>Operando</i> Characterizations of Metal Halide Perovskite and Solar Cells: Insights from Lab-Sized Devices to Upscaling Processes. Chemical Reviews, 2023, 123, 3160-3236.	47.7	15
696	Intrinsic Dipole Arrangement to Coordinate Energy Levels for Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2023, 35, .	21.0	20
697	Deciphering the Roles of MA-Based Volatile Additives for α-FAPbI ₃ to Enable Efficient Inverted Perovskite Solar Cells. Journal of the American Chemical Society, 2023, 145, 5920-5929.	13.7	43
698	Pureâ€ŀodide Wideâ€Bandgap Perovskites for Highâ€Efficiency Solar Cells by Crystallization Control. Advanced Functional Materials, 2023, 33, .	14.9	3
699	Bright and stable perovskite light-emitting diodes in the near-infrared range. Nature, 2023, 615, 830-835.	27.8	87
700	Surface in situ reconstruction of inorganic perovskite films enabling long carrier lifetimes and solar cells with 21% efficiency. Nature Energy, 2023, 8, 372-380.	39.5	76
701	Stable FAPbI ₃ hydrate structure by kinetics negotiation for solar cells. Sustainable Energy and Fuels, 2023, 7, 1974-1980.	4.9	3
702	Printingâ€Induced Alignment Network Design of Polymer Matrix for Stretchable Perovskite Solar Cells with Over 20% Efficiency. Advanced Functional Materials, 2023, 33, .	14.9	5
703	Molecular exchange and passivation at interface afford high-performing perovskite solar cells with efficiency over 24%. Journal of Energy Chemistry, 2023, 82, 219-227.	12.9	7
704	Stress compensation based on interfacial nanostructures for stable perovskite solar cells. , 2023, 2, 348-359.		11
705	Tripodal Triazatruxene Derivative as a Face-On Oriented Hole-Collecting Monolayer for Efficient and Stable Inverted Perovskite Solar Cells. Journal of the American Chemical Society, 2023, 145, 7528-7539.	13.7	26
706	An Overview of Lead, Tin, and Mixed Tin–Leadâ€Based ABI ₃ Perovskite Solar Cells. Advanced Energy and Sustainability Research, 2023, 4, .	5.8	12

#	ARTICLE	IF	CITATIONS
707	Solvent engineering for triple cationic ITO-based mesoscopic tin perovskite solar cells. Chemical Engineering Journal, 2023, 464, 142635.	12.7	4
708	Stabilization of Component-Pure α-FAPbI ₃ via Volatile Additives for Stable Photovoltaics. ACS Applied Materials & Interfaces, 2023, 15, 16818-16827.	8.0	4
709	High-performance p–i–n perovskite photodetectors and image sensors with long-term operational stability enabled by a corrosion-resistant titanium nitride back electrode. Nanoscale, 2023, 15, 7803-7811.	5.6	6
710	An ionic liquid as an interface modulator for highly efficient and stable perovskite solar cells. Sustainable Energy and Fuels, 2023, 7, 1992-2002.	4.9	0
711	Ultrafast self-powered CsPbCl ₃ ultraviolet photodetectors with choline chloride for surface passivation and charge transport regulation. Journal of Materials Chemistry C, 0, , .	5.5	3
712	A Review of Perovskite Nanocrystal Applications in Luminescent Solar Concentrators. Advanced Optical Materials, 2023, 11, .	7.3	4
713	Effect of Residual Chloride in FAPbI ₃ Film on Photovoltaic Performance and Stability of Perovskite Solar Cell. ACS Energy Letters, 2023, 8, 2122-2129.	17.4	12
714	Advantageous properties of halide perovskite quantum dots towards energy-efficient sustainable applications. Green Energy and Environment, 2023, , .	8.7	4
715	R4N+ and Clâ^' stabilized α-formamidinium lead triiodide and efficient bar-coated mini-modules. Joule, 2023, 7, 797-809.	24.0	6
716	Dual Interface Passivation in Mixed-Halide Perovskite Solar Cells by Bilateral Amine. ACS Applied Energy Materials, 0, , .	5.1	0
717	Progress in photocapacitors: A review. Functional Materials Letters, 2023, 16, .	1.2	1
718	Stable dual cations perovskite nanocrystals as absorbers for perovskite solar cells with efficiencies exceeding 24%. Bulletin of the Korean Chemical Society, 2023, 44, 658-664.	1.9	2
719	Efficient Liquidâ€5olid Coregulation Engineering in Mixedâ€cation Lead Mixedâ€halide Perovskite for Photovoltaic Performance Improvement. Solar Rrl, 0, , .	5.8	0
720	Role of surface terminations in the chemical stability of CH3NH3PbI3 perovskite in combined light, H2O, and O2 environments: DFT/AIMD calculations and experimental validation. Materials Today Advances, 2023, 18, 100370.	5.2	1
721	Surface Reconstruction for Efficient and Stable Monolithic Perovskite/Silicon Tandem Solar Cells with Greatly Suppressed Residual Strain. Advanced Materials, 2023, 35, .	21.0	12
722	Single-Crystal Halide Perovskites for Transistor Applications. , 2023, , 265-296.		0
723	Regulating active hydrogen adsorbed on grain boundary defects of nano-nickel for boosting ammonia electrosynthesis from nitrate. Energy and Environmental Science, 2023, 16, 2611-2620.	30.8	48
724	Spontaneous Hybrid Nanoâ€Domain Behavior of the Organic–Inorganic Hybrid Perovskites. Advanced Functional Materials, 2023, 33, .	14.9	4

	CITATION RE	PORT	
# 725	ARTICLE 1D Cholineâ€Pbl ₃ â€Based Heterostructure Boosts Efficiency and Stability of CsPbl ₃ Perovskite Solar Cells. Angewandte Chemie, 2023, 135, .	IF 2.0	CITATIONS
726	1D Cholineâ€Pbl ₃ â€Based Heterostructure Boosts Efficiency and Stability of CsPbl ₃ Perovskite Solar Cells. Angewandte Chemie - International Edition, 2023, 62, .	13.8	21
727	Highestâ€Efficiency Flexible Perovskite Solar Module by Interface Engineering for Efficient Chargeâ€Transfer. Advanced Materials, 2023, 35, .	21.0	12
728	Modifying a D–A–݀–A–D HTM system for higher hole mobility by the <i>meta</i> -substitution strategy to weaken the electron-donating ability of the donor unit: a DFT study. Nanoscale, 2023, 15, 12048-12063.	5.6	1
729	Long-chain anionic surfactants enabling stable perovskite/silicon tandems with greatly suppressed stress corrosion. Nature Communications, 2023, 14, .	12.8	14
730	Origins, Impacts, and Mitigation Strategies of Strain in Efficient and Stable Perovskite Solar Cells. Small Science, 2023, 3, .	9.9	8
731	Fullerene modification of WO ₃ electron transport layer toward highâ€efficiency MAâ€free perovskite solar cells with eliminated lightâ€soaking effect. , 2023, 2, 459-469.		5
732	Low-cost biodegradable lead sequestration film for perovskite solar cells. Journal of Energy Chemistry, 2023, 84, 311-320.	12.9	1
733	Interfacial modification in perovskite-based tandem solar cells. Nano Convergence, 2023, 10, .	12.1	6
734	Stabilization of photoactive phases for perovskite photovoltaics. Nature Reviews Chemistry, 2023, 7, 462-479.	30.2	31
735	Strain Regulation via Pseudo Halideâ€Based Ionic Liquid toward Efficient and Stable <i>α</i> â€FAPbI ₃ Inverted Perovskite Solar Cells. Advanced Energy Materials, 2023, 13, .	19.5	19
736	Facet Engineering: A Promising Pathway toward Highly Efficient and Stable Perovskite Photovoltaics. Journal of Physical Chemistry Letters, 2023, 14, 4409-4418.	4.6	4
737	Towards the optimal interstitial doping for halide perovskites. , 2023, 2, e9120071.		2
738	Buried interface defects passivation of perovskite film by choline halide for high performance inverted perovskite solar cells with efficiency exceeding 22%. Journal of Alloys and Compounds, 2023, 959, 170478.	5.5	3
739	In situ epitaxial growth of blocking structure in mixed-halide wide-band-gap perovskites for efficient photovoltaics. Joule, 2023, 7, 1363-1381.	24.0	7
740	Copperâ€Đoped In _{<i>x</i>} Ga _{2â^'<i>x</i>} O ₃ Nanocrystals as Efficient Hole Transport Materials of Perovskite Solar Cells by Regulating Energy Levels. Solar Rrl, 0, , .	5.8	0
741	Surface-bulk-passivated perovskite films via 2-thiophenemethylammonium bromide and PbBr2 for air-processed perovskite solar cells with high-stability. Chemical Engineering Journal, 2023, 468, 143446.	12.7	3
742	Highly efficient and stable quasi two-dimensional perovskite solar cells via synergistic effect of dual additives. Journal of Colloid and Interface Science, 2023, 646, 922-931.	9.4	3

#	Article	IF	CITATIONS
743	A Novel Multiâ€Functional Thiopheneâ€Based Organic Cation as Passivation, Crystalline Orientation, and Organic Spacer Agent for Lowâ€Dimensional 3D/1D Perovskite Solar Cells. Advanced Optical Materials, 2023, 11, .	7.3	1
744	Crystal-Liquid-Glass Transition and Near-Unity Photoluminescence Quantum Yield in Low Melting Point Hybrid Metal Halides. Journal of the American Chemical Society, 2023, 145, 12360-12369.	13.7	18
745	Strain-Balanced Organic Semiconductor Film for Improving the Stability of Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2023, 15, 27010-27017.	8.0	1
746	Multifunctional Additive CdAc ₂ for Efficient Perovskiteâ€Based Solar Cells. Advanced Materials, 2023, 35, .	21.0	11
747	Orientation and Grain Size in MAPbI ₃ Thin Films: Influence on Phase Transition, Disorder, and Defects. Journal of Physical Chemistry C, 2023, 127, 10563-10573.	3.1	4
748	Tunable Molecular Packing of Dopant-Free Hole-Transport Polymers for Perovskite Solar Cells. ACS Energy Letters, 2023, 8, 2878-2885.	17.4	10
749	Controlling the Intermediate Phase to Improve the Crystallinity and Orientation of Cs ₃ Sb ₂ Cl _x I _{9â€x} Films for Efficient Solar Cells. Advanced Functional Materials, 2023, 33, .	14.9	5
750	Application of perovskites in solar cells. , 2023, , 485-517.		0
751	Stability and Degradation in Lead Halide Perovskite Nanocrystals via Regulation of Lattice Strain. Journal of Physical Chemistry Letters, 2023, 14, 5481-5488.	4.6	2
752	Selfâ€Assembled 1D/3D Perovskite Heterostructure for Stable Allâ€Airâ€Processed Perovskite Solar Cells with Improved Openâ€Circuit Voltage. ChemSusChem, 2023, 16, .	6.8	3
753	Suppressing the Photoinduced Halide Segregation in Wideâ€Bandgap Perovskite Solar Cells by Strain Relaxation. Advanced Functional Materials, 2023, 33, .	14.9	8
754	Homologous post-treatment strategy enabling phase-pure α-FAPbI ₃ films. Nanotechnology, 2023, 34, 365707.	2.6	1
755	Surface Reconstruction of Lead-Free Perovskite Cs2Ag0.6Na0.4InCl6:Bi by Hydroxylation with Blue-Light-Excited Performance. Journal of Colloid and Interface Science, 2023, 648, 865-875.	9.4	0
756	A Deformable Additive on Defects Passivation and Phase Segregation Inhibition Enables the Efficiency of Inverted Perovskite Solar Cells over 24%. Advanced Materials, 2023, 35, .	21.0	28
757	High-performance flexible organic field effect transistors with print-based nanowires. Microsystems and Nanoengineering, 2023, 9, .	7.0	1
758	Synergistic Defect Passivation by Metformin Halides for Improving Perovskite Solar Cell Performance. Journal of Physical Chemistry C, 2023, 127, 11845-11853.	3.1	3
759	Quantification of strain and its impact on the phase stabilization of all-inorganic cesium lead iodide perovskites. Matter, 2023, , .	10.0	0
760	Solâ€Gel Prepared Spinel HTLs for Assembling 20% Efficiency Perovskite Solar Cell in Air Without Using Antiâ€Solvent and Toxic Solvent. Small Methods, 2023, 7, .	8.6	1

#	Article	IF	CITATIONS
761	Lattice Strain Regulation Enables Highâ€Performance Formamidinium Perovskite Photovoltaics. Advanced Materials, 2023, 35, .	21.0	12
762	The influence of the flexoelectric effect on materials properties with the emphasis on photovoltaic and related applications: A review. Materials Today, 2023, 67, 256-298.	14.2	4
763	Synergistic Passivation via Lewis Coordination and Electrostatic Interaction for Efficient Perovskite Solar Cells. ACS Applied Energy Materials, 0, , .	5.1	1
764	Stabilizing Bottom Side of Perovskite via Preburying Cesium Formate toward Efficient and Stable Solar Cells. Advanced Functional Materials, 2023, 33, .	14.9	5
765	Dual Crossâ€Linked Functional Layers for Stable and Efficient Inverted Perovskite Solar Cells. Solar Rrl, 2023, 7, .	5.8	1
766	Hole Transport Materials for Tin-Based Perovskite Solar Cells: Properties, Progress, Prospects. Molecules, 2023, 28, 3787.	3.8	2
767	Interface Modification by FAI@ZIFâ€8 for High‣fficiency Perovskite Solar Cells. Solar Rrl, 2023, 7, .	5.8	0
768	Understanding the Degradation of Methylenediammonium and Its Role in Phase-Stabilizing Formamidinium Lead Triiodide. Journal of the American Chemical Society, 2023, 145, 10275-10284.	13.7	14
769	First-principles calculation analysis and photovoltaic properties of Cu compound-added perovskite solar cells. Japanese Journal of Applied Physics, 2023, 62, SK1029.	1.5	9
770	Efficient and Stable CsPbl ₂ Br Inorganic Perovskite Solar Cell Co-Modified with Ionic Liquids and Quantum Dots. ACS Applied Energy Materials, 2023, 6, 5378-5387.	5.1	5
771	Amino-acid-type alkylamine additive for high-performance wide-bandgap perovskite solar cells. Chemical Engineering Journal, 2023, 468, 143341.	12.7	2
772	A Review on Strategies to Fabricate and Stabilize Phaseâ€Pure αâ€FAPbI ₃ Perovskite Solar Cells. Solar Rrl, 2023, 7, .	5.8	0
773	Photovoltaic Performance of FAPbl ₃ Perovskite Is Hampered by Intrinsic Quantum Confinement. ACS Energy Letters, 2023, 8, 2543-2551.	17.4	2
774	Crystal Growth and Photoelectric Properties of Dimethylammonium Doped CsPbBr ₃ . Crystal Research and Technology, 2023, 58, .	1.3	1
775	Advances to Stabilize Photoactive Phase of <scp>FAPbI₃</scp> Perovskite ^{â€} . Chinese Journal of Chemistry, 2023, 41, 2730-2745.	4.9	2
776	Void-free buried interface for scalable processing of p-i-n-based FAPbI3 perovskite solar modules. Joule, 2023, 7, 1574-1592.	24.0	7
777	Amplified spontaneous emission from waveguides based on hybrid quasi-2D perovskites of Dion–Jacobson and Ruddlesden–Popper phases. Journal of Materials Chemistry C, 2023, 11, 10043-10050.	5.5	2
778	Trivalent Europiumâ€Doped CsCl Quantum Dots for MAâ€Free Perovskite Solar Cells with Inherent Bandgap through Lattice Strain Compensation. Advanced Materials, 2023, 35, .	21.0	4

#	Article	IF	CITATIONS
779	Deciphering the role of (Er3+/Nd3+) co-doping effect on TiO2 as an improved electron transport layer in perovskite solar cells. Solar Energy, 2023, 262, 111801.	6.1	3
780	Fabrication of perovskite solar cells with PCE of 21.84% in open air by bottom-up defect passivation and stress releasement. Chemical Engineering Journal, 2023, 471, 144279.	12.7	3
781	Terephthalic acid-driven organic–inorganic perovskite solar cells with enhanced humidity stability. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	0
782	Two-step perovskite crystallization assisted with F-containing additives enables over 23% efficiency in perovskite solar cells. Journal of Solid State Chemistry, 2023, 326, 124195.	2.9	Ο
783	Regulating the crystallization dynamics through hydrogen bonding for high efficiency tin halide perovskite solar cells. Chemical Communications, 0, , .	4.1	1
784	2D/3D heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells. Nature Energy, 2023, 8, 946-955.	39.5	70
785	Synergy of 3D and 2D Perovskites for Durable, Efficient Solar Cells and Beyond. Chemical Reviews, 2023, 123, 9565-9652.	47.7	21
786	Lessons learned: how to report XPS data incorrectly about lead-halide perovskites. Materials Chemistry Frontiers, 2023, 7, 3797-3802.	5.9	23
787	Inverted Wide-Bandgap 2D/3D Perovskite Solar Cells with >22% Efficiency and Low Voltage Loss. Nano Letters, 2023, 23, 6705-6712.	9.1	6
789	Extrinsic Interstitial IonsÂin Metal HalideÂPerovskites: A Review. Small, 2023, 19, .	10.0	3
789 790	Extrinsic Interstitial IonsÂin Metal HalideÂPerovskites: A Review. Small, 2023, 19, . Strain Engineering Toward Highâ€Performance Formamidiniumâ€Based Perovskite Solar Cells. Solar Rrl, 2023, 7, .	10.0 5.8	3 10
	Strain Engineering Toward Highâ€Performance Formamidiniumâ€Based Perovskite Solar Cells. Solar Rrl,		
790	Strain Engineering Toward Highâ€Performance Formamidiniumâ€Based Perovskite Solar Cells. Solar Rrl, 2023, 7, . Phthalimide additive-promoted ambient fabrication of inorganic CsPbI2Br perovskite for highly	5.8	10
790 791	Strain Engineering Toward Highâ€Performance Formamidiniumâ€Based Perovskite Solar Cells. Solar Rrl, 2023, 7, . Phthalimide additive-promoted ambient fabrication of inorganic CsPbl2Br perovskite for highly efficient and stable solar cells. Journal of Alloys and Compounds, 2023, 965, 171441.	5.8 5.5	10 3
790 791 792	Strain Engineering Toward Highâ€Performance Formamidiniumâ€Based Perovskite Solar Cells. Solar Rrl, 2023, 7, . Phthalimide additive-promoted ambient fabrication of inorganic CsPbi2Br perovskite for highly efficient and stable solar cells. Journal of Alloys and Compounds, 2023, 965, 171441. Tuning Phase Purity in Chiral 2D Perovskites. Advanced Optical Materials, 2024, 12, . Synergistic Effect of Precursor and Interface Engineering Enables High Efficiencies in FAPbi3	5.8 5.5 7.3	10 3 0
790 791 792 793	Strain Engineering Toward Highâ€Performance Formamidiniumâ€Based Perovskite Solar Cells. Solar Rrl, 2023, 7, . Phthalimide additive-promoted ambient fabrication of inorganic CsPbl2Br perovskite for highly efficient and stable solar cells. Journal of Alloys and Compounds, 2023, 965, 171441. Tuning Phase Purity in Chiral 2D Perovskites. Advanced Optical Materials, 2024, 12, . Synergistic Effect of Precursor and Interface Engineering Enables High Efficiencies in FAPbI3 Perovskite Solar Cells. Materials, 2023, 16, 5352. Photo-excited charge carrier lifetime enhanced by slow cation molecular dynamics in lead iodide	5.8 5.5 7.3 2.9	10 3 0 1
790 791 792 793 794	Strain Engineering Toward Highâ€Performance Formamidiniumâ€Based Perovskite Solar Cells. Solar Rrl, 2023, 7, . Phthalimide additive-promoted ambient fabrication of inorganic CsPbl2Br perovskite for highly efficient and stable solar cells. Journal of Alloys and Compounds, 2023, 965, 171441. Tuning Phase Purity in Chiral 2D Perovskites. Advanced Optical Materials, 2024, 12, . Synergistic Effect of Precursor and Interface Engineering Enables High Efficiencies in FAPbl3 Perovskite Solar Cells. Materials, 2023, 16, 5352. Photo-excited charge carrier lifetime enhanced by slow cation molecular dynamics in lead iodide perovskite FAPbl3. Journal of Applied Physics, 2023, 134, . Patch-healed grain boundary strategy to stabilize perovskite films for high-performance solar	 5.8 5.5 7.3 2.9 2.5 	10 3 0 1 2

#	Article	IF	CITATIONS
798	Tailoring Tensile Strain in Pb–Sn Perovskite Film for Efficient and Stable Narrowâ€Bandgap Perovskite Solar Cells. Solar Rrl, 0, , .	5.8	0
799	Defect Passivation and Lithium Ion Coordination Via Hole Transporting Layer Modification for High Performance Inorganic Perovskite Solar Cells. Advanced Materials, 2024, 36, .	21.0	2
800	Vapor Deposition of FAI on SnO ₂ Provides Interface Modification and Crystallization Control for High-Performance and Stable Perovskite Solar Cells. ACS Applied Nano Materials, 0, , .	5.0	0
801	Highly Efficient and Stable Inverted Perovskite Solar Cell Using Pure Î′â€FAPbI ₃ Single Crystals. Small, 2023, 19, .	10.0	1
802	Fabricating a type II heterojunction by growing lead-free perovskite Cs ₂ AgBiBr ₆ in situ on graphite-like g-C ₃ N ₄ nanosheets for enhanced photocatalytic CO ₂ reduction. Nanoscale, 0, , .	5.6	0
803	Low-temperature synergistic effect of MA and Cl towards high-quality α-FAPbI ₃ films for humid-air-processed perovskite solar cells. Dalton Transactions, 0, , .	3.3	1
804	Stabilizing Precursor Solution and Controlling Crystallization Kinetics Simultaneously for Highâ€Performance Perovskite Solar Cells. Advanced Materials, 2023, 35, .	21.0	8
805	Highly Stable and Efficient Formamidiniumâ€Based 2D Ruddlesden–Popper Perovskite Solar Cells via Lattice Manipulation. Advanced Materials, 2023, 35, .	21.0	2
806	Postâ€Treatment of Metal Halide Perovskites: From Morphology Control, Defect Passivation to Band Alignment and Construction of Heterostructures. Advanced Energy Materials, 2023, 13, .	19.5	9
807	Boosting the performance of MA-free inverted perovskite solar cells <i>via</i> multifunctional amino acid additives. Journal of Materials Chemistry C, 2023, 11, 11157-11166.	5.5	4
808	Accelerating the Discovery of Hybrid Perovskites with Targeted Band Gaps via Interpretable Machine Learning. ACS Applied Materials & Interfaces, 2023, 15, 40419-40427.	8.0	2
809	Advancing Efficiency and Stability of Lead, Tin, and Lead/Tin Perovskite Solar Cells: Strategies and Perspectives. Solar Rrl, 2023, 7, .	5.8	2
810	Strain Regulation and Photophysical Properties in Halide Perovskite. Solar Rrl, 2023, 7, .	5.8	0
811	Rationally designed hole transporting layer system for efficient and stable perovskite solar cells. EcoMat, 2023, 5, .	11.9	1
812	Effect of defect states on CH3NH3PbI3 solar cell efficiency by varying application time of antisolvents. Applied Physics A: Materials Science and Processing, 2023, 129, .	2.3	0
813	Perylene-Based Conjugated Polymers for Efficient and Stable Perovskite Solar Cells: The Superior Role of the Alkyl Side Chain over Oligo(ethylene glycol). Macromolecules, 2023, 56, 6712-6721.	4.8	0
814	A literature overview of cell layer materials for perovskite solar cells. MRS Communications, 2023, 13, 1076-1086.	1.8	1
815	Strain Effects on Flexible Perovskite Solar Cells. Advanced Science, 2023, 10, .	11.2	2

#	Article	IF	CITATIONS
816	Progress and issues in p-i-n type perovskite solar cells. , 2024, 3, 100025.		4
817	Sb3+ and Sm3+ co-doped lead-free Cs2NaInCl6 double perovskite nanocrystals for single-component cold white emitter. Journal of Rare Earths, 2023, , .	4.8	1
818	Impact of compact TiO2 interface modification on the crystallinity of perovskite solar cells. Scientific Reports, 2023, 13, .	3.3	2
819	2D/3D heterojunction engineering at the grain boundaries towards high-performance inverted MA-free perovskite solar cells. Organic Electronics, 2023, 122, 106918.	2.6	1
820	Origin of Microstrain in FAPbI ₃ Perovskite and Its Effect on the Stability. Solar Rrl, 0, , .	5.8	0
821	A stress relaxation strategy for preparing high-quality organic–inorganic perovskite thin films <i>via</i> a vapor–solid reaction. Journal of Materials Chemistry A, 2023, 11, 23387-23396.	10.3	2
822	Bandgap Engineered Double-Cation/Double-Halide Quasi-Cubic Perovskite for Highly Efficient (>36%) Indoor Photovoltaics. IEEE Journal of Photovoltaics, 2023, , 1-8.	2.5	0
823	Potential Functionality of Perovskite Solar Cells: A Brief Review. , 2023, 1, 4-9.		0
824	Strain Control of Mixedâ€Halide Wideâ€Bandgap Perovskites for Highly Efficient and Stable Solar Cells. Solar Rrl, 2023, 7, .	5.8	0
825	Doubleâ€ S ide Passivation of Perovskite Solar Cells for High Performance and Stability. Advanced Functional Materials, 2023, 33, .	14.9	2
826	Leflunomide: A versatile additive for defect reduction, enhanced optoelectronic properties and environmental stability of perovskite films. Nano Research, 0, , .	10.4	0
827	High-performance all-inorganic perovskite light-emitting diodes enabled by a self-assembled molecule additive via defect passivation and strain relaxation. Journal of Alloys and Compounds, 2023, 969, 172459.	5.5	0
828	Formation of Low-Dimensional Double Perovskite Layers by ABS and PEAI Sequential Treatment for Achieving High-Performance CsPbI ₃ Solar Cells. ACS Energy Letters, 2023, 8, 4608-4616.	17.4	2
829	Crystallization Control Based on the Regulation of Solvent–Perovskite Coordination for Highâ€Performance Ambient Printable FAPbI ₃ Perovskite Solar Cells. Advanced Materials, 2024, 36, .	21.0	1
830	Crystallization of FAPbI3: Polytypes and stacking faults. Journal of Chemical Physics, 2023, 159, .	3.0	0
831	Two dimensional perovskites. Semiconductors and Semimetals, 2023, , .	0.7	0
832	Homogenizing out-of-plane cation composition in perovskite solar cells. Nature, 2023, 624, 557-563.	27.8	41
833	Mitigating Environmental Effects in Halide Perovskites through Hybrid Perovskite-Polymer Nanocomposites: A Short Review. Photonics, 2023, 10, 1242.	2.0	0

#	Article	IF	CITATIONS
834	Tuning Film Stresses for Open-Air Processing of Stable Metal Halide Perovskites. ACS Applied Materials & Interfaces, 2023, 15, 51117-51125.	8.0	1
835	Achieving Ideal and Environmentally Stable nâ€Type Charge Transport in Polymer Fieldâ€Effect Transistors. Small, 0, , .	10.0	0
836	Copper doped lanthanum hydroxide nanorods as a low temperature processable hole transport material for perovskite solar cells. Journal of Power Sources, 2024, 590, 233797.	7.8	0
837	Light-induced micro-strain regulation and charge carrier dynamics of (FA0.83MA0.17)0.95Cs0.05Pb(I0.83Br0.17)3 hybrid perovskite films. Optical Materials, 2023, 146, 114564.	3.6	0
838	Advances in Hole Transport Materials for Layered Casting Solar Cells. Polymers, 2023, 15, 4443.	4.5	1
839	Effect of Chloride Incorporation on the Intermediate Phase and Film Morphology of Methylammonium Lead Halide Perovskites. ACS Omega, 2023, 8, 42711-42721.	3.5	0
840	Effects of ethylammonium and rubidium addition to guanidinium-based CH3NH3PbI3 perovskite photovoltaic devices prepared at 190°C in ambient air. Materials Today Communications, 2024, 38, 107623.	1.9	0
841	Role of Mixed-Cation Perovskites in Hole Conductor-Free Perovskite Solar Cells. ACS Applied Energy Materials, 2023, 6, 11005-11011.	5.1	0
842	Asymmetric Small Molecule as Interface "Governor―for FAPbI ₃ Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2023, 14, 9883-9891.	4.6	0
843	Recent Progress on Phase Engineering of Nanomaterials. Chemical Reviews, 2023, 123, 13489-13692.	47.7	3
844	A Selfâ€Assembled 3D/0D Quasi ore–Shell Structure as Internal Encapsulation Layer for Stable and Efficient FAPbI ₃ Perovskite Solar Cells and Modules. Small, 2024, 20, .	10.0	0
845	Defect Compensation and Lattice Stabilization Enables High Voltage Output in Tin Halide Perovskite Solar Cells. Small, 0, , .	10.0	3
846	Regulating the Crystallization and Carrier Dynamics for High-Performance Quasi-2D Tin Perovskite Solar Cells. , 2023, 5, 3203-3211.		0
847	Surface passivation for efficient and stable perovskite solar cells in ambient air: The structural effect of amine molecules. Ceramics International, 2024, 50, 7528-7537.	4.8	1
848	Multifunctional Imidazolidinyl Urea Additive Initiated Complex with PbI ₂ Toward Efficient and Stable Perovskite Solar Cells. Small, 0, , .	10.0	0
849	Role of compressive and tensile strains and spin-orbit coupling on structure and behaviors of cubic FAPbI3 perovskites: A first-principles prediction. Materials Chemistry and Physics, 2024, 313, 128763.	4.0	1
850	Impact of bromide incorporation on strain modulation in 2D Ruddlesden-Popper perovskite solar cells. Cell Reports Physical Science, 2023, , 101739.	5.6	0
851	In Situ Polymerization of Cross‣inked Perovskite–Polymer Composites for Highly Stable and Efficient Perovskite Solar Cells. Advanced Energy Materials, 2024, 14, .	19.5	2

#	Article	IF	CITATIONS
852	Functional 1,3â€DTu Additive in Perovskite Layer for Stable Tripleâ€Cation Perovskite Solar Cells with Efficiency Exceeding 23%. Solar Rrl, 2024, 8, .	5.8	0
853	A three-dimensional quantum dot network stabilizes perovskite solids via hydrostatic strain. Matter, 2024, 7, 107-122.	10.0	0
854	Tuning Lattice Structure of Ferroelastic Twin-Domains Achieving Efficient Perovskite Solar Cells. ACS Energy Letters, 2023, 8, 5070-5078.	17.4	1
855	Directional Defect Management in Perovskites by In Situ Decomposition of Organic Metal Chalcogenides for Efficient Solar Cells. Angewandte Chemie - International Edition, 2023, 62, .	13.8	0
856	The feasibility of transparent solar panels for high-rise building façade in Sri Lanka. Construction Innovation, 0, , .	2.7	1
857	Directional Defect Management in Perovskites by In Situ Decomposition of Organic Metal Chalcogenides for Efficient Solar Cells. Angewandte Chemie, 2023, 135, .	2.0	0
858	Ultrathin nanolayer constituted by a natural polysaccharide achieves "egg-box―structured SnO2 nanoparticles toward efficient and stable perovskite solar cells. Nano Energy, 2024, 120, 109111.	16.0	1
859	Multifunctional Regulation of SnO ₂ Nanocrystals by Snail Mucus for Preparation of Rigid or Flexible Perovskite Solar Cells in Air. ACS Nano, 2023, 17, 23794-23804.	14.6	0
860	Elevated efficiency and stability of hole-transport-layer-free perovskite solar cells induced by phenethylammonium iodide. Journal of Materials Chemistry A, O, , .	10.3	0
861	Crystal Growth Regulation of Ruddlesden–Popper Perovskites via Selfâ€Assembly of Semiconductor Spacers for Efficient Solar Cells. Angewandte Chemie, 0, , .	2.0	0
862	Crystal Growth Regulation of Ruddlesden–Popper Perovskites via Selfâ€Assembly of Semiconductor Spacers for Efficient Solar Cells. Angewandte Chemie - International Edition, 2024, 63, .	13.8	1
863	Strain Regulation and Defect Passivation of FAâ€Based Perovskite Materials for Highly Efficient Solar Cells. Advanced Science, 2024, 11, .	11.2	0
864	Charged Holeâ€Transporting Materials Based on Imidazolium for Defect Passivation in Inverted Perovskite Solar Cells. Solar Rrl, 2024, 8, .	5.8	0
865	Perspective on defect control in semiconductors for photovoltaics. Journal of Applied Physics, 2023, 134, .	2.5	0
866	A modified drop-casting technique for efficient lead-free, environment-friendly thin film CsBi3I10 perovskite solar cells. Physica B: Condensed Matter, 2024, 672, 415426.	2.7	1
867	Beyond Imperfections: Exploring Defects for Breakthroughs in Perovskite Solar Cell Research. Advanced Energy Materials, 2024, 14, .	19.5	1
870	Ecoâ€Friendly Solvent Engineered CsPbI _{2.77} Br _{0.23} Ink for Largeâ€Area and Scalable High Performance Perovskite Solar Cells. Advanced Materials, 0, , .	21.0	0
871	Design of High-Performance Photovoltaic Materials via Codoping of Cs ₂ AgPdX ₅ (X = Cl, Br). Journal of Physical Chemistry C, 0, , .	3.1	0

#	Article	IF	CITATIONS
872	Reconstructing subsurface lattice for stable perovskite photovoltaics. Joule, 2023, , .	24.0	0
873	Operando spectroscopic characterization of formamidinium lead iodide perovskite quantum dots for tracking electrochemical reactions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2024, 308, 123779.	3.9	0
874	Ionization of Hole-Transporting Materials as a Method for Improving the Photovoltaic Performance of Perovskite Solar Cells. Journal of Materials Chemistry A, 0, , .	10.3	0
875	Nucleation Regulation and Mesoscopic Dielectric Screening in αâ€FAPbI ₃ . Advanced Materials, 0, , .	21.0	0
876	Atmospheric Humidity Underlies Irreproducibility of Formamidinium Lead Iodide Perovskites. Advanced Materials, 0, , .	21.0	0
878	Highly stable perovskite light-emitting diodes. Matter, 2024, 7, 772-793.	10.0	0
879	Numerical simulations, design and modeling of methylammonium tin iodide halide-based single-junction perovskite solar cell. Electrical Engineering, 2024, 106, 1225-1239.	2.0	0
880	Columnar Liquid Crystal Enables In‣itu Dispersing of Excess PbI ₂ Crystals for Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2024, 14, .	19.5	0
881	Revamping Triboelectric Output by Deep Trap Construction. Advanced Materials, 2024, 36, .	21.0	0
882	Two-dimensional MXene explores ways for applications in perovskite solar cells: a critical review. Journal of Alloys and Compounds, 2023, , 173320.	5.5	0
883	Microstress for metal halide perovskite solar cells: from source to influence and management. Nanoscale, 2024, 16, 2765-2788.	5.6	0
884	Enhancing FAPbI ₃ perovskite solar cell performance with a methanesulfonate-based additive. Sustainable Energy and Fuels, 2024, 8, 491-495.	4.9	0
885	Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests. Nature Energy, 2024, 9, 172-183.	39.5	5
886	High performance wide bandgap perovskite solar cell with low VOC deficit less than 0.4ÂV. Journal of Energy Chemistry, 2024, 91, 313-322.	12.9	0
887	Post‧ynthetic Interstitial Metal Doping for Efficient and Stable 3D/2D Heterostructured Perovskite Solar Cells. Advanced Functional Materials, 0, , .	14.9	0
888	A Comprehensive Review on Defects-Induced Voltage Losses and Strategies toward Highly Efficient and Stable Perovskite Solar Cells. Photonics, 2024, 11, 87.	2.0	0
889	Ionic Liquid Surface Treatment-Induced Crystal Growth of CsPbIBr ₂ Perovskite for High-Performance Solar Cells. Crystal Growth and Design, 2024, 24, 817-825.	3.0	0
891	Elimination of buried interfacial voids for efficient perovskite solar cells. Nano Energy, 2024, 122, 109283.	16.0	0

#	Article	IF	CITATIONS
892	Strain Engineering and Halogen Compensation of Buried Interface in Polycrystalline Halide Perovskites. Research, 2024, 7, .	5.7	0
893	Tuning the Optical and Structural Properties of Halide Perovskite by PbS Quantum Dot Additive Engineering for Enhanced Photovoltaic Performances. Solar Rrl, 2024, 8, .	5.8	0
894	Crystallization Kinetics of Hybrid Perovskite Solar Cells. Angewandte Chemie, 2024, 136, .	2.0	0
895	Crystallization Kinetics of Hybrid Perovskite Solar Cells. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
896	First-principles investigation of the structural stability, electronic, and thermodynamic properties of Ba ₂ NaHaO ₆ (Ha = Cl, Br, I) periodate double perovskites. Journal of Materials Chemistry A, 2024, 12, 8846-8861.	10.3	0
897	Anion‣tabilized Precursor Inks Toward Efficient and Reproducible Airâ€Processed Perovskite Solar Cells. Advanced Energy Materials, 2024, 14, .	19.5	0
898	Multiâ€Functional Regulation on Buried Interface for Achieving Efficient Tripleâ€Cation Perovskite Solar Cells. Small, 0, , .	10.0	0
899	All-perovskite-based unassisted photoelectrochemical water splitting system for efficient, stable and scalable solar hydrogen production. Nature Energy, 2024, 9, 272-284.	39.5	2
900	Dopantâ€free Starlike Molecular Hole Conductor with Ordered Packing for Durable allâ€Inorganic Perovskite Solar Cells. Advanced Energy Materials, 2024, 14, .	19.5	0
901	Oxygen-Containing Diamine Cations Enable Highly Efficient and Stable 2D Dion-Jacobson Perovskite Solar Cells. Chemistry of Materials, 2024, 36, 1621-1630.	6.7	0
902	Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding. Nature Communications, 2024, 15, .	12.8	1
903	Enhanced Stability of Ag ₂ Bil ₅ Perovskite Solar Cells by Adding Pyridine Derivatives in Holeâ€Transporting Materials. Energy Technology, 2024, 12, .	3.8	0
904	Ultra-high quality red-emission lead-free single-crystal for optoelectronics. Journal of Luminescence, 2024, 269, 120478.	3.1	0
905	Perovskite solar cells with high-efficiency exceeding 25%: A review. , 2024, 2, 9370018.		0
906	<scp>Holeâ€Transporting</scp> Materials with Rational Combination of Pyridine and Dibenzo[<i>a</i> , <i>c</i>]phenazine as Electron Acceptor for <scp>Dopantâ€Free</scp> Perovskite Solar Cells ^{â€} . Chinese Journal of Chemistry, 2024, 42, 1100-1106.	4.9	0
907	Direct observation of phase transitions between delta- and alpha-phase FAPbI ₃ <i>via</i> defocused Raman spectroscopy. Journal of Materials Chemistry A, 2024, 12, 5406-5413.	10.3	0
908	Charting the Irreversible Degradation Modes of Low Bandgap Pb‧n Perovskite Compositions for Deâ€Risking Practical Industrial Development. Advanced Energy Materials, 2024, 14, .	19.5	0
909	Universal Strategy with Structural and Chemical Crosslinking Interface for Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2024, 14, .	19.5	0

~			~	
(T)	τάτι	ON	REPO	JDT
\sim			IVEL V	

#	Article	IF	CITATIONS
910	Utilizing electrostatic dynamic bonds in zwitterion elastomer for self-curing of flexible perovskite solar cells. Joule, 2024, 8, 1120-1141.	24.0	0
911	Modification of Nickel Oxide via Self-Assembled Monolayer for Enhanced Performance of Air-Processed FAPbl ₃ Perovskite Solar Cells. ACS Applied Energy Materials, 2024, 7, 1508-1516.	5.1	0
912	28.35 mW cmâ^'2 power output assisted concentrating printable CsPbBr3 solar cell-thermoelectric module tandem device using two-pronged strategy. , 2024, , 100285.		0
913	Triple-junction perovskite–perovskite–silicon solar cells with power conversion efficiency of 24.4%. Energy and Environmental Science, 2024, 17, 2800-2814.	30.8	0
914	Photochemical Shield Enabling Highly Efficient Perovskite Photovoltaics. Advanced Materials, 0, , .	21.0	0
915	Management of an intermediate phase <i>via</i> a multifunctional dietary supplement for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2024, 12, 8175-8185.	10.3	0
916	Surface charge transfer doping of narrow-bandgap Sn–Pb perovskites for high-performance tandem solar cells. Energy and Environmental Science, 2024, 17, 2512-2520.	30.8	0
917	Diammonium cation pre-intercalation into inorganic framework for efficient Dion-Jacobson perovskite solar cells. Chemical Engineering Journal, 2024, 485, 149963.	12.7	Ο
918	Toward stabilization of formamidinium lead iodide perovskites by defect control and composition engineering. Nature Communications, 2024, 15, .	12.8	0
919	Phenyltrimethylammonium chloride additive for highly efficient and stable FAPbI3 perovskite solar cells. Nano Energy, 2024, 123, 109423.	16.0	0
920	Ï€-Conjugated Lewis Base for Efficient Tin Halide Perovskite Solar Cells with Retarded Sn ²⁺ Oxidation. ACS Energy Letters, 2024, 9, 1168-1175.	17.4	0
921	Phase Transitions and Dynamics in Mixed Three- and Low-Dimensional Lead Halide Perovskites. Chemical Reviews, 2024, 124, 2281-2326.	47.7	0
922	Self-Assembled Monolayers for Interfacial Engineering in Solution-Processed Thin-Film Electronic Devices: Design, Fabrication, and Applications. Chemical Reviews, 2024, 124, 2138-2204.	47.7	0
923	A review of two-dimensional inorganic materials: Types, properties, and their optoelectronic applications. Progress in Solid State Chemistry, 2024, , 100443.	7.2	0
924	Efficient Micrometer Thick Bifacial Perovskite Solar Cells. Advanced Energy Materials, 0, , .	19.5	0
926	The Effect of Selfa€Assembled Bridging Layer on the Performance of Pure FAPbI ₃ â€Based Perovskite Solar Cells. Advanced Functional Materials, 0, , .	14.9	0
927	Holistic dielectric and buffer interfacial layers enable high-efficiency perovskite solar cells and modules. Nano Energy, 2024, 124, 109507.	16.0	0
928	Highly ordered crystallization of α-FAPbI3 films via homogeneous seeds for efficient perovskite solar cells. Journal of Energy Chemistry, 2024, 94, 625-634.	12.9	0

#	Article	IF	CITATIONS
929	Room Temperature Crystallized Phaseâ€Pure αâ€FAPbI ₃ Perovskite with Inâ€5itu Grainâ€Boundary Passivation. Advanced Science, 0, , .	11.2	0
930	High–Quality and Stable Quasiâ€2D Perovskite Film Prepared by Introducing Alkali Metal Ion Additive. ChemistrySelect, 2024, 9, .	1.5	0
931	Reduced Lattice Mismatch at the Interface of Perovskite and LaNiO ₃ Hole Transport Layers for Highly Efficient p–i–n Perovskite Solar Cells. ACS Applied Energy Materials, 2024, 7, 2496-2503.	5.1	0
932	Completely annealing-free flexible Perovskite quantum dot solar cells employing UV-sintered Ga-doped SnO2 electron transport layers. Npj Flexible Electronics, 2024, 8, .	10.7	0