Saturating Laboratory Samples by Back Pressure

ASCE Soil Mechanics and Foundation Division Journal 99, 75-93 DOI: 10.1061/jsfeaq.0001847

Citation Report

#	Article	IF	CITATIONS
1	PROPAGATION OF PORE WATER PRESSURE IN SAND LAYER OF HIGH DEGREE OF SATURATION. Proceedings of the Japan Society of Civil Engineers, 1975, 1975, 81-92.	0.1	1
2	Pile Settlement in Liquefying Sand Deposit. Journal of Geotechcnical Engineering, 1983, 109, 1165-1180.	0.4	8
3	Laboratory permeability tests on sand: influence of the compaction method on anisotropy. Canadian Geotechnical Journal, 1989, 26, 614-622.	2.8	70
4	Granular soils in rigid-wall permeameters: method for determining the degree of saturation. Canadian Geotechnical Journal, 1989, 26, 71-79.	2.8	67
5	Earthen barriers technology for waste containment. Waste Management, 1990, 10, 147-153.	7.4	3
6	The impact of synthetic leachate on the hydraulic conductivity of a smectitic till underlying a landfill near Saskatoon, Saskatchewan. Canadian Geotechnical Journal, 1990, 27, 507-519.	2.8	25
7	Design, construction, performance, and repair of the soil–bentonite liners of two lagoons. Canadian Geotechnical Journal, 1992, 29, 638-649.	2.8	47
8	Piezometer Performance at Wildlife Liquefaction Site, California. Journal of Geotechcnical Engineering, 1994, 120, 975-995.	0.4	50
9	Engineered Soils for Low-Level Radioactive Waste Disposal Facilities: Effects of Additives on the Adsorptive Behavior and Hydraulic Conductivity of Natural Soils. Hazardous Waste and Hazardous Materials, 1996, 13, 283-306.	0.4	9
10	Pore-water pressure response during undrained isotropic load changes in layered soils. Canadian Geotechnical Journal, 1999, 36, 544-555.	2.8	3
11	The behavior of a compressible silty fine sand. Canadian Geotechnical Journal, 1999, 36, 88-101.	2.8	15
12	Drained strength of bentonite-enhanced sand. Geotechnique, 1999, 49, 523-528.	4.0	29
13	Experimental observations of behaviour of heterogeneous soils. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 5, 373-398.	0.8	30
14	OPERATIONAL SAND STIFFNESS FROM LARGE-SCALE LOAD TESTS ON RECONSTITUTED SAND BEDS. Journal of Civil Engineering and Management, 2000, 6, 357-365.	0.0	1
15	Compatibility of slurry wall backfill soils with acid mine drainage. Journal of Environmental Management, 2000, 4, 251-268.	1.7	14
16	Partially saturated tailings sand below the phreatic surface. Geotechnique, 2001, 51, 577-585.	4.0	21
17	Field and Laboratory Measurements of Small Strain Stiffness of Decomposed Granites. Soils and Foundations, 2001, 41, 57-71.	3.1	22
18	A flexible wall permeameter for measurements of water and air coefficients of permeability of residual soils. Canadian Geotechnical Journal, 2003, 40, 559-574.	2.8	80

#	Article	IF	CITATIONS
19	Illuminating reactive microbial transport in saturated porous media: Demonstration of a visualization method and conceptual transport model. Journal of Contaminant Hydrology, 2005, 77, 233-245.	3.3	25
20	Effects of stress paths on the small-strain stiffness of completely decomposed granite. Canadian Geotechnical Journal, 2005, 42, 1200-1211.	2.8	17
21	Laboratory testing of natural soils â \in " Some factors affecting performance. , 2006, , .		0
22	Effectiveness of cement on hydraulic conductivity of compacted soil–cement mixtures. Proceedings of the Institution of Civil Engineers: Ground Improvement, 2006, 10, 77-90.	1.0	25
23	Shear Behavior of Compacted Rubber Fiber-Clay Composite in Drained and Undrained Loading. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2007, 133, 767-781.	3.0	106
24	Cyclic Response of a Sand with Thixotropic Pore Fluid. , 2008, , .		23
25	Discussion of "Influence of relative compaction on the hydraulic conductivity of completely decomposed granite in Hong Kongâ€Appears in Canadian Geotechnical Journal, 46 (10): 1229–1235 Canadian Geotechnical Journal, 2010, 47, 704-707.	2.8	6
26	Use of $A\hat{A}^-=0$ as a Failure Criterion for Weakly Cemented Soils. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2011, 137, 161-170.	3.0	19
27	Relationship between Shear Wave Velocity and Stresses at Failure for Weakly Cemented Sands During Drained Triaxial Compression. Soils and Foundations, 2011, 51, 761-771.	3.1	25
28	Shear Wave Velocity of Weakly Cemented Silty Sand During Drained and Undrained Triaxial Compression. , 2012, , .		3
29	Strength and deformation characteristics of a locked sand at low effective stresses. Granular Matter, 2013, 15, 543-556.	2.2	4
30	A new technique for obtaining highâ€resolution pore pressure records in thick claystone aquitards and its use to determine in situ compressibility. Water Resources Research, 2013, 49, 732-743.	4.2	36
31	A transparent aqueous-saturated sand surrogate for use in physical modeling. Acta Geotechnica, 2014, 9, 187-206.	5.7	82
32	Preliminary Study on Small-Strain Triaxial Testing Method for Soft Shanghai Clays. , 2014, , .		0
33	Investigation into the effect of backpressure on the mechanical behavior of methane-hydrate-bearing sediments via DEM analyses. Computers and Geotechnics, 2015, 69, 551-563.	4.7	29
34	Dynamic Feature Analysis for Silty Sand. Advanced Materials Research, 0, 1089, 223-227.	0.3	0
35	Pore pressure response to barometric pressure change in Champlain clay: Prediction of the clay elastic properties. Engineering Geology, 2015, 198, 16-29.	6.3	17
36	Effect of triaxial specimen size on engineering design and analysis. International Journal of Geo-Engineering, 2015, 6, 1.	2.1	14

#	Article	IF	CITATIONS
37	Swell pressure, matric suction, and matric suction equivalent for undisturbed expansive clays. Canadian Geotechnical Journal, 2015, 52, 356-366.	2.8	12
38	Specimen size effects on behavior of loose sand in triaxial compression tests. Canadian Geotechnical Journal, 2015, 52, 732-746.	2.8	40
39	Potential of Using Nanocarbons to Stabilize Weak Soils. Applied and Environmental Soil Science, 2016, 2016, 1-9.	1.7	58
41	Soil-water characteristic curves and hydraulic conductivity of nanomaterial-soil-bentonite mixtures. Arabian Journal of Geosciences, 2016, 9, 1.	1.3	16
42	Extending Water Retention Curves to a Quasiâ€Saturated Zone Subjected to a High Water Pressure up to 1.5 Megapascals. Vadose Zone Journal, 2016, 15, 1-7.	2.2	3
43	Effects of Confining Pressure and Degree of Saturation on Wave Velocities of Soils. International Journal of Geomechanics, 2016, 16, .	2.7	34
44	Strength and post-peak response of Colorado shale at high pressure and temperature. International Journal of Rock Mechanics and Minings Sciences, 2016, 84, 34-46.	5.8	52
45	Hydro-mechanical Behaviors of the Three-dimensional Consolidation of Multi-layered Soils with Compressible Constituents. Ocean Engineering, 2017, 131, 272-281.	4.3	16
46	The effects of drainage on the behaviour of railway track foundation materials during cyclic loading. Geotechnique, 2017, 67, 845-854.	4.0	38
47	Behaviour of saturated railway track foundation materials during undrained cyclic loading. Canadian Geotechnical Journal, 2018, 55, 689-697.	2.8	18
48	Direct measurement of the unjacketed pore modulus of porous solids. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20180602.	2.1	12
49	S-wave velocity in samples of calcareous waste. E3S Web of Conferences, 2018, 66, 02005.	0.5	1
50	A dynamic gradient ratio test apparatus. Geotextiles and Geomembranes, 2018, 46, 782-789.	4.6	20
52	General Scanning Hysteresis Model for Soil–Water Retention Curves. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2019, 145, .	3.0	16
53	The Behavioural Framework of a Lightly Cemented High Plasticity Clay Under Low Effective Stresses. Geotechnical and Geological Engineering, 2019, 37, 4269-4283.	1.7	1
54	Effect of Plasticity on Liquefaction of a Selected Fine-Grained Soil. , 2019, , .		0
55	Triaxial extension and tension tests on lime-cement-improved clay. Soils and Foundations, 2019, 59, 1399-1416.	3.1	16
56	Suitability of fly ash and cement for fabrication of compressed stabilized earth blocks. Construction and Building Materials, 2020, 263, 120935.	7.2	25

#	Article	IF	CITATIONS
57	Influence of CO2 injection on the poromechanical response of Berea sandstone. International Journal of Greenhouse Gas Control, 2020, 95, 102959.	4.6	18
58	The effect of increased axle loading on the behavior of heavily overconsolidated railway foundation materials. Transportation Geotechnics, 2021, 27, 100493.	4.5	2
59	Liquefaction Resistance of Desaturated and Partly Saturated Clean Sand. Lecture Notes in Civil Engineering, 2021, , 171-180.	0.4	0
60	Triaxial creep tests of glacitectonically disturbed stiff clay – structural, strength, and slope stability aspects. Open Geosciences, 2021, 13, 1118-1138.	1.7	4
61	Cyclic and Dynamic Behavior of Sand–Rubber and Clay–Rubber Mixtures. Geotechnical and Geological Engineering, 2021, 39, 3449-3467.	1.7	24
62	Experimental Investigations of the Stress Path Dependence of Weakly Cemented Sand. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2021, 147, 04021007.	3.0	3
63	Influence of Saturation on Hydromechanical Properties of Glacial Tills. , 2021, , .		1
64	Drained behaviour of artificially cemented dune aeolian sand. Geomechanics and Geoengineering, 0, , 1-12.	1.8	0
65	Liquefaction Resistance and Cyclic Response of Air Injected-Desaturated Sandy Soil. Geotechnical and Geological Engineering, 2022, 40, 1851-1872.	1.7	6
66	Suitability of empirical equations for estimating permanent settlement of railway foundation materials subjected to cyclic loading with principal stress rotation. Canadian Geotechnical Journal, 2021, 58, 1603-1610.	2.8	2
68	Volume Change and Hydraulic Conductivity of Soil-Bentonite Mixture. Jordan Journal of Civil Engineering, 2015, 9, 43-58.	0.2	9
69	A New Ring Shear Device to Measure the Large Displacement Shearing Behavior of Sands. Geotechnical Testing Journal, 2009, 32, 197-208.	1.0	10
70	Suggested Test Method for Determination of Degree of Saturation of Soil Samples by <i>B</i> Value Measurement. Geotechnical Testing Journal, 1979, 2, 158-162.	1.0	19
71	Combined Resonant Column and Cyclic Triaxial Tests for Measuring Undrained Shear Modulus Reduction of Sand With Plastic Fines. Geotechnical Testing Journal, 2013, 36, 20120129.	1.0	27
72	Geotechnical Properties of Sucrose-Saturated Fused Quartz for Use in Physical Modeling. Geotechnical Testing Journal, 2013, 36, 448-454.	1.0	34
73	A Nonviscous Water-Based Pore Fluid for Modeling With Transparent Soils. Geotechnical Testing Journal, 2015, 38, 20140278.	1.0	16
74	Development of a Miniature Cone Penetrometer for Calibration Chamber Testing. Geotechnical Testing Journal, 2015, 38, 20150036.	1.0	14
75	How to Improve the Quality of Laboratory Permeability Tests in Rigid-Wall Permeameters: A Review. Geotechnical Testing Journal, 2020, 43, 20180350.	1.0	9

#	Article	IF	CITATIONS
76	An Improved Unsaturated Triaxial Device to Characterize the Pore-Water Pressure and Local Volume Change Behavior of a Compacted Marl. Geotechnical Testing Journal, 2020, 43, 20190003.	1.0	1
77	Partially saturated tailings sand below the phreatic surface. Geotechnique, 2001, 51, 577-585.	4.0	3
78	Some Aspects of Laboratory Permeability Test. Soils and Foundations, 1982, 22, 181-190.	3.1	9
79	On Laboratory Permeability Test Methods Journal of the Japan Society of Engineering Geology, 1998, 39, 315-321.	0.2	3
82	A Large Diameter Triaxial Apparatus to Measure Pore Pressure and Displacements on a Pre-existing Shear Zone/Plane. Geotechnical Testing Journal, 2007, 30, 245-255.	1.0	0
83	Strength and Small-Strain Stiffness Characteristics of Unsaturated Sand. Geotechnical Testing Journal, 2011, 34, 551-561.	1.0	6
84	Shear strength behaviour and the measurement of shear strength in residual soils. , 2012, , 231-302.		1
87	A New Triaxial Apparatus Imposing Nonuniform Shearing for Deep Learning of Soil Behavior. Geotechnical Testing Journal, 2019, 42, 538-572.	1.0	Ο
89	Sample Preparation and Back Pressure for Undrained Triaxial Test on Volcanic Coarse-grained Soil "SHIRASU― Soils and Foundations, 1979, 19, 109-115.	3.1	1
90	Failure Modes of Air Desaturated Sand in Undrained Cyclic Loading: A Systematic Experimental Investigation. Indian Geotechnical Journal, 2022, 52, 249.	1.4	2
91	VARIATION OF HYDRAULIC CONDUCTIVITY IN SANDY SOIL DUE TO UNDRAINED CYCLIC SHEAR LOADING. Journal of Japan Society of Civil Engineers Ser C (Geosphere Engineering), 2021, 77, 386-391.	0.2	1
92	Filtration performance of non- woven geotextiles with internally-stable and -unstable soils under dynamic loading. Geotextiles and Geomembranes, 2022, 50, 293-311.	4.6	5
93	Coupled Thermo-Hydro-Mechanical Effects on Transport Properties of Glacial Tills. , 2022, , .		0
94	Experimental Study of Internal Erosion in Granular Soil Subject to Cyclic Hydraulic Gradient Reversal. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2022, 148, .	3.0	3
95	Modelling the thermal–hydro-mechanical behaviour of unsaturated soils with a high degree of saturation using an extended precise integration method. Canadian Geotechnical Journal, 2023, 60, 86-101.	2.8	3
97	Evaluation of CO ₂ sealing potential of heterogeneous Eau Claire shale. Geological Society Special Publication, 2023, 528, 377-393.	1.3	2
98	Variation in Hydraulic Conductivity with Increase in Excess Pore Water Pressure Due to Undrained Cyclic Shear Focusing on Relative Density. Geotechnical, Geological and Earthquake Engineering, 2022, , 1717-1724.	0.2	0
99	Experimental Investigation of Consolidated Undrained Shear Behavior on Peaty Soil in Dian-Chi, China. Sustainability, 2022, 14, 14618.	3.2	0

#	Article	IF	CITATIONS
100	Hydraulic Conductivity Tests in the Triaxial Stress State: Is Peat an Aquitard or an Aquifer?. Water (Switzerland), 2023, 15, 1064.	2.7	0
101	On the Measurement of B for a Sandstone. Rock Mechanics and Rock Engineering, 2023, 56, 6127-6133.	5.4	2
102	An Experimental Study on Excess Pore-Water Pressure Generation of a Poorly Graded Sand Using Combined RCTS Device. Geotechnical Testing Journal, 2024, 47, .	1.0	0
103	Finite element analysis for a deep excavation in soft clay supported by lime-cement columns. Computers and Geotechnics, 2023, 162, 105687.	4.7	3
104	Dynamic characteristics of carbonate saline soil under freeze–thaw cycles in the seaonal frozen soil region. AEJ - Alexandria Engineering Journal, 2023, 81, 384-394.	6.4	1
105	Characterization of multiphase flow in shaly caprock for geologic CO2 storage. Advances in Water Resources, 2023, 182, 104570.	3.8	0