Evaluation of Bacterial Antagonists for Reduction of Sur Bluegrass

Plant Disease

80,856

DOI: 10.1094/pd-80-0856

Citation Report

#	Article	IF	CITATIONS
1	One stop mycology. Mycological Research, 1997, 101, 226-256.	2.5	0
2	Title is missing!. European Journal of Plant Pathology, 1998, 104, 631-643.	1.7	122
3	Evaluation of Stenotrophomonas maltophilia strain C3 for biocontrol of brown patch disease. Crop Protection, 1998, 17, 509-513.	2.1	107
4	Suppression of summer patch by rhizosphere competent bacteria and their establishment on Kentucky bluegrass. Soil Biology and Biochemistry, 1998, 30, 257-263.	8.8	12
5	Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Protection, 2001, 20, $1-11$.	2.1	569
6	Induction of systemic resistance in rice against sheath blight disease by Pseudomonas fluorescens. Soil Biology and Biochemistry, 2001, 33, 603-612.	8.8	263
7	Antifungal activity of chitinases produced by some fluorescent pseudomonads against Colletotrichum falcatum Went causing red rot disease in sugarcane. Microbiological Research, 2001, 155, 309-314.	5. 3	44
8	Compatibility of biocontrol agents with fungicides against red rot disease of sugarcane. Sugar Tech, 2002, 4, 131-136.	1.8	22
9	Title is missing!. Plant and Soil, 2002, 239, 55-68.	3.7	206
10	Title is missing!. European Journal of Plant Pathology, 2002, 108, 429-441.	1.7	156
10	Title is missing!. European Journal of Plant Pathology, 2002, 108, 429-441. Association of the Hydrolytic Enzyme Chitinase against Rhizoctonia solani in Rhizobacteria-treated Rice Plants. Journal of Phytopathology, 2004, 152, 365-370.	1.7	156 58
	Association of the Hydrolytic Enzyme Chitinase against Rhizoctonia solani in Rhizobacteria-treated		
11	Association of the Hydrolytic Enzyme Chitinase against Rhizoctonia solani in Rhizobacteria-treated Rice Plants. Journal of Phytopathology, 2004, 152, 365-370. Microbially induced defense related proteins against postharvest anthracnose infection in mango.	1.0	58
11	Association of the Hydrolytic Enzyme Chitinase against Rhizoctonia solani in Rhizobacteria-treated Rice Plants. Journal of Phytopathology, 2004, 152, 365-370. Microbially induced defense related proteins against postharvest anthracnose infection in mango. Crop Protection, 2004, 23, 1061-1067. Lytic enzymes induced by Pseudomonas fluorescens and other biocontrol organisms mediate defence against the anthracnose pathogen in mango. World Journal of Microbiology and Biotechnology, 2004,	2.1	58 30
11 12 13	Association of the Hydrolytic Enzyme Chitinase against Rhizoctonia solani in Rhizobacteria-treated Rice Plants. Journal of Phytopathology, 2004, 152, 365-370. Microbially induced defense related proteins against postharvest anthracnose infection in mango. Crop Protection, 2004, 23, 1061-1067. Lytic enzymes induced by Pseudomonas fluorescens and other biocontrol organisms mediate defence against the anthracnose pathogen in mango. World Journal of Microbiology and Biotechnology, 2004, 20, 235-244. Applying Rice Seed-Associated Antagonistic Bacteria to Manage Rice Sheath Blight in Developing	1.0 2.1 3.6	58 30 90
11 12 13	Association of the Hydrolytic Enzyme Chitinase against Rhizoctonia solani in Rhizobacteria-treated Rice Plants. Journal of Phytopathology, 2004, 152, 365-370. Microbially induced defense related proteins against postharvest anthracnose infection in mango. Crop Protection, 2004, 23, 1061-1067. Lytic enzymes induced by Pseudomonas fluorescens and other biocontrol organisms mediate defence against the anthracnose pathogen in mango. World Journal of Microbiology and Biotechnology, 2004, 20, 235-244. Applying Rice Seed-Associated Antagonistic Bacteria to Manage Rice Sheath Blight in Developing Countries. Plant Disease, 2004, 88, 557-564. The role of clp-regulated factors in antagonism against Magnaporthe poae and biological control of summer patch disease of Kentucky bluegrass by Lysobacter enzymogenes C3. Canadian Journal of	1.0 2.1 3.6	58 30 90 40
11 12 13 14 15	Association of the Hydrolytic Enzyme Chitinase against Rhizoctonia solani in Rhizobacteria-treated Rice Plants. Journal of Phytopathology, 2004, 152, 365-370. Microbially induced defense related proteins against postharvest anthracnose infection in mango. Crop Protection, 2004, 23, 1061-1067. Lytic enzymes induced by Pseudomonas fluorescens and other biocontrol organisms mediate defence against the anthracnose pathogen in mango. World Journal of Microbiology and Biotechnology, 2004, 20, 235-244. Applying Rice Seed-Associated Antagonistic Bacteria to Manage Rice Sheath Blight in Developing Countries. Plant Disease, 2004, 88, 557-564. The role of clp-regulated factors in antagonism against Magnaporthe poae and biological control of summer patch disease of Kentucky bluegrass by Lysobacter enzymogenes C3. Canadian Journal of Microbiology, 2005, 51, 719-723. Dynamics of Foliage and Thatch Populations of Introduced Pseudomonas fluorescens and	1.0 2.1 3.6 1.4	58 30 90 40 37

#	Article	IF	CITATIONS
19	Endophytic bacteria mediate plant resistance against cotton bollworm. Journal of Plant Interactions, 2007, 2, 1-10.	2.1	33
20	ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis) Tj ETQq1 1 0.	784314 rş	gBT ₄₅₇ verlock
21	PGPR-induced defense responses in the tea plant against blister blight disease. Crop Protection, 2007, 26, 556-565.	2.1	222
22	Rhizosphere and endophytic bacteria for induction of systemic resistance of banana plantlets against bunchy top virus. Soil Biology and Biochemistry, 2007, 39, 1087-1098.	8.8	90
23	Cross-infection potential of crown rot pathogen (Lasiodiplodia theobromae) isolates and their management using potential native bioagents in banana. Australasian Plant Pathology, 2007, 36, 595.	1.0	14
24	Biohardening with Plant Growth Promoting Rhizosphere and Endophytic bacteria induces systemic resistance against Banana bunchy top virus. Applied Soil Ecology, 2008, 39, 187-200.	4.3	122
25	Fluorescent pseudomonad mixtures mediate disease resistance in rice plants against sheath rot (Sarocladium oryzae) disease. BioControl, 2009, 54, 273-286.	2.0	101
26	Induction of systemic resistance by mixtures of antagonist bacteria for the management of crown rot complex on banana. Acta Physiologiae Plantarum, 2010, 32, 1177-1187.	2.1	26
27	Management of bacterial blight of cotton using a mixture of Pseudomonas fluorescens and Bacillus subtilis. Plant Protection Science, 2010, 46, 41-50.	1.4	29
28	Endophytic <i>Bacillus subtilis</i> enriched with chitin offer induced systemic resistance in cotton against aphid infestation. Archives of Phytopathology and Plant Protection, 2011, 44, 1375-1389.	1.3	13
29	Burkholderia SP. Strain TNAU-1 for Biological Control of Root Rot in Mung Bean (Vigna Radiata L.) Caused by Macrophomina Phaseolina. Journal of Plant Protection Research, 2011, 51, 273-278.	1.0	18
30	Plant growth-promoting rhizobacteria mediate induced systemic resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biological Control, 2011, 59, 114-122.	3.0	151
31	Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiologiae Plantarum, 2011, 33, 203-209.	2.1	130
32	Biological control of rice root-knot nematode, <i>Meloidogyne graminicola </i> through mixture of <i>Pseudomonas fluorescens </i> strains. Biocontrol Science and Technology, 2012, 22, 611-632.	1.3	47
33	Rhizobacterial-mediated induction of defense enzymes to enhance the resistance of turmeric (xi>Curcuma longaL) to <i>Pythium aphanidermatum</i> Causing rhizome rot. Archives of Phytopathology and Plant Protection, 2012, 45, 199-219.	1.3	20
34	Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biological Control, 2013, 65, 109-117.	3.0	235
35	Potential of <i>Pseudomonas</i> and <i>Bacillus</i> lsolates as Biocontrol Agents Against Fusarium Wilt of Eggplant. Biotechnology and Biotechnological Equipment, 2013, 27, 3952-3958.	1.3	29
36	Rhizosphere and endophytic bacteria for induction of salt tolerance in gladiolus grown in sodic soils. Journal of Plant Interactions, 2014, 9, 577-584.	2.1	56

#	Article	IF	Citations
37	Induction of systemic resistance and defense-related enzymes in tomato plants using Pseudomonas fluorescens CHAO and salicylic acid against root-knot nematode Meloidogyne javanica. Journal of Plant Protection Research, 2014, 54, 383-389.	1.0	27
38	Defense related enzyme induction in coconut by endophytic bacteria (EPC 5). Acta Phytopathologica Et Entomologica Hungarica, 2015, 50, 29-43.	0.2	8
39	Molecular characterization and in vitro evaluation of endophytic bacteria against major pathogens of rice. African Journal of Microbiology Research, 2015, 9, 800-813.	0.4	3
40	Biological Problems and Their Management in Urban Soils: Integrated Pest Management of Arthropods and Diseases. Agronomy, 2015, , 119-155.	0.2	O
41	Sodicity tolerant polyembryonic mango root stock plants: A putative role of endophytic bacteria. African Journal of Biotechnology, 2015, 14, 350-359.	0.6	14
42	Promotion of growth and biocontrol of brown patch disease by inoculation of Paenibacillus ehimensis KWN38 in bentgrass. Horticulture Environment and Biotechnology, 2015, 56, 263-271.	2.1	6
43	Controlling bacterial leaf blight of rice and enhancing the plant growth with endophytic and rhizobacterial <i>Bacillus</i> Strains. Toxicological and Environmental Chemistry, 2015, 97, 766-785.	1.2	26
45	Synthesis and characterization of silver nanoparticles using <i>Bacillus amyloliquefaciens</i> and <i>Bacillus subtilis</i> to control filarial vector <i>Culex pipiens pallens</i> and its antimicrobial activity. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 1369-1378.	2.8	71
46	Identification of the biocontrol strain LB-2 and determination of its antifungal effects on plant pathogenic fungi. Journal of Plant Pathology, 2018, 100, 25-32.	1.2	10
47	Antibiotic-producing Pseudomonas fluorescens mediates rhizome rot disease resistance and promotes plant growth in turmeric plants. Microbiological Research, 2018, 210, 65-73.	5.3	55
48	Fluorescent Pseudomonas Mediated Alleviation of Trivalent Chromium Toxicity in Ragi Through Enhanced Antioxidant Activities. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2018, 88, 779-787.	1.0	5
49	Multifaceted benefits of Bacillus amyloliquefaciens strain FBZ24 in the management of wilt disease in tomato caused by Fusarium oxysporum f. sp. lycopersici. Physiological and Molecular Plant Pathology, 2018, 103, 92-101.	2.5	51
50	Identification of Rhizosphere Bacterial Diversity with Promising Salt Tolerance, PGP Traits and Their Exploitation for Seed Germination Enhancement in Sodic Soil. Agricultural Research, 2019, 8, 36-43.	1.7	29
51	PGPR-induced defense responses in the soybean plant against charcoal rot disease. European Journal of Plant Pathology, 2019, 155, 983-1000.	1.7	13
52	Comparative analysis of different biotic and abiotic agents for growth promotion in rice (Oryza) Tj ETQq0 0 0 rgBT pathogen. Biological Control, 2019, 133, 123-133.		2 10 Tf 50 18 12
53	Salinity stress and PGPR effects on essential oil changes in Rosmarinus officinalis L Agriculture and Food Security, $2019, 8, \ldots$	4.2	29
54	The biocontrol potential of Pseudomonas fluorescens CHAO against root knot nematode (Meloidogyne javanica) is dependent on the plant species. Biological Control, 2021, 152, 104445.	3.0	10
55	Biological control of onion basal rot disease using phosphate solubilising rhizobacteria. Biocontrol Science and Technology, 2021, 31, 190-205.	1.3	10

#	Article	IF	CITATIONS
56	Improved photosystem II and defense enzymes activity in rice (Oryza sativa) by biopriming against Xanthomonas oryzae pv. oryzae. Functional Plant Biology, 2021, 48, 298.	2.1	2
57	Effect of <i>Bacillus subtilis</i> on antioxidant enzyme activities in tomato grafting. PeerJ, 2021, 9, e10984.	2.0	9
58	Biological Control Agents in the Management of Different Initial Population Densities of Meloidogyne javanica in Tomato. Acta Phytopathologica Et Entomologica Hungarica, 2021, 55, 151-159.	0.2	2
59	Application of Pseudomonas aureofaciens Tx-1 through Irrigation for Control of Dollar Spot and Brown Patch on Fairway-height Turf. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 1750-1753.	1.0	4
60	Cloning and Sequencing of Novel Endophytic Bacillus subtilis from Coconut for the Management of Basal Stem Rot Disease. Asian Journal of Plant Pathology, 2008, 2, 1-14.	0.3	6
61	Cloning and Sequencing of Novel Endophytic Bacillus subtilis from Coconut for the Management of Basal Stem Rot Disease*. Asian Journal of Plant Pathology, 2009, 4, 20-33.	0.3	5
62	Growth Promoting of Some Ornamental Plants by Root Treatment with Specific Fluorescent Pseudomonads. Journal of Biological Sciences, 2006, 6, 610-615.	0.3	14
63	Endophytic Bacillus Species Confer Increased Resistance in Cotton Against Damping off Disease Caused by Rhizoctonia solani. Plant Pathology Journal, 2008, 7, 1-12.	0.2	41
64	Biological Control of Turfgrass Diseases. , 2002, , .		0
65	Çimlerde Kök ve Kökboğazı Çürüklüğüne Neden Olan Fusarium cerealis'in Biyolojik Mücadele Bakteriyel izolatların Kullanımı. Türkiye Biyolojik Mücadele Dergisi, 0, , .	sinde Yerli 0.6	O
66	Bacillus subtilis- and Pseudomonas fluorescens-Mediated Systemic Resistance in Tomato Against Sclerotium rolfsii and Study of Physio-Chemical Alterations. Frontiers in Fungal Biology, 2022, 3, .	2.0	7
67	Enhanced rice plant (BRRI-28) growth at lower doses of urea caused by diazinon mineralizing endophytic bacterial consortia and explorations of relevant regulatory genes in a Klebsiella sp. strain HSTU-F2D4R. Archives of Microbiology, 2023, 205, .	2.2	4
68	Characterization of Growth-Promoting Activities of Consortia of Chlorpyrifos Mineralizing Endophytic Bacteria Naturally Harboring in Rice Plantsâ€"A Potential Bio-Stimulant to Develop a Safe and Sustainable Agriculture. Microorganisms, 2023, 11, 1821.	3.6	3
69	Rhizosphere Bacteria Isolated from Medicinal Plants Improve Rice Growth and Induce Systemic Resistance in Host Against Pathogenic Fungus. Journal of Plant Growth Regulation, 0, , .	5.1	1