Ultrapotent chemogenetics for research and potential c

Science

364,

DOI: 10.1126/science.aav5282

Citation Report

#	Article	IF	CITATIONS
1	Cell-Specific Neuropharmacology. Trends in Pharmacological Sciences, 2019, 40, 696-710.	4.0	22
2	Designer Drugs for Designer Receptors: Unlocking the Translational Potential of Chemogenetics. Trends in Pharmacological Sciences, 2019, 40, 362-364.	4.0	3
3	Designer receptor technology for the treatment of epilepsy. EBioMedicine, 2019, 43, 641-649.	2.7	38
4	Potent chemogenetics. Nature Methods, 2019, 16, 363-363.	9.0	3
5	A yeast surface display platform for plant hormone receptors: Toward directed evolution of new biosensors. AICHE Journal, 2020, 66, e16767.	1.8	6
6	Optogenetic and chemogenetic therapies for epilepsy. Neuropharmacology, 2020, 168, 107751.	2.0	62
7	Combining designer receptors exclusively activated by designer drugs and neuroimaging in experimental models: A powerful approach towards neurotheranostic applications. British Journal of Pharmacology, 2020, 177, 992-1002.	2.7	8
8	Breakdown of spatial coding and interneuron synchronization in epileptic mice. Nature Neuroscience, 2020, 23, 229-238.	7.1	126
9	Epidural Electrical Stimulation: A Review of Plasticity Mechanisms That Are Hypothesized to Underlie Enhanced Recovery From Spinal Cord Injury With Stimulation. Frontiers in Molecular Neuroscience, 2020, 13, 163.	1.4	32
10	Hindbrain Double-Negative Feedback Mediates Palatability-Guided Food and Water Consumption. Cell, 2020, 182, 1589-1605.e22.	13.5	49
11	Behavioral state coding by molecularly defined paraventricular hypothalamic cell type ensembles. Science, 2020, 370, .	6.0	104
12	Challenges for Therapeutic Applications of Opsin-Based Optogenetic Tools in Humans. Frontiers in Neural Circuits, 2020, 14, 41.	1.4	61
13	Status of peripheral sodium channel blockers for non-addictive pain treatment. Nature Reviews Neurology, 2020, 16, 689-705.	4.9	82
14	Intrinsic braking role of descending locus coeruleus noradrenergic neurons in acute and chronic itch in mice. Molecular Brain, 2020, 13, 144.	1.3	11
15	Viral manipulation of functionally distinct interneurons in mice, non-human primates and humans. Nature Neuroscience, 2020, 23, 1629-1636.	7.1	133
16	Deschloroclozapine, a potent and selective chemogenetic actuator enables rapid neuronal and behavioral modulations in mice and monkeys. Nature Neuroscience, 2020, 23, 1157-1167.	7.1	187
17	Chemogenetics a robust approach to pharmacology and gene therapy. Biochemical Pharmacology, 2020, 175, 113889.	2.0	21
18	Effect of chemogenetic actuator drugs on prefrontal cortex-dependent working memory in nonhuman primates. Neuropsychopharmacology, 2020, 45, 1793-1798.	2.8	42

#	Article	IF	Citations
19	Rodent models for psychiatric disorders: problems and promises. Laboratory Animal Research, 2020, 36, 9.	1.1	15
20	An X on the Map for Sleep Apnea's Holy Grail: Drug Therapy. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 10-11.	2.5	0
21	How is flexible electronics advancing neuroscience research?. Biomaterials, 2021, 268, 120559.	5.7	32
22	Innovative Applications of MR-Guided Focused Ultrasound for Neurological Disorders. World Neurosurgery, 2021, 145, 581-589.	0.7	7
23	Mechanisms and plasticity of chemogenically induced interneuronal suppression of principal cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	19
24	Excitation of medium spiny neurons by â€`inhibitory' ultrapotent chemogenetics via shifts in chloride reversal potential. ELife, 2021, 10, .	2.8	11
25	Chemogenetics: Beyond Lesions and Electrodes. Neurosurgery, 2021, 89, 185-195.	0.6	15
26	International primate neuroscience research regulation, public engagement and transparency opportunities. Neurolmage, 2021, 229, 117700.	2.1	17
27	Translational PET applications for brain circuit mapping with transgenic neuromodulation tools. Pharmacology Biochemistry and Behavior, 2021, 204, 173147.	1.3	11
28	Chemogenetics drives paradigm change in the investigation of behavioral circuits and neural mechanisms underlying drug action. Behavioural Brain Research, 2021, 406, 113234.	1.2	16
29	Intracerebroventricular Administration of AAV9-PHP.B SYN1-EmGFP Induces Widespread Transgene Expression in the Mouse and Monkey Central Nervous System. Human Gene Therapy, 2021, 32, 599-615.	1.4	18
30	Bidirectional modulation of neural plasticity by self-powered neural stimulation. Nano Energy, 2021, 85, 106006.	8.2	15
31	Chemogenetic Approaches to Probe Redox Pathways: Implications for Cardiovascular Pharmacology and Toxicology. Annual Review of Pharmacology and Toxicology, 2022, 62, 551-571.	4.2	8
32	A long-range, recurrent neuronal network linking the emotion regions with the somatic motor cortex. Cell Reports, 2021, 36, 109733.	2.9	6
33	Tools for analysis and conditional deletion of subsets of sensory neurons. Wellcome Open Research, 2021, 6, 250.	0.9	8
34	Emerging strategies for the genetic dissection of gene functions, cell types, and neural circuits in the mammalian brain. Molecular Psychiatry, 2022, 27, 422-435.	4.1	2
35	Thalamocortical interactions in cognition and disease: The mediodorsal and anterior thalamic nuclei. Neuroscience and Biobehavioral Reviews, 2021, 130, 162-177.	2.9	33
41	Enhanced Retrieval of Taste Associative Memory by Chemogenetic Activation of Locus Coeruleus Norepinephrine Neurons. Journal of Neuroscience, 2020, 40, 8367-8385.	1.7	10

3

#	ARTICLE	IF	Citations
42	Nanotechnology Enables Novel Modalities for Neuromodulation. Advanced Materials, 2021, 33, e2103208.	11.1	26
45	Chemo- and Optogenetic Strategies for the Elucidation of Pain Pathways. , 0, , 817-832.		1
47	Chemogenetics: drug-controlled gene therapies for neural circuit disorders. Cell & Gene Therapy Insights, 2020, 6, 1079-1094.	0.1	9
48	Development of Limbic System Stress-Threat Circuitry. Masterclass in Neuroendocrinology, 2020, , 317-343.	0.1	2
49	Long-term selective stimulation of transplanted neural stem/progenitor cells for spinal cord injury improves locomotor function. Cell Reports, 2021, 37, 110019.	2.9	34
50	Chemogenetics as a neuromodulatory approach to treating neuropsychiatric diseases and disorders. Molecular Therapy, 2022, 30, 990-1005.	3.7	10
51	Fluorescence activation mechanism and imaging of drug permeation with new sensors for smoking-cessation ligands. ELife, 2022, 11 , .	2.8	14
52	Biogenic colourants in the textile industry – a promising and sustainable alternative to synthetic dyes. Green Chemistry, 2022, 24, 13-35.	4.6	29
54	Chemogenetics of cell surface receptors: beyond genetic and pharmacological approaches. RSC Chemical Biology, 2022, 3, 269-287.	2.0	10
56	Probing ion channel functional architecture and domain recombination compatibility by massively parallel domain insertion profiling. Nature Communications, 2021, 12, 7114.	5.8	19
57	Extrinsic control and intrinsic computation in the hippocampal CA1 circuit. Neuron, 2022, 110, 658-673.e5.	3.8	42
58	Melding Synthetic Molecules and Genetically Encoded Proteins to Forge New Tools for Neuroscience. Annual Review of Neuroscience, 2022, 45, 131-150.	5.0	2
59	Parvalbumin Role in Epilepsy and Psychiatric Comorbidities: From Mechanism to Intervention. Frontiers in Integrative Neuroscience, 2022, 16, 765324.	1.0	15
60	Applications of chemogenetics in non-human primates. Current Opinion in Pharmacology, 2022, 64, 102204.	1.7	18
61	Gene Therapy for Neurological Disease: State of the Art and Opportunities for Next-generation Approaches. Neuroscience, 2022, 490, 309-314.	1.1	16
62	The DREADDful Hurdles and Opportunities of the Chronic Chemogenetic Toolbox. Cells, 2022, 11, 1110.	1.8	12
63	Tether-free photothermal deep-brain stimulation in freely behaving mice via wide-field illumination in the near-infrared-II window. Nature Biomedical Engineering, 2022, 6, 754-770.	11.6	78
64	Spatiotemporally resolved protein synthesis as a molecular framework for memory consolidation. Trends in Neurosciences, 2022, 45, 297-311.	4.2	13

#	Article	IF	CITATIONS
66	Molecular Tools for Targeted Control of Nerve Cell Electrical Activity. Part II., 2021, 13, 17-32.		5
67	Manipulating Neural Activity., 2022, , 191-208.		0
70	Advancements in the Quest to Map, Monitor, and Manipulate Neural Circuitry. Frontiers in Neural Circuits, 0, 16 , .	1.4	14
72	Coordination chemogenetics for activation of GPCR-type glutamate receptors in brain tissue. Nature Communications, 2022, 13 , .	5.8	7
73	GABAergic CaMKIIα+ Amygdala Output Attenuates Pain and Modulates Emotional-Motivational Behavior via Parabrachial Inhibition. Journal of Neuroscience, 2022, 42, 5373-5388.	1.7	14
74	Design and engineering of genetically encoded protein biosensors for small molecules. Current Opinion in Biotechnology, 2022, 78, 102787.	3.3	8
75	Homeostatic plasticity in the retina. Progress in Retinal and Eye Research, 2023, 94, 101131.	7.3	5
76	Characterization of Ultrapotent Chemogenetic Ligands for Research Applications in Nonhuman Primates. ACS Chemical Neuroscience, 2022, 13, 3118-3125.	1.7	5
77	Zebrafish Embryos Display Characteristic Bioelectric Signals during Early Development. Cells, 2022, 11, 3586.	1.8	2
79	Intertwining Neuropathogenic Impacts of Aberrant Circadian Rhythm and Impaired Neuroregenerative Plasticity in Huntingtonâ∈™s Disease: Neurotherapeutic Significance of Chemogenetics. Journal of Molecular Pathology, 2022, 3, 355-371.	0.5	0
80	Neocortical synaptic engrams for remote contextual memories. Nature Neuroscience, 2023, 26, 259-273.	7.1	16
81	Enhancers for Selective Targeting. Neuromethods, 2023, , 169-184.	0.2	0
82	A sleep-active basalocortical pathway crucial for generation and maintenance of chronic pain. Nature Neuroscience, 0 , , .	7.1	3
83	Bioelectricity in Developmental Patterning and Size Control: Evidence and Genetically Encoded Tools in the Zebrafish Model. Cells, 2023, 12, 1148.	1.8	3
84	Chemogenetics for Gene Therapy Based Targeted Cardiac Electrophysiological Modulation. Circulation Research, 2023, 132, 645-647.	2.0	0
86	Effects of clozapine-N-oxide and compound 21 on sleep in laboratory mice. ELife, $0,12,.$	2.8	11
88	Nanotransducer-Enabled Deep-Brain Neuromodulation with NIR-II Light. ACS Nano, 2023, 17, 7941-7952.	7.3	11
97	Advanced neurobiological tools to interrogate metabolism. Nature Reviews Endocrinology, 2023, 19, 639-654.	4.3	0

Article IF Citations