First Report of <i>Leptosphaeria biglobosa</i> (Blackleg (Cabbage) in Mexico

Plant Disease 94, 791-791

DOI: 10.1094/pdis-94-6-0791c

Citation Report

#	Article	IF	CITATIONS
1	Influence of meteorological parameters on <i>Leptosphaeria maculans</i> and <i>L. biglobosa</i> spore release in central and eastern Poland. Grana, 2012, 51, 240-248.	0.8	22
2	Effect of Water Flooding on Survival of Leptosphaeria biglobosa †brassicae†in Stubble of Oilseed Rape (Brassica napus) in Central China. Plant Disease, 2015, 99, 1426-1433.	1.4	5
3	Korean Brassica oleracea germplasm offers a novel source of qualitative resistance to blackleg disease. European Journal of Plant Pathology, 2017, 149, 611-623.	1.7	16
4	Phoma leaf spot of wasabi (<i>Wasabia japonica</i>) caused by <i>Leptosphaeria biglobosa</i> . Plant Pathology, 2017, 66, 480-489.	2.4	7
5	Leptosphaeria maculans Alters Glucosinolate Profiles in Blackleg Disease–Resistant and -Susceptible Cabbage Lines. Frontiers in Plant Science, 2017, 8, 1769.	3.6	19
6	In silico characterization and expression of disease-resistance-related genes within the collinear region of Brassica napus blackleg resistant locus LepR1′ in B. oleracea. Journal of General Plant Pathology, 2020, 86, 442-456.	1.0	4
7	Leptosphaeria maculans Alters Glucosinolate Accumulation and Expression of Aliphatic and Indolic Glucosinolate Biosynthesis Genes in Blackleg Disease-Resistant and -Susceptible Cabbage Lines at the Seedling Stage. Frontiers in Plant Science, 2020, 11, 1134.	3.6	10
8	In-silico identification and differential expression of putative disease resistance-related genes within the collinear region of Brassica napus blackleg resistance locus LepR2' in Brassica oleracea. Horticulture Environment and Biotechnology, 2020, 61, 879-890.	2.1	8
9	In-silico identification and differential expressions of LepR4-syntenic disease resistance related domain containing genes against blackleg causal fungus Leptosphaeria maculans in Brassica oleracea. Gene Reports, 2020, 19, 100598.	0.8	9
10	First Report of <i>Leptosphaeria biglobosa</i> Causing Blackleg of Ornamental Kale (<i>Brassica) Tj ETQq1 1 0.78</i>	84314 rgB 1.4	T/Overlock
12	Plenodomus dezfulensis sp. nov. causing leaf spot of Rapeseed in Iran. Phytotaxa, 2021, 523, 141-154.	0.3	3
13	In silico analysis and expression profiling revealed Rlm1′ blackleg disease-resistant genes in Chromosome 6 of Brassica oleracea. Horticulture Environment and Biotechnology, 2021, 62, 969-983.	2.1	1
14	Detection of the Phoma pathogens Plenodomus biglobosus subclades †brassicae†and †canadensis†on wasabi, and †canadensis†in Europe. European Journal of Plant Pathology, 0, , 1.	¹ 1.7	7
15	Xenodidymella iranica sp. nov. and new hosts of X. glycyrrhizicola in Iran. Tropical Plant Pathology, 0, , $1.$	1.5	0
17	Genetic structure and phylogenetic relationships of <i>Leptosphaeria maculans</i> and <i>L. biglobosa</i> in Northern regions of Iran. Archives of Phytopathology and Plant Protection, 2022, 55, 1062-1081.	1.3	2
18	A CRISPR/Cas $12a$ -based portable platform for rapid detection of Leptosphaeria maculans in Brassica crops. Frontiers in Plant Science, $0,13,.$	3.6	15
19	Plenodomus species infecting oilseed rape in Russia., 2022, 105, 135-147.	0.5	0
22	Development of a low pollution medium for the cultivation of lactic acid bacteria. Heliyon, 2023, 9, e22609.	3.2	1