Age-Specific Properties of Spontaneous Mutations Affe melanogaster

Genetics 148, 287-303 DOI: 10.1093/genetics/148.1.287

Citation Report

#	Article	IF	CITATIONS
1	Mutation and senescence: where genetics and demography meet. Genetica, 1998, 102/103, 299-314.	1.1	106
2	Genetic analysis of extended life span in Drosophila melanogaster. I. RAPD screen for genetic divergence between selected and control lines. Genetica, 1998, 104, 21-32.	1.1	23
3	The fractionation experiment: reducing heterogeneity to investigate age-specific mortality in Drosophila. Mechanisms of Ageing and Development, 1998, 105, 301-317.	4.6	47
4	Genetics of longevity. Experimental Gerontology, 1998, 33, 773-783.	2.8	37
5	Biodemographic Trajectories of Longevity. Science, 1998, 280, 855-860.	12.6	918
6	Evolutionary Theories of Aging: Handle with Care. Gerontology, 1998, 44, 345-348.	2.8	15
7	MORTALITY PLATEAUS AND THE EVOLUTION OF SENESCENCE: WHY ARE OLD-AGE MORTALITY RATES SO LOW?. Evolution; International Journal of Organic Evolution, 1998, 52, 454-464.	2.3	84
8	MUTATION, SELECTION, AND THE MAINTENANCE OF LIFE-HISTORY VARIATION IN A NATURAL POPULATION. Evolution; International Journal of Organic Evolution, 1998, 52, 727-733.	2.3	68
9	Model fitting and hypothesis testing for ageâ€specific mortality data. Journal of Evolutionary Biology, 1999, 12, 430-439.	1.7	235
10	The evolutionary genetics of ageing and longevity. Heredity, 1999, 82, 589-597.	2.6	85
11	Fitness Decline under Relaxed Selection in Captive Populations. Conservation Biology, 1999, 13, 665-669.	4.7	58
12	Differences in locomotor activity across the lifespan of Drosophila melanogasterâ~†. Experimental Gerontology, 1999, 34, 621-631.	2.8	35
13	Genetics of aging in Drosophila. Experimental Gerontology, 1999, 34, 577-585.	2.8	25
14	A Delayed Wave of Death from Reproduction in <i>Drosophila</i> . Science, 1999, 286, 2521-2524.	12.6	246
15	Messages from mortality: the evolution of death rates in the old. Trends in Ecology and Evolution, 1999, 14, 438-442.	8.7	93
16	Another set of responses and correlated responses to selection on age at reproduction in Drosophila melanogaster. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 255-261.	2.6	180
17	Transgenes in the Analysis of Life Span and Fitness. American Naturalist, 1999, 154, S67-S81.	2.1	47
18	NATURAL GENETIC VARIATION OF LIFE SPAN, REPRODUCTION, AND JUVENILE GROWTH IN <i>DAPHNIA</i> . Evolution; International Journal of Organic Evolution, 1999, 53, 1744-1756.	2.3	83

ITATION REDO

#	Article	IF	CITATIONS
19	PERSPECTIVE: SPONTANEOUS DELETERIOUS MUTATION. Evolution; International Journal of Organic Evolution, 1999, 53, 645-663.	2.3	317
20	Master Copy Is Not Responsible for the High Rate of copia Transposition in Drosophila. Molecular Biology and Evolution, 2000, 17, 984-986.	8.9	5
21	The evolution of senescence under curtailed life span in laboratory populations of Musca domestica (the housefly). Heredity, 2000, 85, 115-121.	2.6	26
22	Age-specific effects of novel mutations in Drosophila melanogaster II. Fecundity and male mating ability. Genetica, 2000, 110, 31-41.	1.1	27
23	Age-specific effects of novel mutations in Drosophila melanogaster I. Mortality. Genetica, 2000, 110, 11-29.	1.1	25
24	Why Do Life Spans Differ? Partitioning Mean Longevity Differences in Terms of Age-Specific Mortality Parameters. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2000, 55, B381-B389.	3.6	178
25	Genetic correlation between the ages of menarche and menopause. Human Nature, 2000, 11, 43-63.	1.6	8
26	Extended Longevity in Drosophila Is Consistently Associated With a Decrease in Developmental Viability. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2000, 55, B292-B301.	3.6	46
27	Heterogeneity in Individual Mortality Risk and Its Importance for Evolutionary Studies of Senescence. American Naturalist, 2000, 156, 1-13.	2.1	108
28	SELECTION EXPERIMENTS IN THE PENNA MODEL FOR BIOLOGICAL AGING. International Journal of Modern Physics C, 2000, 11, 1283-1295.	1.7	5
29	Evolutionary Responses of the Life History of Wild aughtDrosophila melanogasterto Two Standard Methods of Laboratory Culture. American Naturalist, 2000, 156, 341-353.	2.1	182
30	BIOLOGICAL AGING — CRITERIA FOR MODELING AND A NEW MECHANISTIC MODEL. International Journal of Modern Physics C, 2000, 11, 525-546.	1.7	22
31	Senescence: Genetic Theories. , 2001, , 13897-13902.		2
32	Stochastic Penna model for biological aging. Theory in Biosciences, 2001, 120, 21-28.	1.4	8
33	The relative effects of mutation accumulation versus inbreeding depression on fitness in experimental populations of the housefly. Zoo Biology, 2001, 20, 145-156.	1.2	16
34	Patterns of Age-specific Means and Genetic Variances of Mortality Rates Predicted by the Mutation-Accumulation Theory of Ageing. Journal of Theoretical Biology, 2001, 210, 47-65.	1.7	210
35	Stochastic Penna model for biological aging. Theory in Biosciences, 2001, 120, 21-28.	1.4	1
36	Evolutionary theories of ageing applied to long-lived organisms. Experimental Gerontology, 2001, 36, 641-650.	2.8	91

#	Article	IF	CITATIONS
37	Age-Specific Fitness Components in Hybrid Females of Drosophila pseudoobscura and D. persimilis. , 2001, 92, 30-37.		4
38	A COMPREHENSIVE MODEL OF MUTATIONS AFFECTING FITNESS AND INFERENCES FOR ARABIDOPSIS THALIANA. Evolution; International Journal of Organic Evolution, 2002, 56, 453.	2.3	42
39	Advice to an aging scientist. Mechanisms of Ageing and Development, 2002, 123, 841-850.	4.6	58
40	Mechanisms of aging: public or private?. Nature Reviews Genetics, 2002, 3, 165-175.	16.3	435
41	Generalized Character Process Models: Estimating the Genetic Basis of Traits That Cannot Be Observed and That Change with Age or Environmental Conditions. Biometrics, 2002, 58, 157-162.	1.4	17
42	A COMPREHENSIVE MODEL OF MUTATIONS AFFECTING FITNESS AND INFERENCES FOR ARABIDOPSIS THALIANA. Evolution; International Journal of Organic Evolution, 2002, 56, 453-463.	2.3	116
43	Effects of Short-term Spontaneous Mutation Accumulation for Life History Traits in Grape Phylloxera,Daktulosphaira vitifoliae. Genetica, 2003, 119, 237-251.	1.1	9
44	Use of the score test as a goodness-of-fit measure of the covariance structure in genetic analysis of longitudinal data. Genetics Selection Evolution, 2003, 35, 185-98.	3.0	10
45	ANTAGONISTIC PLEIOTROPY, MORTALITY SOURCE INTERACTIONS, AND THE EVOLUTIONARY THEORY OF SENESCENCE. Evolution; International Journal of Organic Evolution, 2003, 57, 1478-1488.	2.3	230
46	WHAT FRACTION OF MUTATIONS RED.UCES FITNESS? A REPLY TO KEIGHTLEY AND LYNCH. Evolution; International Journal of Organic Evolution, 2003, 57, 686-689.	2.3	26
47	ANTAGONISTIC PLEIOTROPY, MORTALITY SOURCE INTERACTIONS, AND THE EVOLUTIONARY THEORY OF SENESCENCE. Evolution; International Journal of Organic Evolution, 2003, 57, 1478.	2.3	2
48	Genetics of Aging in Drosophila. , 2003, , 125-161.		0
49	WHAT FRACTION OF MUTATIONS REDUCES FITNESS? A REPLY TO KEIGHTLEY AND LYNCH. Evolution; International Journal of Organic Evolution, 2003, 57, 686.	2.3	20
52	Evolutionary and biological theories of senescence. , 2003, , 34-70.		0
53	Human variation: growth, development, life history, and senescence. , 2003, , 71-130.		0
54	Human variation: chronic diseases, risk factors, and senescence. , 2003, , 131-196.		0
55	Human life span and life extension. , 2003, , 197-225.		0
56	Discussion and perspectives. , 2003, , 226-250.		0

ARTICLE IF CITATIONS # Age-specific mortality rates of reproducing and non-reproducing males of Drosophila melanogaster. 2.6 13 58 Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 2517-2522. Quantitative Trait Loci Affecting Life Span in Replicated Populations of Drosophila melanogaster. I. 28 Composite Interval Mapping. Genetics, 2004, 168, 301-311. Multivariate Character Process Models for the Analysis of Two or More Correlated Function-Valued 60 2.9 13 Traits. Genetics, 2004, 168, 477-487. Evolutionary genetics of lifespan and mortality rates in two populations of the seed beetle, Callosobruchus maculatus. Heredity, 2004, 92, 170-181. Demographic heterogeneity explains age-specific patterns of genetic variance in mortality rates. 62 2.8 11 Experimental Gerontology, 2004, 39, 25-30. Hamilton's indicators of the force of selection. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8263-8268. 7.1 Sexual and Temporal Dynamics of Molecular Evolution in C. elegans Development. Molecular Biology 64 8.9 103 and Evolution, 2005, 22, 178-188. Age-Specific Changes in Epistatic Effects on Mortality Rate in Drosophila melanogaster. Journal of 2.4 Heredity, 2005, 96, 513-521. Flies and their Golden Apples: The effect of dietary restriction on Drosophila aging and age-dependent 10.9 66 63 gene expression. Ageing Research Reviews, 2005, 4, 451-480. Quantitative Trait Loci With Age-Specific Effects on Fecundity in Drosophila melanogaster. Genetics, 2006, 172, 1595-1605. Integration of demography and genetics in population restorations. Ecoscience, 2007, 14, 463-471. 68 1.4 33 Age Specificity of Inbreeding Load in<i>Drosophila melanogaster</i>and Implications For the 36 Evolution of Late-Life Mortality Plateaus. Genetics, 2007, 177, 587-595. Experimental evolution of aging in a bacterium. BMC Evolutionary Biology, 2007, 7, 126. 70 3.2 48 HYPOTHESIS TESTING IN COMPARATIVE AND EXPERIMENTAL STUDIES OF FUNCTION-VALUED TRAITS. 2.3 39 Evolution; International Journal of Organic Evolution, 2008, 62, 1229-1242. A major QTL affects temperature sensitive adult lethality and inbreeding depression in life span in 72 3.2 16 Drosophila melanogaster. BMC Evolutionary Biology, 2008, 8, 297. A Theory of Age-Dependent Mutation and Senescence. Genetics, 2008, 179, 2061-2073. 44 Age-related decrease in male reproductive success and song quality in Drosophila montana. 74 2.227 Behavioral Ecology, 2008, 19, 94-99. Heritability of Longevity in Captive Populations of Nondomesticated Mammals and Birds. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2008, 63, 435-446.

CITATION REPORT

#	Article	IF	CITATIONS
76	Genetic (Co)Variation for Life Span in Rhabditid Nematodes: Role of Mutation, Selection, and History. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 1134-1145.	3.6	12
77	What can genetic variation tell us about the evolution of senescence?. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2271-2278.	2.6	41
78	The vitality model: A way to understand population survival and demographic heterogeneity. Theoretical Population Biology, 2009, 76, 118-131.	1.1	57
79	Applying the genetic theories of ageing to the cytoplasm: cytoplasmic genetic covariation for fitness and lifespan. Journal of Evolutionary Biology, 2009, 22, 818-827.	1.7	25
80	Ageâ€dependent mutational effects curtail the evolution of senescence by antagonistic pleiotropy. Journal of Evolutionary Biology, 2009, 22, 2409-2419.	1.7	13
81	Integrating evolutionary and molecular genetics of aging. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 951-962.	2.4	91
82	A new cultivation system for studying chemical effects on the lifespan of the fruit fly. Experimental Gerontology, 2010, 45, 158-162.	2.8	9
83	Health and Disease. , 0, , 457-458.		Ο
84	Human Longevity and Senescence. , 0, , 528-550.		4
85	Before senescence: the evolutionary demography of ontogenesis. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 801-809.	2.6	52
86	Mutation Accumulation May Be a Minor Force in Shaping Life History Traits. PLoS ONE, 2012, 7, e34146.	2.5	20
87	Mutation, Condition, and the Maintenance of Extended Lifespan in Drosophila. Current Biology, 2013, 23, 2283-2287.	3.9	40
88	Reproductive and postâ€reproductive life history of wildâ€caught <i><scp>D</scp>rosophila melanogaster</i> under laboratory conditions. Journal of Evolutionary Biology, 2013, 26, 1508-1520.	1.7	59
89	MALADAPTATION AS A SOURCE OF SENESCENCE IN HABITATS VARIABLE IN SPACE AND TIME. Evolution; International Journal of Organic Evolution, 2014, 68, 2481-2493.	2.3	30
90	Quantitative Genetics of the Aging of Reproductive Traits in the Houbara Bustard. PLoS ONE, 2015, 10, e0133140.	2.5	8
91	Causes of natural variation in fitness: Evidence from studies of <i>Drosophila</i> populations. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1662-1669.	7.1	157
92	Why organisms age: Evolution of senescence under positive pleiotropy?. BioEssays, 2015, 37, 802-807.	2.5	59
93	Retired flies, hidden plateaus, and the evolution of senescence in <i>Drosophila melanogaster</i> . Evolution; International Journal of Organic Evolution, 2016, 70, 1297-1306.	2.3	10

IF

CITATIONS

Aging: Why Do We Age?., 2016, , 49-55. 0 94 Pleiotropy, constraint, and modularity in the evolution of life histories: insights from genomic analyses. Annals of the New York Academy of Sciences, 2017, 1389, 76-91. 3.8 38 Antagonistic pleiotropy and mutation accumulation contribute to ageâ€related decline in stress 96 2.3 27 response. Evolution; International Journal of Organic Evolution, 2018, 72, 303-317. A virus-acquired host cytokine controls systemic aging by antagonizing apoptosis. PLoS Biology, 2018, 16, e2005796. Deleterious mutations show increasing negative effects with age in Drosophila melanogaster. BMC 98 3.8 5 Biology, 2020, 18, 128. Terminal life history: late-life fecundity and survival in experimental populations of Drosophila melanogaster. Biogerontology, 2020, 21, 721-730. Testing Finch's hypothesis: The role of organismal modularity on the escape from actuarial 100 3.6 19 senescence. Functional Ecology, 2020, 34, 88-106. Life-History Evolution and the Genetics of Fitness Components in <i>Drosophila melanogaster</i>. 2.9 98 Genetics, 2020, 214, 3-48. Mutation and senescence: where genetics and demography meet. Contemporary Issues in Genetics and 102 0.9 1 Evolution, 1998, , 299-314. The Rate of Spontaneous Mutation for Life-History Traits in Caenorhabditis elegans. Genetics, 1999, 151, 104 142 119-129. Toward Reconciling Inferences Concerning Genetic Variation in Senescence in Drosophila 105 49 2.9 melanogaster. Genetics, 1999, 152, 553-566. The Evolution of Age-Specific Mortality Rates in Drosophila melanogaster: Genetic Divergence Among Unselected Lines. Genetics, 1999, 153, 813-823. The Genetic Analysis of Age-Dependent Traits: Modeling the Character Process. Genetics, 1999, 153, 107 2.9 132 825-835. Spontaneous Mutational Effects on Reproductive Traits of <i>Arabidopsis thaliana</i>. Genetics, 2000, 159 155, 369-378. Antioxidant Gene Expression in Active and Sedentary House Mice (Mus domesticus) Selected for High 109 2.9 15 Voluntary Wheel-Running Behavior. Genetics, 2002, 161, 1763-1769. Mitigating the Tithonus Error: Genetic Analysis of Mortality Phenotypes. Science of Aging Knowledge Environment: SAGE KE, 2002, 2002, 14pe-14. A mini-review of the evolutionary theories of aging. Demographic Research, 0, 4, 1-28. 112 3.0 45

Biochemigraphy of Aging and Age-Specific Mortality in Drosophila melanogaster. , 2005, , 267-294.

7

ARTICLE

#

#	Article	IF	CITATIONS
117	18. EVOLUTION OF AGING AND LATE LIFE. , 2019, , 551-584.		1
123	The selection force weakens with age because ageing evolves and not vice versa. Nature Communications, 2022, 13, 686.	12.8	13
124	Are mutations usually deleterious? A perspective on the fitness effects of mutation accumulation. Evolutionary Ecology, 2022, 36, 753-766.	1.2	6
125	Age-specific effects of deletions: implications for aging theories. Evolution; International Journal of Organic Evolution, 2023, 77, 254-263.	2.3	1
126	On aging and age-specific effects of spontaneous mutations. Evolution; International Journal of Organic Evolution, 0, , .	2.3	0