Axl is not an indispensable factor for Zika virus infectio

Journal of General Virology 98, 2061-2068 DOI: 10.1099/jgv.0.000886

Citation Report

CITATION REDORT

#	Article	IF	CITATIONS
1	The role of TAM family receptors and ligands in the nervous system: From development to pathobiology. , 2018, 188, 97-117.		57
2	Zika virus outbreak: a review of neurological complications, diagnosis, and treatment options. Journal of NeuroVirology, 2018, 24, 255-272.	1.0	32
3	AXL promotes Zika virus infection in astrocytes by antagonizing type I interferon signalling. Nature Microbiology, 2018, 3, 302-309.	5.9	129
4	Zika Virus Infection in Hypothalamus Causes Hormone Deficiencies and Leads to Irreversible Growth Delay and Memory Impairment in Mice. Cell Reports, 2018, 25, 1537-1547.e4.	2.9	24
5	Complementary Mechanisms Potentially Involved in the Pathology of Zika Virus. Frontiers in Immunology, 2018, 9, 2340.	2.2	24
6	Host-Directed Antivirals: A Realistic Alternative to Fight Zika Virus. Viruses, 2018, 10, 453.	1.5	41
7	In Silico Designed Axl Receptor Blocking Drug Candidates Against Zika Virus Infection. ACS Omega, 2018, 3, 5281-5290.	1.6	14
8	The A–Z of Zika drug discovery. Drug Discovery Today, 2018, 23, 1833-1847.	3.2	48
9	Probing Molecular Insights into Zika Virus–Host Interactions. Viruses, 2018, 10, 233.	1.5	64
10	Zika Virus Trafficking and Interactions in the Human Male Reproductive Tract. Pathogens, 2018, 7, 51.	1.2	7
11	Early Events in Japanese Encephalitis Virus Infection: Viral Entry. Pathogens, 2018, 7, 68.	1.2	44
12	Different footprints of the Zika and dengue surface proteins on viral membranes. Soft Matter, 2018, 14, 5615-5621.	1.2	10
13	Virus–Receptor Interactions: The Key to Cellular Invasion. Journal of Molecular Biology, 2018, 430, 2590-2611.	2.0	233
14	Pathophysiology and Mechanisms of Zika Virus Infection in the Nervous System. Annual Review of Neuroscience, 2019, 42, 249-269.	5.0	41
15	Zika virus differentially infects human neural progenitor cells according to their state of differentiation and dysregulates neurogenesis through the Notch pathway. Emerging Microbes and Infections, 2019, 8, 1003-1016.	3.0	64
16	Computer-Assisted and Data Driven Approaches for Surveillance, Drug Discovery, and Vaccine Design for the Zika Virus. Pharmaceuticals, 2019, 12, 157.	1.7	11
17	Therapeutic Advances Against ZIKV: A Quick Response, a Long Way to Go. Pharmaceuticals, 2019, 12, 127.	1.7	11
18	Diversified Application of Barcoded PLATO (PLATO-BC) Platform for Identification of Protein Interactions. Genomics, Proteomics and Bioinformatics, 2019, 17, 319-331.	3.0	5

CITATION REPORT

#	Article	IF	CITATIONS
19	Update on the Animal Models and Underlying Mechanisms for ZIKV-Induced Microcephaly. Annual Review of Virology, 2019, 6, 459-479.	3.0	18
20	Bafilomycin A1 and U18666A Efficiently Impair ZIKV Infection. Viruses, 2019, 11, 524.	1.5	34
21	Zika virus infection: an update. Microbes and Infection, 2019, 21, 353-360.	1.0	58
22	Zika Virus Transmission Through Blood Tissue Barriers. Frontiers in Microbiology, 2019, 10, 1465.	1.5	28
23	Systematic Analysis of Structure Similarity between Zika Virus and Other Flaviviruses. ACS Infectious Diseases, 2019, 5, 1070-1080.	1.8	14
24	Cell surface α2,3-linked sialic acid facilitates Zika virus internalization. Emerging Microbes and Infections, 2019, 8, 426-437.	3.0	29
25	Loss of the TAM Receptor Axl Ameliorates Severe Zika Virus Pathogenesis and Reduces Apoptosis in Microglia. IScience, 2019, 13, 339-350.	1.9	22
26	Toll-like receptor 3 regulates Zika virus infection and associated host inflammatory response in primary human astrocytes. PLoS ONE, 2019, 14, e0208543.	1.1	52
27	Development of Small-Molecule Inhibitors Against Zika Virus Infection. Frontiers in Microbiology, 2019, 10, 2725.	1.5	38
28	Zika Virus as Oncolytic Therapy for Brain Cancer: Myth or Reality?. Frontiers in Microbiology, 2019, 10, 2715.	1.5	12
29	Efficiencies and kinetics of infection in different cell types/lines by African and Asian strains of Zika virus. Journal of Medical Virology, 2019, 91, 179-189.	2.5	21
30	ZIKA virus entry mechanisms in human cells. Infection, Genetics and Evolution, 2019, 69, 22-29.	1.0	76
31	TAM receptors: A phosphatidylserine receptor family and its implications in viral infections. International Review of Cell and Molecular Biology, 2020, 357, 81-122.	1.6	10
32	Chemical proteomics tracks virus entry and uncovers NCAM1 as Zika virus receptor. Nature Communications, 2020, 11, 3896.	5.8	39
33	Differentiation-dependent susceptibility of human muscle cells to Zika virus infection. PLoS Neglected Tropical Diseases, 2020, 14, e0008282.	1.3	12
34	Developmental basis of Zika virus-induced neuropathology. , 2020, , 79-97.		0
35	Roles of Sialic Acid, AXL, and MER Receptor Tyrosine Kinases in Mumps Virus Infection of Mouse Sertoli and Leydig Cells. Frontiers in Microbiology, 2020, 11, 1292.	1.5	9
36	Axl Deficiency Promotes the Neuroinvasion of Japanese Encephalitis Virus by Enhancing IL-11± Production from Pyroptotic Macrophages. Journal of Virology, 2020, 94, .	1.5	23

	Сітат	CITATION REPORT	
#	Article	IF	CITATIONS
37	The Multifaceted Roles of TAM Receptors during Viral Infection. Virologica Sinica, 2021, 36, 1-12.	1.2	16
38	The innate immune response in Zika virus infection. Reviews in Medical Virology, 2021, 31, e2166.	3.9	10
39	AXL, an Important Host Factor for DENV and ZIKV Replication. Frontiers in Cellular and Infection Microbiology, 2021, 11, 575346.	1.8	9
40	The Phosphatidylserine Receptor TIM-1 Enhances Authentic Chikungunya Virus Cell Entry. Cells, 2021, 10, 1828.	1.8	24
41	Forebrain Neural Precursor Cells Are Differentially Vulnerable to Zika Virus Infection. ENeuro, 2021, 8, ENEURO.0108-21.2021.	0.9	2
42	β-Catenin Restricts Zika Virus Internalization by Downregulating Axl. Journal of Virology, 2021, 95, e0070521.	1.5	9
43	Japanese Encephalitis Virus NS2B-3 Protein Complex Promotes Cell Apoptosis and Viral Particle Release by Down-Regulating the Expression of AXL. Virologica Sinica, 2021, 36, 1503-1519.	1.2	9
44	Embryonic and Neonatal Mouse Cochleae Are Susceptible to Zika Virus Infection. Viruses, 2021, 13, 1823	3. 1.5	0
45	Zika Virus Requires the Expression of Claudin-7 for Optimal Replication in Human Endothelial Cells. Frontiers in Microbiology, 2021, 12, 746589.	1.5	6
46	Are the Organoid Models an Invaluable Contribution to ZIKA Virus Research?. Pathogens, 2021, 10, 1233	. 1.2	6
47	Challenges on the development of a pseudotyping assay for Zika glycoproteins. Journal of Medical Microbiology, 2021, 70, .	0.7	5
48	The Epidermal Growth Factor Receptor Is a Relevant Host Factor in the Early Stages of The Zika Virus Life Cycle <i>In Vitro</i> . Journal of Virology, 2021, 95, e0119521.	1.5	14
49	Human host genetics and susceptibility to ZIKV infection. Infection, Genetics and Evolution, 2021, 95, 105066.	1.0	2
50	Beyond the Surface: Endocytosis of Mosquito-Borne Flaviviruses. Viruses, 2021, 13, 13.	1.5	22
51	HSV-2 Infection Enhances Zika Virus Infection of Primary Genital Epithelial Cells Independently of the Known Zika Virus Receptor AXL. Frontiers in Microbiology, 2021, 12, 825049.	1.5	2
52	AXL receptor is required for Zika virus strain MR-766 infection in human glioblastoma cell lines. Molecular Therapy - Oncolytics, 2021, 23, 447-457.	2.0	15
53	Vav Proteins in Development of the Brain: A Potential Relationship to the Pathogenesis of Congenital Zika Syndrome?. Viruses, 2022, 14, 386.	1.5	2
54	Host Molecules Regulating Neural Invasion of Zika Virus and Drug Repurposing Strategy. Frontiers in Microbiology, 2022, 13, 743147.	1.5	11

CITATION REPORT

#	Article	IF	CITATIONS
55	Growth hormone attenuates the brain damage caused by ZIKV infection in mice. Virologica Sinica, 2022, , .	1.2	1
56	GPI-anchored ligand-BioID2-tagging system identifies Galectin-1 mediating Zika virus entry. IScience, 2022, 25, 105481.	1.9	1
57	Exploring the Expression and Function of cTyro3, a Candidate Zika Virus Receptor, in the Embryonic Chicken Brain and Inner Ear. Viruses, 2023, 15, 247.	1.5	2
58	ZIKV: Epidemiology, infection mechanism and current therapeutics. Frontiers in Tropical Diseases, 0, 3, .	0.5	1
59	Zika Virus from the Perspective of Observational Studies: a Review. Iranian Journal of Arthropod-borne Diseases, 0, , .	0.8	0