The Physical Theory of Meteors. VIII. Fragmentation as

Astrophysical Journal 121, 521 DOI: 10.1086/146012

Citation Report

#	Article	IF	CITATIONS
1	Cosmic Sources of Deep-Sea Deposits. Nature, 1955, 176, 926-927.	27.8	5
3	Characteristics of Radio Echoes from Meteor Trails IV: Polarization Effects. Proceedings of the Physical Society Section B, 1956, 69, 98-113.	0.9	21
4	72. Some problems of meteor astronomy: Introductory Lecture. Symposium - International Astronomical Union, 1957, 4, 375-389.	0.1	0
5	Noctilucent Clouds. Tellus, 1957, 9, 341-364.	0.8	47
7	Solid particles in the solar system. Journal of Geophysical Research, 1959, 64, 1653-1664.	3.3	16
8	Light Curves of Meteors. Nature, 1960, 187, 675-676.	27.8	3
9	On meteor ablation in the atmosphere. Nuovo Cimento, 1961, 19, 415-442.	1.0	10
10	Anomalies in the Light Curves of Meteors resulting from Fragmentation. Nature, 1961, 190, 896-897.	27.8	3
11	Meteoroids Vs. Space Vehicles. ARS Journal, 1961, 31, 803-807.	1.0	20
12	On the density of meteoroids. Nuovo Cimento, 1962, 26, 209-230.	1.0	7
13	A hypothesis that the surface of the moon is covered with needle crystals. Icarus, 1963, 2, 181-186.	2.5	3
14	The origin and structure of icy cometary nuclei. Icarus, 1963, 2, 396-402.	2.5	46
15	Comets and cometary debris in the solar system. Reviews of Geophysics, 1963, 1, 211-229.	23.0	4
16	Planets and Comets: Role of Crystal Growth in Their Formation. Science, 1963, 140, 1208-1211.	12.6	69
17	SURVEY OF OBSERVATIONS OF METEOR TRAILS. AIAA Journal, 1963, 1, 1028-1033.	2.6	4
18	On the density of meteoroids. Nuovo Cimento, 1964, 33, 1173-1184.	1.0	16
19	The origin of meteors inferred from orbital elements. Icarus, 1964, 3, 306-310.	2.5	3
20	Chapter 3 Structure and Circulation of the Upper Stratosphere and the Mesosphere. International Geophysics, 1965, , 65-118.	0.6	Ο

ATION REDO

CITATION REPORT

#	Article	IF	CITATIONS
21	Atmospheric Noble Gases: Solar-Wind Bombardment of Extraterrestrial Dust as a Possible Source Mechanism. Science, 1965, 148, 1085-1088.	12.6	13
22	Radio-echo studies of meteors at 68-centimeter wavelength. Journal of Geophysical Research, 1965, 70, 5395-5416.	3.3	37
23	Radar observations of meteor deceleration. Journal of Geophysical Research, 1966, 71, 171-188.	3.3	35
24	Physical characteristics of 320 faint radio meteors. Journal of Geophysical Research, 1966, 71, 2749-2761.	3.3	18
25	Implantation in Interplanetary Dust of Rare-Gas Ions from Solar Flares. Science, 1966, 153, 981-984.	12.6	17
26	Minor objects in the solar system. Space Science Reviews, 1966, 6, 365.	8.1	16
27	Frothing as an explanation of the acceleration anomalies of cometary meteors. Journal of Geophysical Research, 1967, 72, 3483-3496.	3.3	15
28	21. The separation of small particles from meteor bodies, and its influence on some parameters of meteors. Symposium - International Astronomical Union, 1968, 33, 207-216.	0.1	7
29	22. The relation between orbits and physical characteristics of meteors. Symposium - International Astronomical Union, 1968, 33, 217-235.	0.1	1
30	Structure and fragmentation of meteoroids. Space Science Reviews, 1969, 10, 230-261.	8.1	100
31	The reflection of radio waves from irregularly ionized meteor trains. Planetary and Space Science, 1969, 17, 1519-1526.	1.7	3
32	Particle collection results from a rocket flight on August 1, 1968. Journal of Geophysical Research, 1970, 75, 6751-6757.	3.3	12
33	Faint meteor ablation processes. Journal of Geophysical Research, 1970, 75, 495-498.	3.3	1
34	The seasonal variation of the atmospheric temperature near the mesopause level: Preliminary results. Journal of Geophysical Research, 1971, 76, 5101-5103.	3.3	3
35	Ablation and breakup of large meteoroids during atmospheric entry. Journal of Geophysical Research, 1971, 76, 4653-4668.	3.3	209
36	Are Meteors a Tool for Studying the Asteroids? Or Vice Versa?. International Astronomical Union Colloquium, 1971, 12, 395-397.	0.1	0
37	Cosmic Dust in the Atmosphere and in the Interplanetary Space at 1 AU Today and in the Early Solar System. International Astronomical Union Colloquium, 1971, 13, 209-221.	0.1	2
38	Diurnal and seasonal variation of the atmospheric temperature at the 90-kilometer altitude. Journal of Geophysical Research, 1972, 77, 4581-4585.	3.3	3

~		~	
	ON	REPC	NDT
\sim		ILLI U	

#	Article	IF	CITATIONS
39	The meteoroid influx and the maintenance of the solar system dust cloud. Planetary and Space Science, 1972, 20, 1949-1959.	1.7	23
40	THE INCENTIVE OF A BOLD HYPOTHESIS: HYPERBOLIC METEORS AND COMETS. Annals of the New York Academy of Sciences, 1972, 198, 219-224.	3.8	1
41	An analysis of the physical parameters of 5759 faint radio meteors. Journal of Geophysical Research, 1973, 78, 8429-8462.	3.3	123
42	THE NORTON COUNTY METEOROID: A CASE FOR STATISTICAL STUDY OF METEORITE FRAGMENTS. Meteoritics, 1973, 8, 277-286.	1.4	3
43	Light curves of very faint meteors. Nature, 1974, 248, 211-211.	27.8	3
44	Meteor train ion chemistry. Journal of Atmospheric and Solar-Terrestrial Physics, 1974, 36, 1759-1773.	0.9	32
45	Fireball end heights: A diagnostic for the structure of meteoric material. Journal of Geophysical Research, 1976, 81, 6257-6275.	3.3	193
46	On the relation between diffusion coefficients and height from radar meteor echoes. Journal of Atmospheric and Solar-Terrestrial Physics, 1978, 40, 89-93.	0.9	2
47	Residual mass from atmospheric ablation of small meteoroids. Planetary and Space Science, 1985, 33, 315-320.	1.7	10
48	Residual mass from ablation of meteoroid grains detached during atmospheric flight. Planetary and Space Science, 1986, 34, 1201-1212.	1.7	11
49	Hypervelocity impact in metals, glass and composites. International Journal of Impact Engineering, 1987, 5, 221-237.	5.0	129
50	A note on antimatter meteors. Earth, Moon and Planets, 1988, 40, 213-216.	0.6	4
51	Meteor astronomy: A mature science?. Earth, Moon and Planets, 1988, 43, 187-194.	0.6	6
52	Dissimilarities in Perseid meteoroids. Meteoritics, 1990, 25, 177-180.	1.4	3
53	Fragmenting Particles During 1989-1994 Perseid Radar Observations. International Astronomical Union Colloquium, 1996, 150, 79-82.	0.1	1
54	Evidence for asteroidal origin of the Tunguska object. Planetary and Space Science, 1998, 46, 191-204.	1.7	37
55	Are meteoroids really dustballs?. Planetary and Space Science, 2000, 48, 911-920.	1.7	48
56	Micro-damage of Ti–6Al–4V alloy under hypervelocity projectile impact. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 292, 130-132.	5.6	12

CITATION REPORT

#	Article	IF	CITATIONS
57	Imageâ€intensified video results from the 1998 Leonid shower: I. Atmospheric trajectories and physical structure. Meteoritics and Planetary Science, 2000, 35, 1259-1267.	1.6	41
58	Fragmentation and densities of meteoroids. Astronomy and Astrophysics, 2002, 384, 317-321.	5.1	52
59	The size of meteoroid constituent grains: Implications for interstellar meteoroids. COSPAR Colloquia Series, 2002, 15, 23-26.	0.2	1
60	Leonid meteor light-curve synthesis. Monthly Notices of the Royal Astronomical Society, 2003, 345, 696-704.	4.4	29
61	Model of the ablation of faint meteors. Astronomy and Astrophysics, 2004, 418, 751-758.	5.1	125
62	Mass loss due to sputtering and thermal processes in meteoroid ablation. Planetary and Space Science, 2005, 53, 1341-1354.	1.7	53
63	Searching for Light Curve Evidence of Meteoroid Structure and Fragmentation. , 2005, , 289-295.		0
64	Modelling meteor ablation in the venusian atmosphere. Icarus, 2006, 180, 8-22.	2.5	29
65	A screw-like meteoric train photographed by double-station observations. New Astronomy, 2006, 12, 104-110.	1.8	2
66	Optical Observations of Meteors. Earth, Moon and Planets, 2006, 95, 521-531.	0.6	6
67	Searching for Light Curve Evidence of Meteoroid Structure and Fragmentation. Earth, Moon and Planets, 2006, 95, 289-295.	0.6	2
68	An Alternative Explanation for a Screw-like Meteoric Train Photographed by Double-Station Observations. Research in Astronomy and Astrophysics, 2007, 7, 814-822.	1.1	0
69	Atmospheric deceleration and light curves of Draconid meteors and implications for the structure of cometary dust. Astronomy and Astrophysics, 2007, 473, 661-672.	5.1	99
70	Meteoroid structure from radar head echoes. Monthly Notices of the Royal Astronomical Society, 0, 382, 1309-1316.	4.4	16
71	Densities and porosities of meteoroids. Astronomy and Astrophysics, 2009, 495, 353-358.	5.1	63
72	The dynamic strength of an ordinary chondrite. Meteoritics and Planetary Science, 2011, 46, 1653-1669.	1.6	69
73	Bulk density of small meteoroids. Astronomy and Astrophysics, 2011, 530, A113.	5.1	33
74	High-resolution modelling of meteoroid ablation. Astronomy and Astrophysics, 2013, 557, A41.	5.1	30

CITATION REPORT

#	Article	IF	CITATIONS
75	Transverse motion of fragmenting faint meteors observed with the Canadian Automated Meteor Observatory. Icarus, 2014, 232, 1-12.	2.5	17
76	The 2011 Draconids Meteor Light Curves and Meteoroid Fragmentation. Earth, Moon and Planets, 2015, 114, 159-169.	0.6	2
77	Evidence of Meteoroid Fragmentation in Specular Trail Echoes Observed Using Gadanki MST Radar. Earth, Moon and Planets, 2015, 114, 89-99.	0.6	4
78	A particle-based model for ablation and wake formation in faint meteors. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1580-1597.	4.4	9
79	Optical fluxes and meteor properties of the camelopardalid meteor shower. Icarus, 2016, 277, 141-153.	2.5	11
80	Fragmentation of specular overdense meteor trail echoes observed with Gadanki MST radar. Astrophysics and Space Science, 2016, 361, 1.	1.4	3
81	Physical characteristics of faint meteors by light curve and high-resolution observations, and the implications for parent bodies. Monthly Notices of the Royal Astronomical Society, 2016, 457, 1289-1298.	4.4	41
82	High-resolution radar observations of meteoroid fragmentation and flaring at the Jicamarca Radio Observatory. Monthly Notices of the Royal Astronomical Society, 2016, 457, 1759-1769.	4.4	11
83	Fully correcting the meteor speed distribution for radar observing biases. Planetary and Space Science, 2017, 143, 209-217.	1.7	15
84	Simultaneous optical and meteor head echo measurements using the Middle Atmosphere Alomar Radar System (MAARSY): Data collection and preliminary analysis. Planetary and Space Science, 2017, 141, 25-34.	1.7	19
85	Physical properties of the stone meteorites: Implications for the properties of their parent bodies. Chemie Der Erde, 2018, 78, 269-298.	2.0	100
86	Origin and Classification of Impacting Objects, and their Effects on the Earth Surface. , 2019, , 7-18.		0
87	Meteoroid structure and fragmentation. Planetary and Space Science, 2019, 169, 1-7.	1.7	11
88	Properties of meteors with double-peaked light curves. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1121-1136.	4.4	2
89	Luminosity function of faint sporadic meteors measured with a wide-field CMOS mosaic camera Tomo-e PM. Planetary and Space Science, 2019, 165, 281-292.	1.7	3
90	The Maribo <scp>CM</scp> 2 meteorite fall—Survival of weak material at high entry speed. Meteoritics and Planetary Science, 2019, 54, 1024-1041.	1.6	24
91	The physical properties of meteorites. Planetary and Space Science, 2019, 165, 148-178.	1.7	46
92	Constraining the grain mass distribution of small meteoroids using high resolution data. Planetary and Space Science, 2020, 186, 104915.	1.7	2

IF ARTICLE CITATIONS # Meteor observations using radar imaging techniques and norm-constrained Capon method. Planetary 93 1.7 4 and Space Science, 2020, 184, 104884. Aircraft-based observation of meteoric material in lower-stratospheric aerosol particles between 15 and 68°â€‰N. Atmospheric Chemistry and Physics, 2021, 21, 989-1013. 94 Three dimensional atmospheric entry simulation of a high altitude cometary dustball meteoroid. 95 5.1 6 Astronomy and Astrophysics, 2021, 650, A101. Geophysical Aspects of Meteors. Handbuch Der Physik, 1957, , 427-454. 0.1 Meteors. Handbuch Der Physik, 1959, , 519-564. 97 0.1 13 The Meteoritic Risk to Space Vehicles., 1958, , 418-428. 99 STRUCTURE OF THE ATMOSPHERE., 1976, , 1-50. 4 Modeling the photometric and dynamical behavior of Super-Schmidt meteors in the Earth's 5.1 atmosphere. Astronomy and Astrophysics, 2002, 389, 680-691. Meteors with multi-modal light curves: observations and qualitative models. Bulletin of Taras 101 0.0 0 Shevchenko National University of Kyiv Astronomy, 2018, 48-55. Optical Observations of Meteors., 2005, , 521-531. Aerothermoballistics of Crushing Meteoroids in the Earth's Atmosphere. Fluid Dynamics, 2021, 56, 103 0.9 0 981-1002. The Rise of Meteor Astronomy (1830–1930). Springer Biographies, 2023, , 169-253.

CITATION REPORT