Chimeric antigen receptor signaling: Functional conseq

Science Advances 6, eaaz3223 DOI: 10.1126/sciadv.aaz3223

Citation Report

#	Article	IF	CITATIONS
1	The Great War of Today: Modifications of CAR-T Cells to Effectively Combat Malignancies. Cancers, 2020, 12, 2030.	3.7	19
2	Chimeric antigen receptor (CAR)-T-cell therapy in non-small-cell lung cancer (NSCLC): current status and future perspectives. Cancer Immunology, Immunotherapy, 2021, 70, 619-631.	4.2	80
3	Recent Advances in Hyperthermia Therapyâ€Based Synergistic Immunotherapy. Advanced Materials, 2021, 33, e2004788.	21.0	233
4	Atypical immunometabolism and metabolic reprogramming in liver cancer: Deciphering the role of gut microbiome. Advances in Cancer Research, 2021, 149, 171-255.	5.0	13
5	Emerging Immunotherapies against Novel Molecular Targets in Breast Cancer. International Journal of Molecular Sciences, 2021, 22, 2433.	4.1	12
6	A single-chain antibody generation system yielding CAR-T cells with superior antitumor function. Communications Biology, 2021, 4, 273.	4.4	14
7	Shaping Functional Avidity of CAR T Cells: Affinity, Avidity, and Antigen Density That Regulate Response. Molecular Cancer Therapeutics, 2021, 20, 872-884.	4.1	26
8	State-of-Art of Cellular Therapy for Acute Leukemia. International Journal of Molecular Sciences, 2021, 22, 4590.	4.1	12
9	Chimeric Antigen Receptor–Modified T Cells and T Cell–Engaging Bispecific Antibodies: Different Tools for the Same Job. Current Hematologic Malignancy Reports, 2021, 16, 218-233.	2.3	4
10	CAR-T in Cancer Treatment: Develop in Self-Optimization, Win-Win in Cooperation. Cancers, 2021, 13, 1955.	3.7	4
11	Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy. Journal of Hematology and Oncology, 2021, 14, 73.	17.0	135
12	Graftâ€ <i>versus</i> â€host disease risk after chimeric antigen receptor Tâ€cell therapy: the diametric opposition of T cells. British Journal of Haematology, 2021, 195, 660-668.	2.5	37
13	Expanding the Toolbox of Adoptive Cell Immunotherapy. Journal of Clinical Oncology, 2021, 39, 1479-1482.	1.6	0
14	Targeting Solid Tumors Using CD3 Bispecific Antibodies. Molecular Cancer Therapeutics, 2021, 20, 1350-1358.	4.1	8
15	Multifaceted Role of the Transforming Growth Factor Î ² on Effector T Cells and the Implication for CAR-T Cell Therapy. Immuno, 2021, 1, 160-173.	1.5	4
17	DCision-making in tumors governs T cell anti-tumor immunity. Oncogene, 2021, 40, 5253-5261.	5.9	22
18	Novel two-chain structure utilizing KIRS2/DAP12 domain improves the safety and efficacy of CAR-T cells in adults with r/r B-ALL. Molecular Therapy - Oncolytics, 2021, 23, 96-106.	4.4	11
19	Engineering strategies for broad application of TCR-T- and CAR-T-cell therapies. International Immunology, 2021, 33, 551-562.	4.0	20

#	Article	IF	CITATIONS
20	Single Molecule Force Spectroscopy Reveals Distinctions in Key Biophysical Parameters of αβ T-Cell Receptors Compared with Chimeric Antigen Receptors Directed at the Same Ligand. Journal of Physical Chemistry Letters, 2021, 12, 7566-7573.	4.6	15
21	Preclinical studies of chimeric antigen receptor-modified natural killer cells in cancer immunotherapy: a review. Expert Opinion on Biological Therapy, 2021, , 1-18.	3.1	4
22	Targeting CDK7 suppresses super enhancer-linked inflammatory genes and alleviates CAR T cell-induced cytokine release syndrome. Molecular Cancer, 2021, 20, 5.	19.2	12
23	Adoptive Cell Therapy in Hepatocellular Carcinoma: Biological Rationale and First Results in Early Phase Clinical Trials. Cancers, 2021, 13, 271.	3.7	39
24	Critical care management of chimeric antigen receptor Tâ€cell therapy recipients. Ca-A Cancer Journal for Clinicians, 2022, 72, 78-93.	329.8	29
25	Improving CAR T-Cell Persistence. International Journal of Molecular Sciences, 2021, 22, 10828.	4.1	44
26	Vitamin C, From Supplement to Treatment: A Re-Emerging Adjunct for Cancer Immunotherapy?. Frontiers in Immunology, 2021, 12, 765906.	4.8	12
27	Emerging Approaches for Solid Tumor Treatment Using CAR-T Cell Therapy. International Journal of Molecular Sciences, 2021, 22, 12126.	4.1	8
28	Epigenetic Priming of Bladder Cancer Cells With Decitabine Increases Cytotoxicity of Human EGFR and CD44v6 CAR Engineered T-Cells. Frontiers in Immunology, 2021, 12, 782448.	4.8	15
29	Overview of the pre-clinical and clinical studies about the use of CAR-T cell therapy of cancer combined with oncolytic viruses. World Journal of Surgical Oncology, 2022, 20, 16.	1.9	12
30	Synthetic Biology in Chimeric Antigen Receptor T (CAR T) Cell Engineering. ACS Synthetic Biology, 2022, 11, 1-15.	3.8	14
31	Chimeric antigen receptor engineered T cells and their application in the immunotherapy of solid tumours. Expert Reviews in Molecular Medicine, 2022, 24, e7.	3.9	8
32	Anti-CAIX BBζ CAR4/8 TÂcells exhibit superior efficacy in a ccRCC mouse model. Molecular Therapy - Oncolytics, 2022, 24, 385-399.	4.4	15
33	Current Immunotherapeutic Approaches for Malignant Gliomas. Brain Tumor Research and Treatment, 2022, 10, 1.	1.0	5
34	Antiâ€CD19 and antiâ€BCMA CAR T cell therapy followed by lenalidomide maintenance after autologous stemâ€cell transplantation for highâ€risk newly diagnosed multiple myeloma. American Journal of Hematology, 2022, 97, 537-547.	4.1	23
35	The Promise of CAR T-Cell Therapy for the Treatment of Cancer Stem Cells: A Short Review. Current Stem Cell Research and Therapy, 2022, 17, 400-406.	1.3	6
36	Preclinical evaluation and structural optimization of anti-BCMA CAR to target multiple myeloma. Haematologica, 2022, 107, 2395-2407.	3.5	7
37	Hallmarks of Resistance to Immune-Checkpoint Inhibitors. Cancer Immunology Research, 2022, 10, 372-383.	3.4	36

CITATION REPORT

#	Article	IF	CITATIONS
38	Improving CAR-T immunotherapy: Overcoming the challenges of T cell exhaustion. EBioMedicine, 2022, 77, 103941.	6.1	93
40	Cancer-Homing CAR-T Cells and Endogenous Immune Population Dynamics. International Journal of Molecular Sciences, 2022, 23, 405.	4.1	11
41	Dual-aptamer-engineered M1 macrophage with enhanced specific targeting and checkpoint blocking for solid-tumor immunotherapy. Molecular Therapy, 2022, 30, 2817-2827.	8.2	13
42	Development of Cancer Immunotherapies. Cancer Treatment and Research, 2022, 183, 1-48.	0.5	4
43	Engineering Induced Pluripotent Stem Cells for Cancer Immunotherapy. Cancers, 2022, 14, 2266.	3.7	20
44	Immune Checkpoint Proteins, Metabolism and Adhesion Molecules: Overlooked Determinants of CAR T-Cell Migration?. Cells, 2022, 11, 1854.	4.1	7
45	Screening for CD19-specific chimaeric antigen receptors with enhanced signalling via a barcoded library of intracellular domains. Nature Biomedical Engineering, 2022, 6, 855-866.	22.5	23
46	Efficient derivation of chimeric-antigen receptor-modified TSCM cells. Frontiers in Immunology, 0, 13, .	4.8	5
47	ROR1-targeting switchable CAR-T cells for cancer therapy. Oncogene, 2022, 41, 4104-4114.	5.9	12
48	Protein Binding Nanoparticles as an Integrated Platform for Cancer Diagnosis and Treatment. Advanced Science, 2022, 9, .	11.2	11
49	Distinct cellular dynamics associated with response to CAR-T therapy for refractory B cell lymphoma. Nature Medicine, 2022, 28, 1848-1859.	30.7	79
50	Co-Stimulatory Receptor Signaling in CAR-T Cells. Biomolecules, 2022, 12, 1303.	4.0	11
51	Ganglioside-Functionalized Nanoparticles for Chimeric Antigen Receptor T-Cell Activation at the Immunological Synapse. ACS Nano, 2022, 16, 18408-18420.	14.6	7
52	Chimeric Antigen Receptor Immunotherapy for Solid Tumors: Choosing the Right Ingredients for the Perfect Recipe. Cancers, 2022, 14, 5351.	3.7	1
53	Electrically regulated cellâ€based intervention for viral infections. Bioengineering and Translational Medicine, 2023, 8, .	7.1	2
54	Learning from TCR Signaling and Immunological Synapse Assembly to Build New Chimeric Antigen Receptors (CARs). International Journal of Molecular Sciences, 2022, 23, 14255.	4.1	8
55	Advances in the Lung Cancer Immunotherapy Approaches. Vaccines, 2022, 10, 1963.	4.4	6
56	Joining Forces for Cancer Treatment: From "TCR versus CAR―to "TCR and CAR― International Journal of Molecular Sciences, 2022, 23, 14563.	4.1	6

		CITATION REPORT	
#	Article	IF	Citations
57	YIV-906 enhances nuclear factor of activated T-cells (NFAT) activity of T cells and promotes immune checkpoint blockade antibody action and CAR T-cell activity. Frontiers in Pharmacology, 0, 13, .	3.5	2
58	Towards Novel Gene and Cell Therapy Approaches for Cervical Cancer. Cancers, 2023, 15, 263.	3.7	2
60	Novel scFv against Notch Ligand JAG1 Suitable for Development of Cell Therapies toward JAG1-Positive Tumors. Biomolecules, 2023, 13, 459.	4.0	0
61	Chimeric Antigen Receptor (CAR) T Cell Immunotherapy for Solid Tumors. , 2023, , .		1
62	Adoptive Cell Therapy in Hepatocellular Carcinoma: A Review of Clinical Trials. Cancers, 2023, 15, 1808.	3.7	6
63	Aptamer-Based Strategies to Boost Immunotherapy in TNBC. Cancers, 2023, 15, 2010.	3.7	5
64	CAR T Cell Therapy: A Versatile Living Drug. International Journal of Molecular Sciences, 2023, 24, 6300.	4.1	10
65	A costimulatory chimeric antigen receptor targeting TROP2 enhances the cytotoxicity of NK cells expressing a T cell receptor reactive to human papillomavirus type 16 E7. Cancer Letters, 2023, 566, 216242.	7.2	4
66	Clinical applications of gene therapy for rare diseases: A review. International Journal of Experimental Pathology, 2023, 104, 154-176.	1.3	10
67	Trial watch: immunotherapeutic strategies on the horizon for hepatocellular carcinoma. Oncolmmunology, 2023, 12, .	4.6	2
68	Type I Interferon Signaling via the EGR2 Transcriptional Regulator Potentiates CAR T Cell–Intrinsic Dysfunction. Cancer Discovery, 2023, 13, 1636-1655.	9.4	4
69	Universal redirection of CAR T cells against solid tumours via membrane-inserted ligands for the CAR. Nature Biomedical Engineering, 2023, 7, 1113-1128.	22.5	11
70	Engineering enhanced chimeric antigen receptor-T cell therapy for solid tumors. Immuno-Oncology Technology, 2023, 19, 100385.	0.3	1
71	Are we ready for personalized <scp>CARâ€₹</scp> therapy?. European Journal of Haematology, 2024, 112, 174-183.	2.2	0
72	Who wins the combat, CAR or TCR?. Leukemia, 2023, 37, 1953-1962.	7.2	2
73	Functional diversification and dynamics of CAR-T cells in patients with B-ALL. Cell Reports, 2023, 42, 113263.	6.4	1
74	Cellular and molecular imaging of CAR-T cell-based immunotherapy. Advanced Drug Delivery Reviews, 2023, 203, 115135.	13.7	1
75	Recent advances in cellular immunotherapy for lymphoid malignancies. Blood Research, 2023, 58, 166-172.	1.3	2

CITATION REPORT

#	Article	IF	CITATIONS
76	Rationally designed approaches to augment CAR-T therapy for solid tumor treatment. Bioactive Materials, 2024, 33, 377-395.	15.6	0
77	Fine-tuning the antigen sensitivity of CAR T cells: emerging strategies and current challenges. Frontiers in Immunology, 0, 14, .	4.8	0
78	Tuning spacer length improves the functionality of the nanobody-based VEGFR2 CAR T cell. BMC Biotechnology, 2024, 24, .	3.3	1
79	Engineering transcriptional regulation for cell-based therapies. SLAS Technology, 2024, 29, 100121.	1.9	Ο
80	Therapeutic potential of CRISPR/CAS9 genome modification in T cell-based immunotherapy of cancer. Cytotherapy, 2024, 26, 436-443.	0.7	0
81	Synthetic Biology Meets Ca2+ Release-Activated Ca2+ Channel-Dependent Immunomodulation. Cells, 2024, 13, 468.	4.1	0