First-principles study of mechanical and electronic prop transition metal dichalcogenides

Physical Review Materials

3,

DOI: 10.1103/physrevmaterials.3.073601

Citation Report

#	Article	IF	CITATIONS
1	Monolayer 2D semiconducting tellurides for high-mobility electronics. Physical Review Materials, 2021, 5, .	2.4	13
2	A first-principles study of the relationship between modulus and ideal strength of single-layer, transition metal dichalcogenides. Materials Advances, 2021, 2, 6631-6640.	5.4	17
3	Describing adsorption of benzene, thiophene, and xenon on coinage metals by using the Zaremba–Kohn theory-based model. Journal of Chemical Physics, 2021, 154, 124705.	3.0	4
4	Exploring and enhancing the accuracy of interior-scaled Perdew–Zunger self-interaction correction. Journal of Chemical Physics, 2021, 154, 094105.	3.0	12
5	Opening band gaps of low-dimensional materials at the meta-GGA level of density functional approximations. Physical Review Materials, 2021, 5, .	2.4	18
6	Flexoelectricity and transport properties of phosphorene nanoribbons under mechanical bending. Physical Review B, 2021, 103, .	3.2	13
7	Spontaneous flexoelectricity and band engineering in MS ₂ (M = Mo, W) nanotubes. Physical Chemistry Chemical Physics, 2021, 23, 20574-20582.	2.8	7
8	Bending moduli for forty-four select atomic monolayers from first principles. Nanotechnology, 2020, 31, 43LT01.	2.6	24
9	Molecule-surface interaction from van der Waals-corrected semilocal density functionals: The example of thiophene on transition-metal surfaces. Physical Review Materials, 2020, 4, .	2.4	13
10	Noncontacting optostriction driven anisotropic and inhomogeneous strain in two-dimensional materials. Physical Review Research, 2020, 2, .	3.6	9
11	Two-dimensional solid-phase crystallization toward centimeter-scale monocrystalline layered MoTe ₂ <i>via</i> two-step annealing. Journal of Materials Chemistry C, 2021, 9, 15566-15576.	5.5	7
12	Photo-exfoliation of MoS ₂ quantum dots from nanosheets: an in situ transmission electron microscopy study. Nanotechnology, 2022, 33, 085601.	2.6	3
13	Bending as a control knob for the electronic and optical properties of phosphorene nanoribbons. Physical Review Materials, 2022, 6, .	2.4	4
14	Tunable band gaps and optical absorption properties of bent MoS2 nanoribbons. Scientific Reports, 2022, 12, 3008.	3.3	14
15	A Review of the Synthesis, Properties, and Applications of 2D Materials. Particle and Particle Systems Characterization, 2022, 39, .	2.3	81
16	Recent progress in 2D hybrid heterostructures from transition metal dichalcogenides and organic layers: properties and applications in energy and optoelectronics fields. Nanoscale, 2022, 14, 10648-10689.	5.6	20
17	Electron transport properties of the transition metal dichalcogenides composite WX2-MoX2 (X≡S, Se,) Tj ET	QqQ <u>Q</u> 0 rg	BT /Overlock

18	Density Functional Theory Study of Controllable Optical Absorptions and Magneto-Optical Properties of Magnetic Crl ₃ Nanoribbons: Implications for Compact 2D Magnetic Devices. ACS Applied Nano Materials, 2022, 5, 14388-14399.	5.0	2	
----	--	-----	---	--

CITATION REPORT

#	Article	IF	CITATIONS
19	Semimetal transition in curved MoS2/MoSe2 Van der Waals heterojunction by dispersion-corrected density functional theory. MRS Communications, 2022, 12, 1154-1159.	1.8	1
20	Self-Bending Behavior and Varying Bending Stiffness of Black Phosphorus/Molybdenum Disulfide (BP/MoS2) Heterostructure. Nanomaterials, 2022, 12, 3635.	4.1	2
21	Linear and nonlinear buckling analysis of double-layer molybdenum disulfide by finite elements. Finite Elements in Analysis and Design, 2023, 218, 103919.	3.2	0
22	Spin-polarization anisotropy controlled by bending in tungsten diselenide nanoribbons and tunable excitonic states. Journal of Materials Chemistry C, 2023, 11, 4711-4727.	5.5	2
23	Funneling and spin-orbit coupling in transition metal dichalcogenide nanotubes and wrinkles. Physical Review B, 2023, 108, .	3.2	0
24	Multiple extremely flat bands in twisted bilayer binary materials at large twist angles induced by atomic reconstruction. Physical Review B, 2023, 108, .	3.2	0
25	Chirality dependent electromechanical properties of single-layer MoS ₂ under out-of-plane deformation: a DFT study. Physical Chemistry Chemical Physics, 2023, 25, 28510-28516.	2.8	0
26	Controllable and abundant soliton states from an all-fiber laser based on a ZrGeTe ₄ saturable absorber. Optical Materials Express, 2023, 13, 3252.	3.0	2
27	Polarity reversal and strain modulation of Janus MoSSe/GaN polar semiconductor heterostructures. Physical Chemistry Chemical Physics, 2023, 25, 30361-30372.	2.8	0
28	Electronic properties of MoSe ₂ nanowrinkles. Nanoscale, 2024, 16, 7134-7144.	5.6	0