Grant-Free Non-Orthogonal Multiple Access for IoT: A S

IEEE Communications Surveys and Tutorials 22, 1805-1838

DOI: 10.1109/comst.2020.2996032

Citation Report

#	Article	IF	CITATIONS
1	Distributed energy-efficiency maximization in energy-harvesting uplink NOMA relay ad-hoc networks: Game-theoretic modeling and analysis. Physical Communication, 2020, 43, 101188.	1.2	6
2	Role switching and power allocation technique for mobile users in non-orthogonal multiple access. Physical Communication, 2020, 43, 101179.	1.2	6
3	Efficient Scheduling for the Massive Random Access Gaussian Channel. IEEE Transactions on Wireless Communications, 2020, 19, 7598-7609.	6.1	12
4	Index Modulation Aided Uplink NOMA for Massive Machine Type Communications. IEEE Wireless Communications Letters, 2020, 9, 2159-2162.	3.2	23
5	Joint Source-Channel Coding and Bayesian Message Passing Detection for Grant-Free Radio Access in IoT. , 2020, , .		5
6	Random-Access NOMA in URLL Energy-Harvesting IoT Networks With Short Packet and Diversity Transmissions. IEEE Access, 2020, 8, 220734-220754.	2.6	20
7	Non-Coherent Grant-Free NOMA Through Pilot-and Channel Block-Index Modulation. IEEE Wireless Communications Letters, 2020, , 1-1.	3.2	5
8	Low Complexity PIC-MMSE Detector for LDS Systems over Frequency-Nonselective Channels. , 2020, , .		1
9	An Uplink Multiple Access Scheme Using Pilot-Free Channel Estimation. IEEE Communications Letters, 2020, 24, 1226-1230.	2.5	4
10	Performance Analysis and Optimization of NOMA With HARQ for Short Packet Communications in Massive IoT. IEEE Internet of Things Journal, 2021, 8, 4736-4748.	5.5	27
11	An Achievability Bound of Energy Per Bit for Stabilized Massive Random Access Gaussian Channel. IEEE Communications Letters, 2021, 25, 299-302.	2.5	3
12	Throughput Analysis and User Barring Design for Uplink NOMA-Enabled Random Access. IEEE Transactions on Wireless Communications, 2021, 20, 6298-6314.	6.1	19
13	Age of Information Minimization for Grant-Free Non-Orthogonal Massive Access Using Mean-Field Games. IEEE Transactions on Communications, 2021, 69, 7806-7820.	4.9	19
14	Grant-Free Communications With Adaptive Period for IIoT: Sparsity and Correlation-Based Joint Channel Estimation and Signal Detection. IEEE Internet of Things Journal, 2022, 9, 4624-4638.	5.5	7
15	Nonorthogonal HARQ for URLLC: Design and Analysis. IEEE Internet of Things Journal, 2021, 8, 17596-17610.	5.5	25
16	Joint Constellation Design and Multiuser Detection for Grant-Free NOMA. IEEE Transactions on Wireless Communications, 2022, 21, 1973-1988.	6.1	4
17	On the Sum-Rate of Contention Resolution in Massive MIMO With NOMA. IEEE Access, 2021, 9, 24965-24974.	2.6	4
18	Low-Density Spreading Codes for NOMA Systems and a Gaussian Separability-Based Design. IEEE Access, 2021, 9, 33963-33993.	2.6	3

#	Article	IF	CITATIONS
19	Clustering-Based Activity Detection Algorithms for Grant-Free Random Access in Cell-Free Massive MIMO. IEEE Transactions on Communications, 2021, 69, 7520-7530.	4.9	26
20	Transmit Power Pool Design for Grant-Free NOMA-IoT Networks via Deep Reinforcement Learning. IEEE Transactions on Wireless Communications, 2021, 20, 7626-7641.	6.1	28
21	Preamble Design and Collision Resolution in a Massive Access IoT System. Sensors, 2021, 21, 250.	2.1	4
22	Semi-Grant-Free NOMA: A Stochastic Geometry Model. IEEE Transactions on Wireless Communications, 2022, 21, 1197-1213.	6.1	16
23	Sparse Code Multiple Access: Potentials and Challenges. IEEE Open Journal of the Communications Society, 2021, 2, 1205-1238.	4.4	20
24	Energy Allocation Design for the Satellite Return Channel of a Massive NOMA System With Interference Cancellation. IEEE Transactions on Green Communications and Networking, 2022, 6, 884-896.	3.5	0
25	DDI: A Novel Architecture for Joint Active User Detection and IoT Device Identification in Grant-Free NOMA Systems for 6G and Beyond Networks. IEEE Internet of Things Journal, 2022, 9, 2906-2917.	5.5	18
26	Grant-Free Coexistence of Critical and Noncritical IoT Services in Two-Hop Satellite and Terrestrial Networks. IEEE Internet of Things Journal, 2022, 9, 14829-14843.	5.5	5
27	A tutorial on cooperative non-orthogonal multiple access networks. Journal of Defense Modeling and Simulation, 2022, 19, 563-573.	1.2	15
28	Performance Analysis of URLL Random-Access NOMA-Enabled IoT Networks with Short Packet and Diversity Transmissions. , 2021, , .		0
29	Low Complexity PIC-MMSE Detector for LDS Systems over Frequency-Selective Channels. , 2021, , .		0
30	An Overview of Uplink Access Techniques in Machine-Type Communications. IEEE Network, 2021, 35, 246-251.	4.9	13
31	DeepMuD: Multi-User Detection for Uplink Grant-Free NOMA IoT Networks via Deep Learning. IEEE Wireless Communications Letters, 2021, 10, 1133-1137.	3.2	27
32	Successive interference cancelationâ€inspired channel estimation for downlink nonâ€orthogonal multiple access. Transactions on Emerging Telecommunications Technologies, 2021, 32, e4314.	2.6	1
33	Energy-Efficient and Reliable IoT Access Without Radio Resource Reservation. IEEE Transactions on Green Communications and Networking, 2021, 5, 908-920.	3.5	7
34	Multi-Task Learning Aided Joint Constellation Design and Multiuser Detection for GF-NOMA. , 2021, , .		1
35	Modeling MTC and HTC Radio Access in a Sliced 5G Base Station. IEEE Transactions on Network and Service Management, 2021, 18, 2208-2225.	3.2	7
36	Transmit Power Pool Design for Uplink IoT Networks with Grant-free NOMA. , 2021, , .		2

#	Article	IF	CITATIONS
37	Uplink Grant-Free NOMA With Sinusoidal Spreading Sequences. IEEE Transactions on Communications, 2021, 69, 3757-3770.	4.9	10
38	Analysis of Downlink Connectivity in NB-IoT Networks Employing NOMA with Imperfect SIC. , 2021, , .		2
39	LEO Satellite Constellations for 5G and Beyond: How Will They Reshape Vertical Domains?. IEEE Communications Magazine, 2021, 59, 30-36.	4.9	63
40	Distributed Q-Learning Aided Uplink Grant-Free NOMA for Massive Machine-Type Communications. IEEE Journal on Selected Areas in Communications, 2021, 39, 2029-2041.	9.7	34
41	Receiver Design for Uplink Power Domain NOMA With Discontinuous Transmissions. IEEE Communications Letters, 2021, 25, 2738-2742.	2.5	9
42	UAV-Relaying Cooperation for Internet of Everything with CRT-Based NOMA. Wireless Communications and Mobile Computing, 2021, 2021, 1-7.	0.8	Ο
43	5G and Beyond: Past, Present and Future of the Mobile Communications. IEEE Latin America Transactions, 2021, 19, 1702-1736.	1.2	13
44	Analyzing Uplink Grant-Free Sparse Code Multiple Access System in Massive IoT Networks. IEEE Internet of Things Journal, 2022, 9, 5561-5577.	5.5	6
45	Robust Secure UAV Communications With the Aid of Reconfigurable Intelligent Surfaces. IEEE Transactions on Wireless Communications, 2021, 20, 6402-6417.	6.1	126
46	Dynamic User Activity and Data Detection for Grant-Free NOMA via Weighted â,," _{2,1} Minimization. IEEE Transactions on Wireless Communications, 2022, 21, 1638-1651.	6.1	6
47	Machine Type Communications in 6G. Computer Communications and Networks, 2021, , 207-231.	0.8	5
48	Performance Analysis of Grant-Free Random-Access NOMA in URLL IoT Networks. IEEE Access, 2021, 9, 105974-105988.	2.6	11
49	Joint Identification and Channel Estimation for Fault Detection in Industrial IoT With Correlated Sensors. IEEE Access, 2021, 9, 116692-116701.	2.6	8
50	Survey on 6G Frontiers: Trends, Applications, Requirements, Technologies and Future Research. IEEE Open Journal of the Communications Society, 2021, 2, 836-886.	4.4	294
51	A Reinforcement Learning based Game Theoretic Approach for Distributed Power Control in Downlink NOMA. , 2020, , .		2
52	Contention-based Grant-free Transmission with Independent Multi-pilot Scheme. , 2020, , .		8
53	Joint Uplink and Downlink Resource Allocation in NOMA for End-to-End URLLC Services. IEEE Communications Letters, 2021, 25, 3942-3946.	2.5	8
54	A Study of Random Access for Massive Machine-type Communications: Limitations and Solutions. , 2021, , .		1

#	Article	IF	CITATIONS
55	Semi-Grant-Free Non-Orthogonal Multiple Access for Tactile Internet of Things. , 2021, , .		7
56	Deep Learning-Based Active User Detection for Grant-free SCMA Systems. , 2021, , .		7
57	Clustering-based Joint Channel Estimation and Signal Detection for Grant-free NOMA. , 2020, , .		8
58	Autonomous Power Decision for the Grant Free Access MUSA Scheme in the mMTC Scenario. Sensors, 2021, 21, 116.	2.1	2
59	Low-Complexity Channel Estimation and Multi-User Detection for Uplink Grant-Free NOMA Systems. IEEE Wireless Communications Letters, 2022, 11, 263-267.	3.2	5
60	Ultra-Low-Power IoT Communications: A Novel Address Decoding Approach for Wake-Up Receivers. IEEE Transactions on Green Communications and Networking, 2022, 6, 1107-1121.	3.5	5
61	A Joint User Activity Detection and Channel Estimation Scheme for Packet-Asynchronous Grant-Free Access. IEEE Wireless Communications Letters, 2022, 11, 338-342.	3.2	6
62	Statistical Learning-Based Dynamic Retransmission Mechanism for Mission Critical Communication: An Edge-Computing Approach. , 2020, , .		3
63	Contention-based Grant-free Transmission with Extremely Sparse Orthogonal Pilot Scheme. , 2021, , .		0
64	Resource Allocation for IRS Assisted SGF NOMA Transmission: A MADRL Approach. IEEE Journal on Selected Areas in Communications, 2022, 40, 1302-1316.	9.7	20
65	TMA-DPSO: Towards Efficient Multi-Task Allocation With Time Constraints for Next Generation Multiple Access. IEEE Journal on Selected Areas in Communications, 2022, 40, 1652-1666.	9.7	12
66	Prior Information Aided Deep Learning Method for Grant-Free NOMA in mMTC. IEEE Journal on Selected Areas in Communications, 2022, 40, 112-126.	9.7	10
67	Optimization of Grant-Free NOMA With Multiple Configured-Grants for mURLLC. IEEE Journal on Selected Areas in Communications, 2022, 40, 1222-1236.	9.7	16
68	Performance evaluation of IoT networks: A product density approach. Computer Communications, 2022, 186, 65-79.	3.1	2
69	Cellular, Wide-Area, and Non-Terrestrial IoT: A Survey on 5G Advances and the Road Toward 6G. IEEE Communications Surveys and Tutorials, 2022, 24, 1117-1174.	24.8	172
70	Spatial Correlation Aware Compressed Sensing for User Activity Detection and Channel Estimation in Massive MTC. IEEE Transactions on Wireless Communications, 2022, 21, 6402-6416.	6.1	6
71	Minimization of the Worst Case Average Energy Consumption in UAV-Assisted IoT Networks. IEEE Internet of Things Journal, 2022, 9, 15827-15838.	5.5	9
72	Bit error rate evaluation of relay-aided cooperative NOMA with energy harvesting under imperfect SIC and CSI. Physical Communication, 2022, 52, 101630.	1.2	9

#	Article	IF	Citations
73	Statistical Learning-Based Grant-Free Access for Delay-Sensitive Internet of Things Applications. IEEE Transactions on Vehicular Technology, 2022, 71, 5492-5506.	3.9	4
74	Efficient Resource Allocation in Fast-Uplink Grant for Machine-Type Communications With NOMA. IEEE Internet of Things Journal, 2022, 9, 18113-18129.	5.5	6
75	GFDM-Based Asynchronous Grant-Free Multiple-Access. IEEE Access, 2022, 10, 31012-31030.	2.6	2
76	Blind Multiple Measurement Vector AMP Based on Expectation Maximization for Grant-Free NOMA. IEEE Wireless Communications Letters, 2022, 11, 1201-1205.	3.2	1
77	Irregular Repetition Slotted ALOHA Scheme with Multi-Packet Reception in Packet Erasure Channel. , 2022, , .		1
78	Grant-Free Data-only Transmission with Correlated Antenna Array. , 2021, , .		0
79	SDVEC: Software-Defined Vehicular Edge Computing with Ultra-Low Latency. IEEE Communications Magazine, 2021, 59, 66-72.	4.9	13
80	Age-Critical Frameless ALOHA Protocol for Grant-Free Massive Access. , 2021, , .		2
81	Uplink grantâ€free pattern division multiple access transmission scheme by exploiting poly complementary sequence. Transactions on Emerging Telecommunications Technologies, 0, , .	2.6	0
82	Dual-Net for Joint Channel Estimation and Data Recovery in Grant-free Massive Access. , 2021, , .		0
83	Power Allocation in NOMA-CR for 5G Enabled IoT Networks. Computers, Materials and Continua, 2022, 72, 5515-5530.	1.5	0
84	Detection of Burst Users and Symbols for Grant-Free Communication in the Presence of Massive Connected Users. IEEE Transactions on Vehicular Technology, 2022, 71, 7973-7978.	3.9	0
85	Priority-based load-adaptive preamble separation random access for QoS-differentiated services in 5G networks. Journal of Network and Computer Applications, 2022, 203, 103396.	5.8	3
86	Performance Analysis of MIMO-NOMA Iterative Receivers for Massive Connectivity. IEEE Access, 2022, 10, 46808-46822.	2.6	6
87	Reconfigurable intelligent surface assisted grant-free massive access. Intelligent and Converged Networks, 2022, 3, 134-143.	3.2	4
88	A Tutorial on Bandit Learning and Its Applications in 5G Mobile Edge Computing (Invited Paper). Frontiers in Signal Processing, 2022, 2, .	1.2	0
89	Bidirectional Side Information Aided Compressed Sensing Multiuser Detection for Uplink GF-NOMA. , 2022, , .		0
90	Diverse Traffic Demands Oriented Multi-User Detection for Grant-Free Massive MTC Networks. , 2022, , \cdot		1

CITATION REPORT	

#	Article	IF	CITATIONS
91	Low-Complexity Block Coordinate Descend Based Multiuser Detection for Uplink Grant-Free NOMA. IEEE Transactions on Vehicular Technology, 2022, 71, 9532-9543.	3.9	3
92	A Tutorial on Decoding Techniques of Sparse Code Multiple Access. IEEE Access, 2022, 10, 58503-58524.	2.6	15
93	Ageâ€optimal design for UAVâ€assisted grantâ€free nonâ€orthogonal massive access: Meanâ€field game approach. IET Communications, 0, , .	1.5	0
94	Enabling transmission status detection in grantâ€free power domain nonâ€orthogonal multiple access for massive Internet of Things. Transactions on Emerging Telecommunications Technologies, 2022, 33, .	2.6	3
95	On the Maximum Energy Efficiency of Random Access-Based OMA and NOMA in Multirate Environment. IEEE Transactions on Wireless Communications, 2022, 21, 10438-10454.	6.1	3
96	Asynchronous Multi-User Detection for Code-Domain NOMA: Expectation Propagation Over 3D Factor-Graph. IEEE Transactions on Vehicular Technology, 2022, 71, 10770-10781.	3.9	4
97	User-Centric Design of Millimeter Wave Communications for Beyond 5G and 6G. IEICE Transactions on Communications, 2022, E105.B, 1117-1129.	0.4	3
98	NOMA Joint Channel Estimation and Signal Detection Using Rotational Invariant Codes and GMM-Based Clustering. IEEE Communications Letters, 2022, 26, 2485-2489.	2.5	5
99	An efficient Actor Critic DRL Framework for Resource Allocation in Multi-cell Downlink NOMA. , 2022, , .		2
100	A layered grouping random access scheme based on dynamic preamble selection for massive machine type communications. Science China Information Sciences, 2022, 65, .	2.7	1
101	Grant-Free Power Allocation for Ultra-Dense IoT: A Mean Field Perspective. , 2022, , .		0
102	Unlicensed Assisted Ultra-Reliable and Low-Latency Communications. Mobile Networks and Applications, 2022, 27, 2232-2243.	2.2	1
103	Secrecy Performance Analysis of Cooperative Nonorthogonal Multiple Access in IoT Networks. IEEE Sensors Journal, 2022, 22, 19030-19045.	2.4	4
104	Multiple Configured-Grants Optimization in Grant-Free NOMA for mURLLC Service. , 2022, , .		1
105	Temporal Connectivity as a Robustness Measure in NOMA Wireless Networks. , 2022, , .		0
106	Grant-Free NOMA Using Time-Delay Domain for Low-Latency Massive Access over MIMO-OFDM. , 2022, , .		0
107	Low-Complexity Dynamic Channel Estimation in Multi-Antenna Grant-Free NOMA. , 2022, , .		0
108	DNN-based Active User Detection for an NB-IoT Compatible Grant Free NOMA System. , 2022, , .		0

#	Article	IF	CITATIONS
109	Impact of Channel Correlation on Subspace-Based Activity Detection in Grant-Free NOMA. , 2022, , .		0
110	Active device detection and performance analysis of massive non-orthogonal transmissions in cellular Internet of Things. Science China Information Sciences, 2022, 65, .	2.7	11
111	A Critical Review of Communications in Multi-robot Systems. Current Robotics Reports, 2022, 3, 213-225.	5.1	20
112	Resource Allocation in Multi-Carrier Multiplexed NOMA Cooperative System. Sensors, 2022, 22, 6023.	2.1	1
113	Sparsity Constrained Joint Activity and Data Detection for Massive Access: A Difference-of-Norms Penalty Framework. IEEE Transactions on Wireless Communications, 2023, 22, 1480-1494.	6.1	4
114	Kronecker-Based Non-Orthogonal Sequences of Small Phases for Uplink Grant-Free Access Using the Genetic Algorithm. IEEE Communications Letters, 2022, 26, 2510-2514.	2.5	2
115	Energy-Efficient Pairing and Power Allocation for NOMA UAV Network Under QoS Constraints. IEEE Internet of Things Journal, 2022, 9, 25011-25026.	5.5	11
116	Adaptive–Persistent Nonorthogonal Random Access Scheme for URLL Massive IoT Networks. IEEE Systems Journal, 2023, 17, 1660-1671.	2.9	1
117	Joint Coherent and Non-Coherent Detection and Decoding Techniques for Heterogeneous Networks. IEEE Transactions on Wireless Communications, 2023, 22, 1730-1744.	6.1	1
118	Enhanced Index Modulation-Aided Grant Free Non-Orthogonal Multiple Access Transmission. IEEE Wireless Communications Letters, 2022, 11, 2280-2284.	3.2	1
119	Cooperative Deep Reinforcement Learning based Grant-Free NOMA Optimization for mURLLC. , 2022, , .		2
120	Performance Enhancement via Partitioning Large Intelligent Surfaces in Downlink NOMA Networks. , 2022, , .		1
121	Penalty-Based Algorithm for Joint Activity and Data Detection in Grant-Free Massive Access. , 2022, , .		0
122	Pilot Decontamination Scheme for mmWave Grant-free IoT Networks. , 2022, , .		0
123	Warm-started quantum sphere decoding via reverse annealing for massive IoT connectivity. , 2022, , .		4
124	A Novel Expectation-Maximization-Based Blind Receiver for Low-Complexity Uplink STLC-NOMA Systems. Sensors, 2022, 22, 8054.	2.1	0
125	Optimal Resource Allocation for NOMA Wireless Networks. Computers, Materials and Continua, 2023, 74, 3249-3261.	1.5	0
126	Joint Identification, Detection and Channel Estimation in Industrial IoT. Procedia Computer Science, 2022, 209, 112-121.	1.2	0

#	Article	IF	CITATIONS
127	Traffic Load Learning Towards Early Detection of Intrusion in Industrial mMTC Networks. IEEE Transactions on Industrial Informatics, 2023, 19, 8441-8451.	7.2	4
128	On the Mathematical Modeling and Optimization for the Energy Efficiency Performance of CSMA-NOMA Random Access Networks With Channel Inversion. IEEE Transactions on Wireless Communications, 2023, 22, 2867-2884.	6.1	1
129	Data-Aided Active User Detection With False Alarm Correction in Grant-Free Transmission. IEEE Wireless Communications Letters, 2023, 12, 143-147.	3.2	0
130	Multitype Services Coexistence in Uplink NOMA for Dual-Layer LEO Satellite Constellation. IEEE Internet of Things Journal, 2023, 10, 2693-2707.	5.5	5
131	Active Terminal Identification, Channel Estimation, and Signal Detection for Grant-Free NOMA-OTFS in LEO Satellite Internet-of-Things. IEEE Transactions on Wireless Communications, 2023, 22, 2847-2866.	6.1	14
132	User Activity Detection for mmWave Grant-free IoT Networks. , 2022, , .		0
133	Code-Domain Collision Resolution Grant-Free Random Access for Massive Access in IoT. IEEE Transactions on Wireless Communications, 2023, 22, 4611-4624.	6.1	1
134	Advanced NOMA Assisted Semi-Grant-Free Transmission Schemes for Randomly Distributed Users. IEEE Transactions on Wireless Communications, 2023, 22, 4638-4653.	6.1	5
135	Exploiting Tensor-Based Bayesian Learning for Massive Grant-Free Random Access in LEO Satellite Internet of Things. IEEE Transactions on Communications, 2023, 71, 1141-1152.	4.9	2
136	Iterative Activity Detection and Carrier Frequency Offset Estimation for Grant-Free NOMA. , 2022, , .		0
137	Random Access Issues for Next Generation Mobile Communications Services. , 2022, , .		0
138	Five Facets of 6C: Research Challenges and Opportunities. ACM Computing Surveys, 2023, 55, 1-39.	16.1	29
140	Throughput Optimization for NOMA Cognitive Relay Network with RF Energy Harvesting Based on Improved Bat Algorithm. Mathematics, 2022, 10, 4357.	1.1	2
141	User association for EE maximization in uplink HetNets with NOMA. Wireless Networks, 0, , .	2.0	0
143	Time-Frequency Domain Non-Orthogonal Multiple Access for Power Efficient Communications. IEEE Transactions on Wireless Communications, 2023, 22, 5711-5724.	6.1	3
144	TinyQMIX: Distributed Access Control for mMTC via Multi-agent Reinforcement Learning. , 2022, , .		0
145	A Novel Dynamically Differentiated Access Scheme for Massive Grant-Free NOMA. , 2022, , .		0
146	Realizing the Tactile Internet through Intelligent Zero Touch Networks. IEEE Network, 2022, 36, 243-250.	4.9	1

#	Article	IF	CITATIONS
147	Block Sparse Bayesian Learning Based Joint User Activity Detection and Channel Estimation in Grant-Free MIMO-NOMA. Drones, 2023, 7, 27.	2.7	1
148	Grant-Free Massive Access for LEO-satellite based 6G IoT networks. , 2022, , .		0
149	Performance Analysis of Suboptimal Multiuser Detection Algorithms Based on MPA in Uplink SM-SCMA System. , 2022, , .		0
150	Joint Low-Rank Factor and Sparsity for Detecting Access Jamming in Massive MTC Networks. , 2022, , .		1
151	Orthogonal Matching Pursuit (OMP) based Active User Detection on Grant-Free NOMA Communication with Shared Subcarrier Variation. , 2022, , .		0
152	Multi-Agent DRL for Mitigating Power Collisions in SGF-NOMA Systems. , 2022, , .		0
153	On Analysis Of Asynchronous Grant-Free Access With Rateless Codes. , 2022, , .		0
154	Intelligent Random Access for Massive-Machine Type Communications in Sliced Mobile Networks. Electronics (Switzerland), 2023, 12, 329.	1.8	2
155	Deep Reinforcement Learning-Based Grant-Free NOMA Optimization for mURLLC. IEEE Transactions on Communications, 2023, 71, 1475-1490.	4.9	7
156	On the outage performance of multi-user NOMA system with adaptive SIC. Physical Communication, 2023, 58, 102060.	1.2	0
157	Strategy for Non-Orthogonal Multiple Access and Performance in 5G and 6G Networks. Sensors, 2023, 23, 1705.	2.1	5
158	SCMA-Enabled Multi-Cell Edge Computing Networks: Design and Optimization. IEEE Transactions on Vehicular Technology, 2023, , 1-17.	3.9	0
159	Statistical Learning-based Adaptive Network Access for the Industrial Internet-of-Things. IEEE Internet of Things Journal, 2023, , 1-1.	5.5	1
160	Performance Analysis of Random Access NOMA for Critical mIoT With Timer-Power Back-Off Strategy. IEEE Transactions on Vehicular Technology, 2023, 72, 10754-10769.	3.9	0
161	A Comprehensive Review on NOMA Assisted Emerging Techniques in 5G and Beyond 5G Wireless Systems. Wireless Personal Communications, 2023, 130, 2385-2405.	1.8	2
172	Performance Analysis of Binary Chirp Decoding. , 2023, , .		0
183	Meta-Learning Based Few Pilots Demodulation and Interference Cancellation For NOMA Uplink. , 2023, ,		0
185	Smart NOMA-HARQ for Short Packet Communications. , 2022, , .		0

~			~	
(11	ΓΛΤΙ	ON	12 E D O	DT
			ICLF U	

#	Article	IF	CITATIONS
193	Active User Detection and Channel Estimation for Grant-Free Random Access with Gaussian Correlated Activity. , 2023, , .		0
198	RIS-Assisted Grant-Free NOMA. , 2023, , .		1
199	Adaptive Multiuser Access for UAV-Assisted IoT Monitoring Networks Under Bursty Traffic. , 2023, , .		0
200	Efficient Multiuser Detection for Uplink Grant-Free NOMA via Weighted Block Coordinate Descend. , 2023, , .		0
202	Semantic Communication Protocol: Demystifying Deep Neural Networks via Probabilistic Logic. , 2023, ,		0
203	Performance Evaluation for Grant-Free NOMA System Using Hybrid SCMA-OFDM. , 2023, , .		0
206	Performance Analysis of NOMA-Based Slotted ALOHA for Massive Machine Type Communications. , 2023, , .		0
207	Modeling and Performance Analysis of Slotted ALOHA with Interference Cancellation for mMTC. , 2023, , .		0
208	A Hybrid Optimization and Deep RL Approach for Resource Allocation in Semi-GF NOMA Networks. , 2023, , .		0
210	Reconfigurable Intelligent Surface-Assisted Grant-Free NOMA Transmission. , 2023, , .		Ο