Industrial carbon dioxide capture and utilization: state

Chemical Society Reviews 49, 8584-8686 DOI: 10.1039/d0cs00025f

Citation Report

#	Article	IF	CITATIONS
1	CO2 capture performance and mechanism of blended amine solvents regulated by N-methylcyclohexyamine. Energy, 2021, 215, 119209.	4.5	46
2	Selective CO 2 Sorption Using Compartmentalized Coordination Polymers with Discrete Voids**. Chemistry - A European Journal, 2021, 27, 4653-4659.	1.7	5
3	Towards the development of the emerging process of CO ₂ heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons. Chemical Society Reviews, 2021, 50, 10764-10805.	18.7	161
4	Catalyst-free development of N-doped microporous carbons for selective CO ₂ separation. New Journal of Chemistry, 2021, 45, 7308-7314.	1.4	1
5	Recent advances and the design criteria of metal sulfide photocathodes and photoanodes for photoelectrocatalysis. Journal of Materials Chemistry A, 2021, 9, 20277-20319.	5.2	53
6	Preparation and Photothermal Catalytic Application of Powder-form Cobalt Plasmonic Superstructures. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, , 458.	0.6	4
7	Molecular dynamics simulations of a hydrophilic MIL-160-based membrane demonstrate pressure-dependent selective uptake of industrially relevant greenhouse gases. Materials Advances, 2021, 2, 5922-5934.	2.6	3
8	Recent advances in integrated CO ₂ capture and utilization: a review. Sustainable Energy and Fuels, 2021, 5, 4546-4559.	2.5	142
9	High-performance Pt _{0.01} Fe _{0.05} -g-C ₃ N ₄ Catalyst for Photothermal Catalytic CO ₂ Reduction. Acta Chimica Sinica, 2021, 79, 932.	0.5	6
10	A novel photochemical sensor based on quinoline-functionalized phenazine derivatives for multiple substrate detection. New Journal of Chemistry, 2021, 45, 5040-5048.	1.4	5
11	Synthesis of amino alcohols, cyclic urea, urethanes, and cyclic carbonates and tandem one-pot conversion of an epoxide to urethanes using a Zn–Zr bimetallic oxide catalyst. Sustainable Energy and Fuels, 2021, 5, 1498-1510.	2.5	7
12	Fast Addition of sâ€Block Organometallic Reagents to CO ₂ â€Derived Cyclic Carbonates at Room Temperature, Under Air, and in 2â€Methyltetrahydrofuran. ChemSusChem, 2021, 14, 2084-2092.	3.6	17
13	Molten Salt-Promoted MgO Adsorbents for CO ₂ Capture: Transient Kinetic Studies. Environmental Science & Technology, 2021, 55, 4513-4521.	4.6	30
14	Active Nanointerfaces Based on Enzyme Carbonic Anhydrase and Metal–Organic Framework for Carbon Dioxide Reduction. Nanomaterials, 2021, 11, 1008.	1.9	7
15	Design, synthesis, and physicochemical study of a biomass-derived CO2 sorbent 2,5-furan-bis(iminoguanidine). IScience, 2021, 24, 102263.	1.9	3
16	Cation Effects of Phosphate Additives for Enhancing the Oxidative Stability of Amine-Containing CO ₂ Adsorbents. Industrial & Engineering Chemistry Research, 2021, 60, 6147-6152.	1.8	5
17	CO2 capture on aminosilane functionalized alumina-extracted residue of catalytic gasification coal ash. Energy, 2021, 221, 119642.	4.5	7
18	High-temperature CO2 adsorption by one-step fabricated Nd-doped Li4SiO4 pellets. Chemical Engineering Journal, 2021, 410, 128346.	6.6	21

#	Article	IF	Citations
19	Synthetic Fuels Based on Dimethyl Ether as a Future Non-Fossil Fuel for Road Transport From Sustainable Feedstocks. Frontiers in Energy Research, 2021, 9, .	1.2	28
20	Twoâ€Dimensional Metal Halide Perovskite Nanosheets for Efficient Photocatalytic CO ₂ Reduction. Solar Rrl, 2021, 5, 2100263.	3.1	36
21	Perspectives on Multifunctional Catalysts Derived from Layered Double Hydroxides toward Upgrading Reactions of Biomass Resources. ACS Catalysis, 2021, 11, 6440-6454.	5.5	46
22	Energy efficient diethylenetriamine–1-propanol biphasic solvent for CO2 capture: Experimental and theoretical study. Applied Energy, 2021, 290, 116768.	5.1	44
23	Trends and Prospects in UiOâ€66 Metalâ€Organic Framework for CO ₂ Capture, Separation, and Conversion. Chemical Record, 2021, 21, 1771-1791.	2.9	48
24	Yolk–Shell Nanocapsule Catalysts as Nanoreactors with Various Shell Structures and Their Diffusion Effect on the CO ₂ Reforming of Methane. ACS Applied Materials & Interfaces, 2021, 13, 31699-31709.	4.0	21
25	Polymer-metal complexes as emerging catalysts for electrochemical reduction of carbon dioxide. Journal of Applied Electrochemistry, 2021, 51, 1301-1311.	1.5	12
26	Net Zero and Catalysis: How Neutrons Can Help. Physchem, 2021, 1, 95-120.	0.5	3
27	Negative-carbon pyrolysis of biomass (NCPB) over CaO originated from carbide slag for on-line upgrading of pyrolysis gas and bio-oil. Journal of Analytical and Applied Pyrolysis, 2021, 156, 105063.	2.6	24
28	Cobaltâ€&puttered Anodic Aluminum Oxide Membrane for Efficient Photothermal CO ₂ Hydrogenation. ChemNanoMat, 2021, 7, 1008-1012.	1.5	11
29	Efficient Activation of CO ₂ over Ce-MOF-derived CeO ₂ for the Synthesis of Cyclic Urea, Urethane, and Carbamate. Industrial & Engineering Chemistry Research, 2021, 60, 12492-12504.	1.8	30
30	Sustainability Assessment of Thermocatalytic Conversion of CO ₂ to Transportation Fuels, Methanol, and 1-Propanol. ACS Sustainable Chemistry and Engineering, 2021, 9, 10591-10600.	3.2	20
31	Scalable synthesis of KNaTiO3-based high-temperature CO2 capture material from high titanium slag: CO2 uptake, kinetics, regenerability and mechanism study. Journal of CO2 Utilization, 2021, 49, 101578.	3.3	8
32	Reduction of Carbon Dioxide with Ammonia-Borane under Ambient Conditions: Maneuvering a Catalytic Way. Inorganic Chemistry, 2021, 60, 11684-11692.	1.9	15
33	Solar-driven conversion of carbon dioxide over nanostructured metal-based catalysts in alternative approaches: Fundamental mechanisms and recent progress. Environmental Research, 2021, 202, 111781.	3.7	12
34	Modelling the Carbon Footprint of Various Fruit and Vegetable Products Based on a Company's Internal Transport Data. Sustainability, 2021, 13, 7579.	1.6	4
35	Understanding the CO2 chemical reaction path on Li6ZnO4, a new possible high temperature CO2 captor. Chemical Engineering Journal, 2021, 417, 129205.	6.6	14
36	CO ₂ Capture at Medium to High Temperature Using Solid Oxide-Based Sorbents: Fundamental Aspects, Mechanistic Insights, and Recent Advances. Chemical Reviews, 2021, 121, 12681-12745.	23.0	177

#	Article	IF	CITATIONS
37	Electronic Tuning of SnS ₂ Nanosheets by Hydrogen Incorporation for Efficient CO ₂ Electroreduction. Nano Letters, 2021, 21, 7789-7795.	4.5	35
38	Intensification of brewery wastewater purification integrated with CO2 fixation via microalgae co-cultivation. Journal of Environmental Chemical Engineering, 2021, 9, 105710.	3.3	24
39	Fabrication of robust and bifunctional cyclotriphosphazene-based periodic mesoporous organosilicas for efficient CO2 adsorption and catalytic conversion. Chemical Engineering Journal, 2021, 418, 129360.	6.6	56
40	Performance-Based Screening of Porous Materials for Carbon Capture. Chemical Reviews, 2021, 121, 10666-10741.	23.0	115
41	Structure–property correlations for analysis of heterogeneous electrocatalysts. Chemical Physics Reviews, 2021, 2, .	2.6	8
42	Robust and Coke-free Ni Catalyst Stabilized by 1–2 nm-Thick Multielement Oxide for Methane Dry Reforming. ACS Catalysis, 2021, 11, 12409-12416.	5.5	24
43	CO ₂ Ionized Poly(vinyl alcohol) Electrolyte for CO ₂ â€Tolerant Znâ€Air Batteries. Advanced Energy Materials, 2021, 11, 2102047.	10.2	32
44	Operando Spectroscopic Monitoring of Active Species in CO ₂ Hydrogenation at Elevated Pressure and Temperature: Steady-State versus Transient Analysis. Energy & Fuels, 2021, 35, 15243-15246.	2.5	3
45	Shining Light on Porous Liquids: From Fundamentals to Syntheses, Applications and Future Challenges. Advanced Functional Materials, 2022, 32, 2104162.	7.8	40
46	Predicting phase-splitting behaviors of an amine-organic solvent–water system for CO2 absorption: A new model developed by density functional theory and statistical and experimental methods. Chemical Engineering Journal, 2021, 422, 130389.	6.6	14
47	Improved CO2 separation performance and interfacial affinity of composite membranes by incorporating amino acid-based deep eutectic solvents. Separation and Purification Technology, 2021, 272, 118953.	3.9	14
48	Transition metal single atom anchored C3N for highly efficient formic acid dehydrogenation: A DFT study. Applied Surface Science, 2021, 562, 150186.	3.1	15
49	Visible-light-driven photocatalysis of carbon dioxide and organic pollutants by MFeO2 (MÂ=ÂLi, Na, or K). Journal of Colloid and Interface Science, 2021, 601, 758-772.	5.0	39
50	A review for Metal-Organic Frameworks (MOFs) utilization in capture and conversion of carbon dioxide into valuable products. Journal of CO2 Utilization, 2021, 53, 101715.	3.3	58
51	Electron structure and reaction pathway regulation on porous cobalt-doped CeO2/graphene aerogel: A free-standing cathode for flexible and advanced Li-CO2 batteries. Energy Storage Materials, 2021, 42, 484-492.	9.5	38
52	Easily-synthesized and low-cost amine-functionalized silica sol-coated structured adsorbents for CO2 capture. Chemical Engineering Journal, 2021, 425, 131409.	6.6	20
53	Microchannel zeolite 13X adsorbent with high CO2 separation performance. Separation and Purification Technology, 2021, 277, 119483.	3.9	13
54	A novel approach to prepare efficient CO2 sorbents derived from alumina-extracted residue of coal ash. Journal of Environmental Chemical Engineering, 2021, 9, 106373.	3.3	1

#	Article	IF	CITATIONS
55	Hydroxy functionalized triptycene based covalent organic polymers for ultra-high radioactive iodine uptake. Chemical Engineering Journal, 2022, 427, 130950.	6.6	35
56	Cascade electrocatalytic reduction of carbon dioxide and nitrate to ethylamine. Journal of Energy Chemistry, 2022, 65, 367-370.	7.1	52
57	Robust structure regulation of geopolymer as novel efficient amine support to prepare high-efficiency CO2 capture solid sorbent. Chemical Engineering Journal, 2022, 427, 131577.	6.6	38
58	Formate dehydrogenases for CO2 utilization. Current Opinion in Biotechnology, 2022, 73, 95-100.	3.3	57
59	Renewable biomass-derived carbon-supported g-C3N4 doped with Ag for enhanced photocatalytic reduction of CO2. Journal of Colloid and Interface Science, 2022, 606, 1311-1321.	5.0	45
60	Single- and mixed-metal–organic framework photocatalysts for carbon dioxide reduction. Inorganic Chemistry Frontiers, 2021, 8, 3178-3204.	3.0	41
61	Eutectic doped Li ₄ SiO ₄ adsorbents using the optimal dopants for highly efficient CO ₂ removal. Journal of Materials Chemistry A, 2021, 9, 14309-14318.	5.2	22
62	Materials and system design for direct electrochemical CO ₂ conversion in capture media. Journal of Materials Chemistry A, 2021, 9, 18785-18792.	5.2	28
63	Zinc oxide rod/peanut shell-derived porous carbon composites for cooperative CO ₂ chemical fixation. New Journal of Chemistry, 2021, 45, 4147-4151.	1.4	3
64	Catalytic hydrogenation of furfural to furfuryl alcohol on hydrotalcite-derived CuxNi3â^'xAlOy mixed-metal oxides. Journal of Catalysis, 2021, 404, 420-429.	3.1	19
65	Cobalt Catalysts Enable Selective Hydrogenation of CO ₂ toward Diverse Products: Recent Progress and Perspective. Journal of Physical Chemistry Letters, 2021, 12, 10486-10496.	2.1	40
66	Descriptors for the Evaluation of Electrocatalytic Reactions: dâ€Band Theory and Beyond. Advanced Functional Materials, 2022, 32, 2107651.	7.8	154
67	Theoretical Insights into Synergistic Effects at Cu/TiC Interfaces for Promoting CO2 Activation. ACS Omega, 2021, 6, 27259-27270.	1.6	4
68	Plasma assisted CO2 splitting to carbon and oxygen: A concept review analysis. Journal of CO2 Utilization, 2021, 54, 101775.	3.3	13
69	A novel fiber-supported superbase catalyst in the spinning basket reactor for cleaner chemical fixation of CO2 with 2-aminobenzonitriles in water. Chemical Engineering Journal, 2022, 430, 133204.	6.6	12
70	Electrochemical Reduction of CO ₂ to CO over Transition Metal/Nâ€Đoped Carbon Catalysts: The Active Sites and Reaction Mechanism. Advanced Science, 2021, 8, e2102886.	5.6	121
71	Glycol assisted efficient conversion of CO2 captured from air to methanol with a heterogeneous Cu/ZnO/Al2O3 catalyst. Journal of CO2 Utilization, 2021, 54, 101762.	3.3	15
72	Gridlike 3d-4f heterometallic macrocycles for highly efficient conversion of CO2 into cyclic carbonates. Journal of CO2 Utilization, 2021, 54, 101780.	3.3	10

#	Article	IF	Citations
73	CO2-Selective Zeolitic Imidazolate Framework Membrane on Graphene Oxide Nanoribbons: Experimental and Theoretical Studies. Journal of Materials Chemistry A, 0, , .	5.2	6
74	Recent progress in single-atom alloys: Synthesis, properties, and applications in environmental catalysis. Journal of Hazardous Materials, 2022, 424, 127427.	6.5	39
75	Unravelling the Mechanism of Intermediateâ€Temperature CO ₂ Interaction with Moltenâ€NaNO ₃ â€Saltâ€Promoted MgO. Advanced Materials, 2022, 34, e2106677.	11.1	21
76	Metal oxideâ€doped Ni/ <scp>CaO</scp> dualâ€function materials for integrated <scp>CO₂</scp> capture and conversion: Performance and mechanism. AICHE Journal, 2023, 69, .	1.8	17
77	A CFD study on the performance of CO2 methanation in water-permeable membrane reactor system. Reaction Chemistry and Engineering, 0, , .	1.9	4
78	Multi-metallic catalysts for the electroreduction of carbon dioxide: Recent advances and perspectives. Renewable and Sustainable Energy Reviews, 2022, 155, 111922.	8.2	32
79	Computational insights into efficient CO2 and H2S capture through zirconium MOFs. Journal of CO2 Utilization, 2022, 55, 101811.	3.3	8
80	Accessing Organonitrogen Compounds via C–N Coupling in Electrocatalytic CO ₂ Reduction. Journal of the American Chemical Society, 2021, 143, 19630-19642.	6.6	129
81	Dihydrolevoglucosenone as a bio-based catalytic solvent for efficient reductive-transformation of CO2 with amines into formamides and benzothiazoles. Chemical Engineering Journal, 2022, 431, 133397.	6.6	8
82	Pyrazineâ€interiorâ€embodied <scp>MOF</scp> â€74 for selective <scp>CO₂</scp> adsorption. AICHE Journal, 2022, 68, e17528.	1.8	11
83	Enhanced methanol selectivity of Cu O/TiO2 photocatalytic CO2 reduction: Synergistic mechanism of surface hydroxyl and low-valence copper species. Journal of CO2 Utilization, 2022, 55, 101825.	3.3	18
84	The Influence of Hydrogen Bond Donors on the CO2 Absorption Mechanism by the Bio-Phenol-Based Deep Eutectic Solvents. Molecules, 2021, 26, 7167.	1.7	9
85	An overview of the materials and methodologies for CO ₂ capture under humid conditions. Journal of Materials Chemistry A, 2021, 9, 26498-26527.	5.2	29
86	Converting CO ₂ into heterocyclic compounds under accelerated performance through Fe ₃ O ₄ -grafted ionic liquid catalysts. New Journal of Chemistry, 2022, 46, 2887-2897.	1.4	6
87	Cadmium-sulfide/gold/graphitic-carbon-nitride sandwich heterojunction photocatalyst with regulated electron transfer for boosting carbon-dioxide reduction to hydrocarbon. Journal of Colloid and Interface Science, 2022, 613, 575-586.	5.0	24
88	CO 2 Absorption Intensification Using 3D Printed Dynamic Polarity Packing in a Benchâ€Scale Integrated CO 2 Capture System. AICHE Journal, 0, , e17570.	1.8	5
89	Benzoguanamine based polyaminal carbon materials for CO2 capture application. Carbon Capture Science & Technology, 2022, 2, 100021.	4.9	3
90	High-index facets exposed on metal–organic framework for boosting photocatalytic carbon dioxide reduction. Chemical Engineering Journal, 2022, 431, 134125.	6.6	19

#	Article	IF	CITATIONS
91	Current advances in bimetallic catalysts for carbon dioxide hydrogenation to methanol. Fuel, 2022, 313, 122963.	3.4	6
92	The carbon footprint balance of a real-case wine fermentation CO2 capture and utilization strategy. Renewable and Sustainable Energy Reviews, 2022, 157, 112058.	8.2	10
93	Elucidating the role of La3+/Sm3+ in the carbon paths of dry reforming of methane over Ni/Ce-La(Sm)-Cu-O using transient kinetics and isotopic techniques. Applied Catalysis B: Environmental, 2022, 304, 121015.	10.8	23
94	Mechanism of Co ₂ Hydrogenation Over Zr ₁ -Cu Singleâ€Atom Catalyst. SSRN Electronic Journal, 0, , .	0.4	0
95	Design and engineering of graphene nanostructures as independent solar-driven photocatalysts for emerging applications in the field of energy and environment. Molecular Systems Design and Engineering, 2022, 7, 213-238.	1.7	26
96	Binary Solvent Regulated Architecture of Ultraâ€Microporous Hydrogenâ€Bonded Organic Frameworks with Tunable Polarization for Highlyâ€&elective Gas Separation. Angewandte Chemie, 2022, 134, .	1.6	8
97	Deep eutectic solvents composed of bio-phenol-derived superbase ionic liquids and ethylene glycol for CO ₂ capture. Chemical Communications, 2022, 58, 2160-2163.	2.2	27
98	Insights into Thiourea-Based Bifunctional Catalysts for Efficient Conversion of CO ₂ to Cyclic Carbonates. Journal of Organic Chemistry, 2022, 87, 3145-3155.	1.7	10
99	Efficient synthesis of cyclic carbonates from CO ₂ under ambient conditions over Zn(betaine) ₂ Br ₂ : experimental and theoretical studies. Physical Chemistry Chemical Physics, 2022, 24, 4298-4304.	1.3	2
100	Advanced organic molecular sieve membranes for carbon capture: Current status, challenges and prospects. , 2022, 2, 100028.		8
101	CO2 Hydrogenation to Methanol Over Cu/ZnO/Al2O3 Catalyst: Kinetic Modeling Based on Either Single- or Dual-Active Site Mechanism. Catalysis Letters, 2022, 152, 3110-3124.	1.4	5
102	Hydrogenation of CO ₂ on Fe-Based Catalysts: Preferred Route to Renewable Liquid Fuels. Industrial & Engineering Chemistry Research, 2022, 61, 10387-10399.	1.8	9
103	Highly efficient CO2 permeation using a new dense dual-phase ceramic membrane prepared with Ce0.8Sm0.2O2â^δ–Pr0.6Sr0.4FeO3â^δ as precursors. Bulletin of Materials Science, 2022, 45, 1.	0.8	1
104	Recent developments in state-of-the-art silica-modified catalysts for the fixation of CO ₂ in epoxides to form organic carbonates. Sustainable Energy and Fuels, 2022, 6, 1198-1248.	2.5	22
105	Binary Solvent Regulated Architecture of Ultraâ€Microporous Hydrogenâ€Bonded Organic Frameworks with Tunable Polarization for Highlyâ€Selective Gas Separation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	39
106	Advances in Palladium-Catalyzed Carboxylation Reactions. Molecules, 2022, 27, 262.	1.7	1
107	N-formylation of isoquinoline derivatives with CO2 and H2 over a heterogeneous Ru/ZIF-8 catalyst. Journal of Experimental Nanoscience, 2022, 17, 61-74.	1.3	2
108	PAN electrospun nanofiber skeleton induced MOFs continuous distribution in MMMs to boost CO2 capture. Journal of Membrane Science, 2022, 650, 120330.	4.1	22

#	Article	IF	CITATIONS
109	Progress in Amine-Functionalized Silica for CO ₂ Capture: Important Roles of Support and Amine Structure. Energy & Fuels, 2022, 36, 1252-1270.	2.5	26
110	A Stateâ€ofâ€theâ€Art Update on Integrated CO ₂ Capture and Electrochemical Conversion Systems. ChemElectroChem, 2022, 9, .	1.7	37
111	Effects of polyimide sequence and monomer structures on CO2 permeation and mechanical properties of sulfonated polyimide/ionic liquid composite membranes. Polymer, 2022, 241, 124533.	1.8	7
112	Task-specific ionic liquids for carbon dioxide absorption and conversion into value-added products. Current Opinion in Green and Sustainable Chemistry, 2022, 34, 100599.	3.2	11
113	A metal-organic framework (MOF)-based temperature swing adsorption cycle for postcombustion CO2 capture from wet flue gas. Chemical Engineering Science, 2022, 250, 117399.	1.9	23
114	Rational self-assembly of triazine- and urea-functionalized periodic mesoporous organosilicas for efficient CO2 adsorption and conversion into cyclic carbonates. Fuel, 2022, 315, 123230.	3.4	21
115	Remarkable basic-metal oxides promoted confinement catalysts for CO2 reforming. Fuel, 2022, 315, 123167.	3.4	27
116	Mechanism of CO ₂ hydrogenation over a Zr ₁ –Cu single-atom catalyst. New Journal of Chemistry, 2022, 46, 5043-5051.	1.4	8
117	Ligand and solvent effects on CO ₂ insertion into group 10 metal alkyl bonds. Chemical Science, 2022, 13, 2391-2404.	3.7	9
118	General Descriptors for CO ₂ -Assisted Selective C–H/C–C Bond Scission in Ethane. Journal of the American Chemical Society, 2022, 144, 4186-4195.	6.6	26
119	Engineering Catalytic Interfaces in Cu ^{δ+} /CeO ₂ -TiO ₂ Photocatalysts for Synergistically Boosting CO ₂ Reduction to Ethylene. ACS Nano, 2022, 16, 2306-2318.	7.3	107
120	Accelerating Pd Electrocatalysis for CO ₂ -to-Formate Conversion across a Wide Potential Window by Optimized Incorporation of Cu. ACS Applied Materials & Interfaces, 2022, 14, 8896-8905.	4.0	26
121	High Performance 3D Selfâ€Supporting Cuâ^'Bi Aerogels for Electrocatalytic Reduction of CO ₂ to Formate. ChemSusChem, 2022, 15, .	3.6	15
122	Tuning basicity of dual function materials widens operation temperature window for efficient CO2 adsorption and hydrogenation to CH4. Journal of CO2 Utilization, 2022, 58, 101922.	3.3	26
123	CO2-sourced anti-freezing hydrogel electrolyte for sustainable Zn-ion batteries. Chemical Engineering Journal, 2022, 435, 135051.	6.6	30
124	SBA-15 Supported Pyrazolium Ionic Liquid Fixation Of Carbon Dioxide into Cyclic Carbonate: The Synergistic Contribution of SBA-15 And Ionic Liquid. SSRN Electronic Journal, 0, , .	0.4	0
125	Direct air capture: process technology, techno-economic and socio-political challenges. Energy and Environmental Science, 2022, 15, 1360-1405.	15.6	176
126	A Review on Anion-Pillared Metal Organic Framework (Apmof) and its Composites with the Balance of Adsorption Capacity and Separation Selectivity for Efficient Gas Separation. SSRN Electronic Journal, 0, , .	0.4	0

ARTICLE IF CITATIONS # Circumventing the scaling relationship on bimetallic monolayer electrocatalysts for selective 127 3.7 9 CO₂ reduction. Chemical Science, 2022, 13, 3880-3887. Intrinsic Insight of Energy-Efficiency Optimization for Co2 Capture by Amine-Based Solvent: Effect of 0.4 Mass Transfer and Solvent Regeneration. SSRN Electronic Journal, 0, , . Ammonium-, phosphonium- and sulfonium-based 2-cyanopyrrolidine ionic liquids for carbon dioxide 129 1.3 11 fixation. Physical Chemistry Chemical Physics, 2022, 24, 9659-9672. Liquefiable biomass-derived porous carbons and their applications in CO₂capture and conversion. Green Chemistry, 2022, 24, 3376-3415. Thermal plasma gasification of organic waste stream coupled with CO₂-sorption enhanced reforming employing different sorbents for enhanced hydrogen production. RSC Advances, 131 1.7 21 2022, 12, 6122-6132. Photothermal Functional Material and Structure for Photothermal Catalytic Co2 Reduction: Recent Advance, Application and Prospect. SSRN Electronic Journal, 0, , . 0.4 Potential Application of Alkaline Metal Nitrate-Promoted Magnesium-Based Materials in the Integrated 133 CO₂ Capture and Methanation Process. Industrial & amp; Engineering Chemistry Research, 1.8 15 2022, 61, 2882-2893. Pilot-Scale Experimental Study of a New High-Loading Absorbent for Capturing CO2 from Flue Gas. 134 1.3 Processes, 2022, 10, 599. Development of Synthetic Route for Fe-substituted MWW-type Zeolites Using Mechanochemical 135 0.4 3 Method. Journal of the Japan Petroleum Institute, 2022, 65, 67-77. Fabrication of azobenzene-functionalized porous polymers for selective CO2 capture. Chinese Journal 1.7 of Chemical Engineering, 2022, 43, 24-30. Emerging Trends in Sustainable CO₂â€Management Materials. Advanced Materials, 2022, 34, 137 11.1 52 e2201547. Ĩ€-SnS Colloidal Nanocrystals with Size-Dependent Band Gaps. Journal of Physical Chemistry C, 2022, 138 1.5 126, 5323-5332. Transition metal doping enhances catalytic selectivity and activity of Pt13 nanoclusters for the 139 1.5 3 reduction of CO2 to CO. Applied Physics Letters, 2022, 120, . 3D hollow CoNi-LDH nanocages based MMMs with low resistance and CO2-philic transport channel to boost CO2 capture. Journal of Membrane Science, 2022, 653, 120542. 140 4.1 23 Improvement of CO2 capture processes by tailoring the reaction enthalpy of Aprotic Nâ€'Heterocyclic 141 2.4 8 anion-based ionic liquids. Chemical Engineering Journal Advances, 2022, 10, 100291. Integrated carbon capture and utilization to methanol with epoxide-functionalized polyamines under 142 homogeneous catalytic conditions. Journal of Organometallic Chemistry, 2022, 965-966, 122331. Microporous carbon derived from cotton stalk crop-residue across diverse geographical locations 143 as efficient and regenerable CO2 adsorbent with selectivity. Journal of CO2 Utilization, 2022, 60, 3.3 12 101975. Integrated carbon capture and utilization: Synergistic catalysis between highly dispersed Ni clusters 144 6.6 and ceria oxygen vacancies. Chemical Engineering Journal, 2022, 437, 135394.

#	Article	IF	Citations
145	Electrocatalytic CO2 conversion to C2 products: Catalysts design, market perspectives and techno-economic aspects. Renewable and Sustainable Energy Reviews, 2022, 161, 112329.	8.2	35
146	Applicability of LaNiO3-derived catalysts as dual function materials for CO2 capture and in-situ conversion to methane. Fuel, 2022, 320, 123842.	3.4	14
147	Progress in in-situ CO2-sorption for enhanced hydrogen production. Progress in Energy and Combustion Science, 2022, 91, 101008.	15.8	28
148	Promoting effects of Li3PO4 and CaCO3 on the intermediate-temperature CO2 adsorption over molten NaNO3-promoted MgO-based sorbents. Chemical Engineering Journal, 2022, 442, 136133.	6.6	11
149	Mechanism and Design Principles for Controlling Stereoselectivity in the Copolymerization of CO ₂ /Cyclohexene Oxide by Indium(III) Phosphasalen Catalysts. ACS Catalysis, 2021, 11, 15244-15251.	5.5	7
150	Structural Chemistry, Flexibility, and CO ₂ Adsorption Performance of Alkali Metal Forms of Merlinoite with a Framework Si/Al Ratio of 4.2. Journal of Physical Chemistry C, 2021, 125, 27403-27419.	1.5	7
151	CO2 capture and in-situ conversion: recent progresses and perspectives. Green Chemical Engineering, 2022, 3, 189-198.	3.3	54
152	Simple fabrication of a phosphorusâ€doped hierarchical porous carbon via softâ€template method for efficient CO ₂ capture. Surface and Interface Analysis, 0, , .	0.8	3
153	Homogenizing Li ₂ CO ₃ Nucleation and Growth through High-Density Single-Atomic Ru Loading toward Reversible Li-CO ₂ Reaction. ACS Applied Materials & Interfaces, 2022, 14, 18561-18569.	4.0	17
154	Preparation of biomass derived phosphorusâ€doped microporous carbon material and its application in dye adsorption and CO ₂ capture. Surface and Interface Analysis, 0, , .	0.8	3
155	Control of the fate of toxic pollutants from catalytic pyrolysis of polyurethane by oxidation using CO2. Chemical Engineering Journal, 2022, 442, 136358.	6.6	11
156	A strategy to synthesis amine-functional Poly(Divinylbenzene)HIPEs with controllable porous structure for effective CO2 adsorption. Fuel, 2022, 322, 124120.	3.4	9
157	Highly Robust Rhenium(I) Bipyridyl Complexes Containing Dipyrrometheneâ€BF2 Chromophores for Visible Lightâ€Driven CO2 Reduction. ChemSusChem, 2022, , .	3.6	5
158	Improved Hydrogen Production Performance of Ni-Al2o3/Cao-Cazro3 Composite Catalyst for Co2 Sorption Enhanced Ch4/H2o Reforming. SSRN Electronic Journal, 0, , .	0.4	0
159	Recyclable and CO ₂ -retardant Zn–air batteries based on CO ₂ -decorated highly conductive cellulose electrolytes. Journal of Materials Chemistry A, 2022, 10, 12235-12246.	5.2	11
160	A 150†000†t•aâ^ 1 Post-Combustion Carbon Capture and Storage Demonstration Project for Coal-Fired Power Plants. Engineering, 2022, 14, 22-26.	3.2	1
161	Combined experimental and computational study on the promising monoethanolamineÂ+Â2-(ethylamino)ethanolÂ+Âsulfolane biphasic aqueous solution for CO2 absorption. Chemical Engineering Journal, 2022, 446, 136674.	6.6	11
162	High-Performance Selective CO ₂ Capture on a Stable and Flexible Metal–Organic Framework via Discriminatory Gate-Opening Effect. ACS Applied Materials & Interfaces, 2022, 14, 21089-21097.	4.0	14

ARTICLE IF CITATIONS Few-layer porous carbon nitride anchoring Co and Ni with charge transfer mechanism for 163 5.0 17 photocatalytic CO2 reduction. Journal of Colloid and Interface Science, 2022, 625, 722-733. Bridge Sites of Au Surfaces Are Active for Electrocatalytic CO₂ Reduction. Journal of the 164 6.6 38 American Chemical Society, 2022, 144, 8641-8648. Alkoxy-Functionalized Amines as Single-Component Water-Lean CO₂ Absorbents with High Efficiency: The Benefit of Stabilized Carbamic Acid. Industrial & amp; Engineering Chemistry Research, 165 1.8 1 2022, 61, 7080-7089. SBA-15 supported pyrazolium ionic liquid efficient fixation of carbon dioxide into cyclic carbonate under mild conditions: The synergistic contribution of SBA-15 and pyrazolium ionic liquid. Microporous and Mesoporous Materials, 2022, 337, 111873. Potential applications for geopolymers in carbon capture and storage. International Journal of 167 2.3 20 Greenhouse Gas Control, 2022, 118, 103687. Reduced energy consumption and enhanced CO2 desorption performance of non-aqueous ionic-liquid-containing amine blends with zeolites. Journal of Molecular Liquids, 2022, 359, 119233. 2.3 Intrinsic insight of energy-efficiency optimization for CO2 capture by amine-based solvent: effect of 169 mass transfer and solvent regeneration. International Journal of Greenhouse Gas Control, 2022, 118, 2.3 14 103673. Research progress of clay minerals in carbon dioxide capture. Renewable and Sustainable Energy 8.2 21 Reviews, 2022, 164, 112536. A strategy of development and selection of absorbent for efficient CO2 capture: An overview of 172 2.7 22 properties and performance. Chemical Engineering Research and Design, 2022, 163, 244-273. A Holistic Consideration of Megawatt Electrolysis as a Key Component of Sector Coupling. Energies, 1.6 2022, 15, 3656. Supramolecular dimers drive the reaction between CO2 and alkanolamines towards carbonate 174 2 3.3 formation. Journal of CO2 Utilization, 2022, 61, 102054. Progresses on carbon dioxide electroreduction into methane. Chinese Journal of Catalysis, 2022, 43, 6.9 1634-1641. Towards High Co2 Conversions Using Cu-Zno Catalysts Supported on Aluminium Fumarate 176 0.4 4 Metal-Organic Framework for Methanol Synthesis. SSRN Electronic Journal, 0, , . $\label{eq:micro-MesoHierarchical Porous Ultrathin Nitrogen-Doped Carbon Nanosheets with Rough Surfaces for Efficient Gas Adsorption and Separation. SSRN Electronic Journal, 0, , .$ 0.4 Phase Splitting Rules of the Primary/Secondary Amineâ€"Tertiary Amine Systems: Experimental Rapid Screening and Corrected Quasi-Activity Coefficient Model. Industrial & amp; Engineering Chemistry 178 1.8 3 Research, 2022, 61, 7709-7717. Recent Progress in Integrated CO2 Capture and Conversion Process Using Dual Function Materials: A 179 State-of-the-Art Review. Carbon Capture Science & Technology, 2022, 4, 100052. Design and Optimization of a Clean Ammonia Synthesis System Based on Biomass Gasification Coupled 180 1.8 7 with a Caâ€"Cu Chemical Loop. Industrial & amp; Engineering Chemistry Research, 2022, 61, 8128-8140. 1d / Od H-Bs Nts/Czs-X Heterojunction with Strong Interfacial Electric Field Coupling Enhanced Mass 181 Transfer Based on Gas-Liquid-Šolid Micro Interface Contact for Efficient Photothermal Synergistic 0.4 Catalytic Co2 Reduction to Syngas. SSRN Electronic Journal, 0, , .

#	Article	IF	CITATIONS
182	Effect of Fe and La on the Performance of NiMgAl HT-Derived Catalysts in the Methanation of CO ₂ and Biogas. Industrial & Engineering Chemistry Research, 2022, 61, 10511-10521.	1.8	9
183	Photodriven CO ₂ Hydrogenation into Diverse Products: Recent Progress and Perspective. Journal of Physical Chemistry Letters, 2022, 13, 5291-5303.	2.1	18
184	DFT investigation of CO2 hydrogenation to methanol over Ir-doped Cu surface. Molecular Catalysis, 2022, 528, 112460.	1.0	1
185	Energy-efficient carbon dioxide capture using a novel low-viscous secondary amine-based nonaqueous biphasic solvent: Performance, mechanism, and thermodynamics. Energy, 2022, 255, 124570.	4.5	24
186	Metal–organic frameworks and derived materials as photocatalysts for water splitting and carbon dioxide reduction. Coordination Chemistry Reviews, 2022, 469, 214664.	9.5	100
187	Development of biphasic solvent for CO2 capture by tailoring the polarity of amine solution. Fuel, 2022, 325, 124885.	3.4	22
188	Highly stable Sr and Na co-decorated Fe catalyst for high-valued olefin synthesis from CO2 hydrogenation. Applied Catalysis B: Environmental, 2022, 316, 121640.	10.8	24
189	Mechanistic insights into the CO ₂ capture and reduction on K-promoted Cu/Al ₂ O ₃ by spatiotemporal <i>operando</i> methodologies. Catalysis Science and Technology, 2022, 12, 5349-5359.	2.1	5
190	Facile construction of a highly proton-conductive matrix-mixed membrane based on a –SO ₃ H functionalized polyamide. Soft Matter, 0, , .	1.2	1
191	Construction and Application of Porous Ionic Liquids. Acta Chimica Sinica, 2022, 80, 848.	0.5	1
192	Catalytic Tandem CO ₂ –Ethane Reactions and Hydroformylation for C3 Oxygenate Production. ACS Catalysis, 2022, 12, 8279-8290.	5.5	8
193	Highly Effective Proton-Conduction Matrix-Mixed Membrane Derived from an -SO3H Functionalized Polyamide. Molecules, 2022, 27, 4110.	1.7	2
194	Recent advances in metal-organic frameworks for catalytic CO2 hydrogenation to diverse products. Nano Research, 2022, 15, 10110-10133.	5.8	28
195	Lattice-matched in-situ construction of 2D/2D T-SrTiO3/CsPbBr3 heterostructure for efficient photocatalysis of CO2 reduction. Chinese Chemical Letters, 2023, 34, 107682.	4.8	11
196	Boosting the Electrocatalytic CO2 Reduction Reaction by Nanostructured Metal Materials via Defects Engineering. Nanomaterials, 2022, 12, 2389.	1.9	9
197	Selective and Multicyclic CO ₂ Adsorption with Visible Light-Driven Photodegradation of Organic Dyes in a Robust Metal–Organic Framework Embracing Heteroatom-Affixed Pores. Inorganic Chemistry, 2022, 61, 10731-10742.	1.9	11
198	Hierarchically porous metal organic framework immobilized formate dehydrogenase for enzyme electrocatalytic CO2 reduction. Chemical Engineering Journal, 2022, 450, 138164.	6.6	17
199	Recent advances in biochar-based adsorbents for CO2 capture. Carbon Capture Science & Technology, 2022, 4, 100059.	4.9	48

#	Article	IF	CITATIONS
200	Investigation of mass transfer model of CO2 absorption with Rayleigh convection using multi-relaxation time lattice Boltzmann method. Chinese Journal of Chemical Engineering, 2022, , .	1.7	2
201	Transfer Hydrogenation of CO ₂ and CO ₂ Derivatives using Alcohols as Hydride Sources: Boosting an H ₂ -Free Alternative Strategy. ACS Catalysis, 2022, 12, 8886-8903.	5.5	13
202	Carbon Dioxide Chemisorption by Ammonium and Phosphonium Ionic Liquids: Quantum Chemistry Calculations. Journal of Physical Chemistry B, 2022, 126, 5497-5506.	1.2	10
203	Selective CO2 reduction to methane catalyzed by mesoporous Ru-Fe3O4/CeOx-SiO2 in a fixed bed flow reactor. Molecular Catalysis, 2022, 528, 112486.	1.0	5
204	Regeneration of zeolite membranes deactivated by condensable molecules. International Journal of Greenhouse Gas Control, 2022, 119, 103731.	2.3	0
205	Self-optimizing control and safety assessment to achieve economic and safe operation for oxy-fuel combustion boiler island systems. Applied Energy, 2022, 323, 119397.	5.1	3
206	Nanosecond laser lithography enables concave-convex zinc metal battery anodes with ultrahigh areal capacity. Energy Storage Materials, 2022, 51, 273-285.	9.5	26
207	Experimental study and modified modeling on effect of SO2 on CO2 absorption using amine solution. Chemical Engineering Journal, 2022, 448, 137751.	6.6	14
208	Strategies for overcoming the limitations of enzymatic carbon dioxide reduction. Biotechnology Advances, 2022, 60, 108024.	6.0	18
209	3Dâ€Printed Metal–Organic Frameworkâ€Đerived Composites for Enhanced Photocatalytic Hydrogen Generation. Solar Rrl, 2022, 6, .	3.1	10
210	A review on anion-pillared metal–organic frameworks (APMOFs) and their composites with the balance of adsorption capacity and separation selectivity for efficient gas separation. Coordination Chemistry Reviews, 2022, 470, 214714.	9.5	32
211	1D/0D Z-scheme heterostructure of Bi2S3/CdXZn1â^'XS with strong interfacial electric field coupling enhanced mass transfer based on gas-liquid-solid micro interface contact for efficient photothermal synergistic catalytic CO2 reduction to syngas. Chemical Engineering Journal, 2022, 450, 138266.	6.6	20
212	Tuning the hybridization and charge polarization in metal nanoparticles dispersed over Schiff base functionalized SBA-15 enhances CO ₂ capture and conversion to formic acid. Journal of Materials Chemistry A, 2022, 10, 18354-18362.	5.2	3
213	Assessment of enhanced activity of co-integration pathways for CO ₂ capture and CO ₂ utilization. Energy and Environment, 0, , 0958305X2211150.	2.7	0
214	Defectâ€Rich Heterostructured Biâ€Based Catalysts for Efficient CO ₂ Reduction Reaction to Formate in Wide Operable Windows. Energy Technology, 2022, 10, .	1.8	4
215	Unprecedented continuous elastic foam-bed reactor for CO2 capture. Chemical Engineering Journal, 2022, , 138604.	6.6	Ο
216	Homogeneous Hydrogenation of CO ₂ and CO to Methanol: The Renaissance of Lowâ€Temperature Catalysis in the Context of the Methanol Economy. Angewandte Chemie, 2022, 134, .	1.6	3
217	Marginal strategies of CO2 use as a reactant for sustainable chemistry and health applications. Current Opinion in Green and Sustainable Chemistry, 2022, 37, 100679.	3.2	2

#	Article	IF	Citations
218	Advances in Biomimetic Photoelectrocatalytic Reduction of Carbon Dioxide. Advanced Science, 2022, 9,	5.6	17
219	Challenges and Opportunities in Electrocatalytic CO ₂ Reduction to Chemicals and Fuels. Angewandte Chemie, 2022, 134, .	1.6	8
220	Enhancing carbon dioxide reduction electrocatalysis by tuning metal-support interactions: A first principles study. Green Chemical Engineering, 2022, , .	3.3	1
221	Construction of a Hollow SiO ₂ -Based Porous Liquid Based on Polydopamine and Its Application in CO ₂ Separation of Membranes. ACS Applied Polymer Materials, 2022, 4, 6363-6373.	2.0	8
222	Missingâ€linker Defects in Covalent Organic Framework Membranes for Efficient CO2 Separation. Angewandte Chemie, 0, , .	1.6	3
223	Highly Effective Proton-Conductive Matrix-Mixed Membrane Based on a â~SO ₃ H-Functionalized Polyphosphazene. Langmuir, 2022, 38, 10503-10511.	1.6	4
224	Catalytic Conversion of CO ₂ over Atomically Precise Gold-Based Cluster Catalysts. ACS Catalysis, 2022, 12, 10638-10653.	5.5	32
225	Homogeneous Hydrogenation of CO ₂ and CO to Methanol: The Renaissance of Lowâ€Temperature Catalysis in the Context of the Methanol Economy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	36
226	Direct Electrochemical CO ₂ Capture Using Substituted Anthraquinones in Homogeneous Solutions: A Joint Experimental and Theoretical Study. Journal of Physical Chemistry C, 2022, 126, 14138-14154.	1.5	9
227	Precision copolymerization of CO2 and epoxides enabled by organoboron catalysts. , 2022, 1, 892-901.		24
228	Microenvironment Modulation in Carbonâ€Supported Singleâ€Atom Catalysts for Efficient Electrocatalytic CO ₂ Reduction. Chemistry - an Asian Journal, 2022, 17, .	1.7	10
229	Missingâ€linker Defects in Covalent Organic Framework Membranes for Efficient CO ₂ Separation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	47
230	Challenges and Opportunities in Electrocatalytic CO ₂ Reduction to Chemicals and Fuels. Angewandte Chemie - International Edition, 2022, 61, .	7.2	62
231	Improving the Enzymatic Cascade of Reactions for the Reduction of CO2 to CH3OH in Water: From Enzymes Immobilization Strategies to Cofactor Regeneration and Cofactor Suppression. Molecules, 2022, 27, 4913.	1.7	6
232	Impact of urea-based deep eutectic solvents on Mg-MOF-74 morphology and sorption properties. Microporous and Mesoporous Materials, 2022, 343, 112148.	2.2	5
233	Green carboxylation of CO2 triggered by well-dispersed silver nanoparticles immobilized by melamine-based porous organic polymers. Journal of CO2 Utilization, 2022, 64, 102179.	3.3	0
234	Comparison of three different structures of zeolites prepared by template-free hydrothermal method and its CO2 adsorption properties. Environmental Research, 2022, 214, 113949.	3.7	17
235	A stable solid amine adsorbent with interconnected open-cell structure for rapid CO2 adsorption and CO2/CH4 separation. Energy, 2022, 258, 124899.	4.5	9

#	Article	IF	Citations
236	Progress of CCUS technology in the iron and steel industry and the suggestion of the integrated application schemes for China. Chemical Engineering Journal, 2022, 450, 138438.	6.6	45
237	Rational fabrication of cadmium-sulfide/graphitic-carbon-nitride/hematite photocatalyst with type II and Z-scheme tandem heterojunctions to promote photocatalytic carbon dioxide reduction. Journal of Colloid and Interface Science, 2022, 628, 129-140.	5.0	18
238	Novel tertiary amine-based biphasic solvent for energy-efficient CO2 capture with low corrosivity. Energy, 2022, 260, 125045.	4.5	13
239	Unprecedented improvement of the hydrothermal stability of amine-grafted MCM-41 silica for CO2 capture via aluminum incorporation. Chemical Engineering Journal, 2022, 450, 138393.	6.6	7
240	Confinement effects facilitate low-concentration carbon dioxide capture with zeolites. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	29
241	Thermocatalytic and solar thermochemical carbon dioxide utilization to solar fuels and chemicals: A review. International Journal of Energy Research, 2022, 46, 19929-19960.	2.2	5
242	A new nitrogen rich porous organic polymer for ultra-high CO2 uptake and as an excellent organocatalyst for CO2 fixation reactions. Journal of CO2 Utilization, 2022, 65, 102236.	3.3	25
243	Photothermal functional material and structure for photothermal catalytic CO2 reduction: Recent advance, application and prospect. Coordination Chemistry Reviews, 2022, 473, 214794.	9.5	42
244	Single-atom copper modified hexagonal tungsten oxide for efficient photocatalytic CO2 reduction to acetic acid. Chemical Engineering Journal, 2023, 451, 138801.	6.6	16
245	In Situ Synthesis and Stabilization of Co2c for Co2 Hydrogenation to Valuable Hydrocarbon. SSRN Electronic Journal, 0, , .	0.4	0
246	Molecular insight into CO ₂ /N ₂ separation using a 2D-COF supported ionic liquid membrane. Physical Chemistry Chemical Physics, 2022, 24, 23690-23698.	1.3	5
247	Carbon dioxide capture with zeotype materials. Chemical Society Reviews, 2022, 51, 9340-9370.	18.7	63
248	TiO2-based photocatalysts for CO2 reduction and solar fuel generation. Chinese Journal of Catalysis, 2022, 43, 2500-2529.	6.9	31
249	Light-driven reduction of CO ₂ : thermodynamics and kinetics of hydride transfer reactions in benzimidazoline derivatives. Physical Chemistry Chemical Physics, 2022, 24, 20357-20370.	1.3	3
250	CO ₂ adsorption performance of template free zeolite A and X synthesized from rice husk ash as silicon source. RSC Advances, 2022, 12, 23221-23239.	1.7	5
251	Construction of bifunctional triazine-based imidazolium porous ionomer polymers by a post-crosslinking tactic for efficient CO2 capture and conversion. Chemical Engineering Journal, 2023, 451, 138946.	6.6	23
252	Cold-Temperature Capture of Carbon Dioxide with Water Coproduction from Air Using Commercial Zeolites. Industrial & Engineering Chemistry Research, 2022, 61, 13624-13634.	1.8	21
253	Process Intensification of CO ₂ Desorption. Industrial & Engineering Chemistry Research, 0, , .	1.8	3

#	Article	IF	CITATIONS
	A Topologyâ€Defined Polyester Elastomer from CO2 and 1,3â€Butadiene: A Oneâ€Potâ€Oneâ€Step "Scrambli		
254	Polymerizations―Strategy. Angewandte Chemie, 0, , .	196	1
255	A Topologyâ€Defined Polyester Elastomer from CO ₂ and 1,3â€Butadiene: A Oneâ€Potâ€Oneâ€Step "Scrambling Polymerizations―Strategy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
256	Synthesis of Iron(II) Clathrochelate-Based Poly(vinylene sulfide) with Tetraphenylbenzene Bridging Units and Their Selective Oxidation into Their Corresponding Poly(vinylene sulfone) Copolymers: Promising Materials for Iodine Capture. Polymers, 2022, 14, 3727.	2.0	11
257	Effluents and residues from industrial sites for carbon dioxide capture: a review. Environmental Chemistry Letters, 2023, 21, 319-337.	8.3	10
258	Improved CO ₂ Capture and Catalytic Hydrogenation Using Amino Acid Based Ionic Liquids. ChemSusChem, 2022, 15, .	3.6	12
259	Recent developments of anti-plasticized membranes for aggressive CO2 separation. Green Chemical Engineering, 2023, 4, 1-16.	3.3	6
260	CO2 Adsorption over 3d Transition-Metal Nanoclusters Supported on Pyridinic N3-Doped Graphene: A DFT Investigation. Materials, 2022, 15, 6136.	1.3	3
261	Simulation study on the effect of pore structure and surface curvature of activated carbon on the adsorption and separation performance of CO2/N2. Journal of Nanoparticle Research, 2022, 24, .	0.8	1
262	Non-3d metal modulated zinc imidazolate frameworks for CO2 cycloaddition in simulated flue gas under ambient condition. Chinese Chemical Letters, 2023, 34, 107814.	4.8	0
263	Energy-Efficient Biphasic Solvents for Industrial Carbon Capture: Role of Physical Solvents on CO ₂ Absorption and Phase Splitting. Environmental Science & Technology, 2022, 56, 13305-13313.	4.6	22
264	Electrochemical Reduction of CO ₂ using Solid Oxide Electrolysis Cells: Insights into Catalysis by Nonstoichiometric Mixed Metal Oxides. ACS Catalysis, 2022, 12, 11456-11471.	5.5	15
265	Bicomponent Cocatalyst Decoration on Fluxâ€assisted CaTaO ₂ N Single Crystals for Photocatalytic CO ₂ Reduction under Visible Light. Chemistry - A European Journal, 2022, 28, .	1.7	6
266	Recent Studies of Electrochemical Promotion for H2 Production from Ethanol. Modern Aspects of Electrochemistry, 2023, , 269-301.	0.2	0
267	Novel PEI@CSH adsorbents derived from coal fly ash enabling efficient and in-situ CO2 capture: The anti-urea mechanism of CSH support. Journal of Cleaner Production, 2022, 378, 134420.	4.6	16
268	Study on the performance of CO2 capture from flue gas with ceramic and PTFE membrane contactors. Energy, 2023, 263, 125677.	4.5	13
269	The Effective-Double-Layer as an Efficient Tool for the Design of Sinter-Resistant Catalysts. Modern Aspects of Electrochemistry, 2023, , 117-149.	0.2	1
270	Polyacrylonitrile-derived nitrogen enriched porous carbon fiber with high CO2 capture performance. Separation and Purification Technology, 2022, 303, 122299.	3.9	18
271	Nanostructured AlOOH – A promising catalyst to reduce energy consumption for amine-based CO2 capture. Separation and Purification Technology, 2022, 303, 122232.	3.9	8

#	Article	IF	CITATIONS
272	Theoretical investigation of selective CO ₂ capture and desorption controlled by an electric field. Physical Chemistry Chemical Physics, 2022, 24, 28141-28149.	1.3	2
273	Progress and perspectives on 1D nanostructured catalysts applied in photo(electro)catalytic reduction of CO ₂ . Nanoscale, 2022, 14, 16033-16064.	2.8	15
274	Progress and current challenges for CO2 capture materials from ambient air. Advanced Composites and Hybrid Materials, 2022, 5, 2721-2759.	9.9	54
275	One-Pot Synthesis of N-Rich Porous Carbon for Efficient CO2 Adsorption Performance. Molecules, 2022, 27, 6816.	1.7	16
276	Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chemical Reviews, 2022, 122, 17647-17695.	23.0	136
277	Turning Waste into Wealth: Sustainable Production of High-Value-Added Chemicals from Catalytic Coupling of Carbon Dioxide and Nitrogenous Small Molecules. ACS Nano, 2022, 16, 17911-17930.	7.3	54
278	Micromeso Hierarchical Porous Ultrathin Nitrogen-Doped Carbon Nanosheets with Rough Surfaces for Efficient Gas Adsorption and Separation. Energy & amp; Fuels, 2022, 36, 13705-13712.	2.5	0
279	A Review on Hollow Fiber Membrane Contactors for Carbon Capture: Recent Advances and Future Challenges. Processes, 2022, 10, 2103.	1.3	17
280	Solar-radiation-induced adsorption/desorption system for carbon dioxide capture. Cell Reports Physical Science, 2022, 3, 101122.	2.8	6
281	Microalgae-derived hydrogen production towards low carbon emissions via large-scale outdoor systems. Bioresource Technology, 2022, 364, 128134.	4.8	4
282	Supercritical CO2 assisted synthesis of SBA-15 supported amino acid ionic liquid for CO2 cycloaddition under cocatalyst/metal/solvent-free conditions. Journal of CO2 Utilization, 2022, 66, 102294.	3.3	3
283	Size-reduced low-crystallinity ZIF-62 for the preparation of mixed-matrix membranes for CH4/N2 separation. Journal of Membrane Science, 2022, 663, 121069.	4.1	11
284	Nonconductive anode-associated biocarrier achieved differentiated functional bacteria enrichment and relieved the competitive pressure on anodic biofilm of microbial electrolysis cells. Chemical Engineering Journal, 2023, 453, 139766.	6.6	4
285	Exceptionally Water-Stable In(III)-Based Framework with Conjugated Rhombohedral Cavities for Efficiently Separating Humid Flue Gas. ACS Sustainable Chemistry and Engineering, 2022, 10, 15335-15343.	3.2	3
286	Adsorptive purification of NOx by HZSM-5 zeolites: Effects of Si/Al ratio, temperature, humidity, and gas composition. Microporous and Mesoporous Materials, 2023, 348, 112331.	2.2	3
287	A Two-Dimensional van der Waals Heterostructure with Isolated Electron-Deficient Cobalt Sites toward High-Efficiency CO ₂ Electroreduction. Journal of the American Chemical Society, 2022, 144, 21502-21511.	6.6	24
288	Carbon Capture Beyond Amines: CO ₂ Sorption at Nucleophilic Oxygen Sites in Materials. ChemNanoMat, 2023, 9, .	1.5	1
289	Physico-Chemical Modifications Affecting the Activity and Stability of Cu-Based Hybrid Catalysts during the Direct Hydrogenation of Carbon Dioxide into Dimethyl-Ether. Materials, 2022, 15, 7774.	1.3	4

#	Article	IF	CITATIONS
290	Cyclic Amide-Anchored NHC-Based Cp*lr Catalysts for Bidirectional Hydrogenation–Dehydrogenation with CO ₂ /HCO ₂ H Couple. Organometallics, 2022, 41, 3589-3599.	1.1	9
291	Improved hydrogen production performance of Ni–Al2O3/CaO–CaZrO3 composite catalyst for CO2 sorption enhanced CH4/H2O reforming. International Journal of Hydrogen Energy, 2023, 48, 2558-2570.	3.8	3
292	Highly Water-Stable Zn ₅ Cluster-Based Metal–Organic Framework for Efficient Gas Storage and Organic Dye Adsorption. Inorganic Chemistry, 2022, 61, 19642-19648.	1.9	7
293	Advances in Carbon Capture and Use (CCU) Technologies: A Comprehensive Review and CO2 Mitigation Potential Analysis. Clean Technologies, 2022, 4, 1193-1207.	1.9	23
294	Integrated CO2 capture and methanation from the intermediate-temperature flue gas on dual functional hybrids of AMS/CaMgO Ni Co. Separation and Purification Technology, 2023, 307, 122680.	3.9	15
295	Novelty in fossil fuel carbon abatement technologies in the 21 st Century: postâ€combustion carbon capture. Journal of Chemical Technology and Biotechnology, 2023, 98, 838-855.	1.6	4
296	Direct hydrogenation of CO2-rich scrubbing solvents to formate/formic acid over heterogeneous Ru catalysts: A sustainable approach towards continuous integrated CCU. Journal of CO2 Utilization, 2023, 67, 102326.	3.3	6
297	Efficiency in CO2-utilization strategies: The case of styrene carbonate synthesis in microdroplets conditions. Journal of CO2 Utilization, 2023, 67, 102328.	3.3	5
298	Reaction-induced macropore formation enabling commodity polymer derived carbons for CO ₂ capture. New Journal of Chemistry, 2023, 47, 1318-1327.	1.4	5
299	Design and performance evaluation of a novel system integrating Water-based carbon capture with adiabatic compressed air energy storage. Energy Conversion and Management, 2023, 276, 116583.	4.4	41
300	Influence of heteroatom-doped Fe-carbon sphere catalysts on CO2- mediated oxidative dehydrogenation of ethylbenzene. Molecular Catalysis, 2023, 535, 112836.	1.0	2
301	MgO promoted by Fe2O3 and nitrate molten salt for fast and enhanced CO2 capture: Experimental and DFT investigation. Separation and Purification Technology, 2023, 307, 122766.	3.9	7
302	Preparation of cellulose carbon material from cow dung and its CO2 adsorption performance. Journal of CO2 Utilization, 2023, 68, 102377.	3.3	13
303	Influence of alkyl substituent on thermophysical properties and CO2 absorption studies of diethylenetriamine- based ionic liquids. Journal of Molecular Liquids, 2023, 371, 121114.	2.3	6
304	2-Amino-2-methyl-1-propanol regulated triethylenetetramine-based nonaqueous absorbents for solid-liquid phase-change CO2 capture: Formation of crystalline powder products and mechanism analysis. Separation and Purification Technology, 2023, 307, 122722.	3.9	11
305	Constructing multiple sites of metal-organic frameworks for efficient adsorption and selective separation of CO2. Separation and Purification Technology, 2023, 307, 122725.	3.9	17
306	Current advancements towards the use of nanofluids in the reduction of CO2 emission to the atmosphere. Journal of Molecular Liquids, 2023, 371, 121077.	2.3	7
307	A "heat set―Zr-Diimide based Fibrous Metallogel: Multiresponsive Sensor, Column-based Dye Separation, and Jodine Sequestration, Journal of Colloid and Interface Science, 2023, 633, 441-452	5.0	9

#	Article	IF	CITATIONS
308	Machine learning for the yield prediction of CO2 cyclization reaction catalyzed by the ionic liquids. Fuel, 2023, 335, 126942.	3.4	1
309	Single-atom Co-N-C catalysts for high-efficiency reverse water-gas shift reaction. Applied Catalysis B: Environmental, 2023, 324, 122298.	10.8	11
310	Natural halloysite nanotubes supported Ru as highly active catalyst for photothermal catalytic CO2 reduction. Applied Catalysis B: Environmental, 2023, 324, 122262.	10.8	21
311	Turning CO2 into Fuels and Chemicals: An Introduction. RSC Green Chemistry, 2022, , 1-18.	0.0	0
312	Layered double hydroxides for CO2 adsorption at moderate temperatures: Synthesis and amelioration strategies. Chemical Engineering Journal, 2023, 455, 140551.	6.6	15
313	Dualâ€Site Functionalization on Supported Metal Monolayer Electrocatalysts for Selective CO ₂ Reduction. Advanced Energy Materials, 2023, 13, .	10.2	17
314	Li4SiO4 adsorbent derived from industrial biomass fly ash for high-temperature CO2 capture. Fuel, 2023, 337, 126853.	3.4	12
315	Permselective MOF-Based Gas Diffusion Electrode for Direct Conversion of CO ₂ from Quasi Flue Gas. ACS Energy Letters, 2023, 8, 107-115.	8.8	13
316	Facile, time-saving cigarette butt-assisted combustion synthesis of modified CaO-based sorbents for high-temperature CO2 capture. Fuel, 2023, 337, 126868.	3.4	9
317	Toward an Understanding of Bimetallic MXene Solidâ€Solution in Binderâ€Free Electrocatalyst Cathode for Advanced Li–CO ₂ Batteries. Advanced Functional Materials, 2023, 33, .	7.8	10
319	Unconventional CO ₂ -Binding and Catalytic Activity of Urea-Derived Histidines. ACS Sustainable Chemistry and Engineering, 2022, 10, 15813-15823.	3.2	5
320	Uncovering the CO ₂ Capture Mechanism of NaNO ₃ -Promoted MgO by ¹⁸ O Isotope Labeling. Jacs Au, 2022, 2, 2731-2741.	3.6	7
321	Metalâ€Organic Frameworks for Greenhouse Gas Applications. Small, 2023, 19, .	5.2	17
322	Metal halide perovskite nanostructures and quantum dots for photocatalytic CO2 reduction: prospects and challenges. Materials Today Energy, 2023, 32, 101230.	2.5	4
323	A Structured Ultramicroporous <scp>Metalâ€Organic</scp> Framework for Carbon Dioxide Capture ^{â€} . Chinese Journal of Chemistry, 2023, 41, 763-768.	2.6	3
324	S-scheme heterojunction photocatalysts for CO2 reduction. Matter, 2022, 5, 4187-4211.	5.0	140
325	Techno-economic and environmental assessment of LNG export for hydrogen production. International Journal of Hydrogen Energy, 2023, 48, 8343-8369.	3.8	9
326	Highly robust ZrO2-stabilized CaO nanoadsorbentÂprepared viaÂa facile one-pot MWCNT-templateÂmethod for CO2Âcapture under realistic calcium looping conditions. Journal of Cleaner Production, 2023, 384, 135579.	4.6	42

~			n	
		ION		
ι.	ТАТ	IUN		PORT

#	Article	IF	CITATIONS
327	Recyclable, Fire-Resistant, Superstrong, and Reversible Ionic Polyurea-Based Adhesives. Chemistry of Materials, 2023, 35, 1218-1228.	3.2	15
328	Enhanced CO ₂ Capture Durability and Mechanical Properties Using Cellulose-Templated CaO-Based Pellets with Steam Injection during Calcination. Industrial & Engineering Chemistry Research, 2023, 62, 1533-1541.	1.8	3
329	Flue gas torrefaction integrated with gasification based on the circulation of Mg-additive. Applied Energy, 2023, 333, 120612.	5.1	2
330	Industrial-scale spiral-wound facilitated transport membrane modules for post-combustion CO2 capture: Development, investigation and optimization. Journal of Membrane Science, 2023, 670, 121368.	4.1	11
331	Assessment of novel solvent system for CO2 capture applications. Fuel, 2023, 337, 127218.	3.4	11
332	Largely Entangled Diamondoid Framework with High-Density Urea and Divergent Metal Nodes for Selective Scavenging of CO ₂ and Molecular Dimension-Mediated Size-Exclusive H-Bond Donor Catalysis. Inorganic Chemistry, 2023, 62, 871-884.	1.9	9
333	Charge Carrier Dynamics of CsPbBr ₃ /g-C ₃ N ₄ Nanoheterostructures in Visible-Light-Driven CO ₂ -to-CO Conversion. Journal of Physical Chemistry Letters, 2023, 14, 122-131.	2.1	4
334	Guanidine-Based Covalent Organic Frameworks: Cooperation between Cores and Linkers for Chromic Sensing and Efficient CO ₂ Conversion. ACS Applied Materials & Interfaces, 2023, 15, 6902-6911.	4.0	2
335	Industrial carbon dioxide capture and utilization. , 2023, , 231-278.		0
336	Frontier science and challenges on offshore carbon storage. Frontiers of Environmental Science and Engineering, 2023, 17, .	3.3	3
337	Hollow fiber membrane contactor based carbon dioxide absorption â^' stripping: a review. Macromolecular Research, 2023, 31, 299-325.	1.0	6
338	High Temperature CO2 Capture Performance and Kinetic Analysis of Novel Potassium Stannate. International Journal of Molecular Sciences, 2023, 24, 2321.	1.8	0
339	Carbon Dioxide Conversion on Supported Metal Nanoparticles: A Brief Review. Catalysts, 2023, 13, 305.	1.6	9
340	CO2 capture based on Al2O3 ceramic membrane with hydrophobic modification. Journal of the European Ceramic Society, 2023, , .	2.8	5
341	Microwave treatment effect on the enhanced basicity of porous clay heterostructured composites derived from Laponite. Applied Surface Science, 2023, 619, 156768.	3.1	0
342	Electro-enzyme coupling systems for selective reduction of CO2. Journal of Energy Chemistry, 2023, 80, 140-162.	7.1	10
343	Novel 2-amino-2-methyl-1-propanol-based biphasic solvent for energy-efficient carbon dioxide capture using tetraethylenepentamine as a phase change regulator. Energy, 2023, 270, 126930.	4.5	9
344	Readily regenerable amine-free CO2 sorbent based on a solid-supported carboxylate ionic liquid. Journal of Environmental Management, 2023, 334, 117469.	3.8	2

#	Article	IF	CITATIONS
345	Role of CO2 in enhancing geopolymer properties formulated with fluidized bed combustion ash. Journal of CO2 Utilization, 2023, 71, 102462.	3.3	2
346	Roadmap to the sustainable synthesis of polymers: From the perspective of CO2 upcycling. Progress in Materials Science, 2023, 135, 101103.	16.0	5
347	Simultaneous CO2 adsorption and conversion over Ni-Pd supported CeO2 nanoparticles during catalytic n-C7 asphaltene gasification. Fuel, 2023, 342, 127733.	3.4	4
348	A novel phase change absorbent with ionic liquid as promoter for low energy-consuming CO2 capture. Separation and Purification Technology, 2023, 315, 123740.	3.9	6
349	Construction and optimization of a photoâ^ enzyme coupled system for sustainable CO2 conversion to methanol. Process Biochemistry, 2023, 129, 44-55.	1.8	5
350	CO2 capture using ECHE-based water-lean solvents with novel water balance design. Chemical Engineering Science, 2023, 273, 118658.	1.9	3
351	Mass transfer dynamics of single CO2 bubbles rising in monoethanolamine solutions: Experimental study and mathematical model. Chemical Engineering Journal, 2023, 465, 142761.	6.6	6
352	Production of sustainable biofuels from microalgae with CO2 bio-sequestration and life cycle assessment. Environmental Research, 2023, 227, 115730.	3.7	13
353	Indoor CO2 removal: decentralized carbon capture by air conditioning. Materials Today Sustainability, 2023, 22, 100369.	1.9	3
354	Catalytic C(sp)-H carboxylation with CO2. Coordination Chemistry Reviews, 2023, 486, 215138.	9.5	4
355	Bridging Au nanoclusters with ultrathin LDH nanosheets via ligands for enhanced charge transfer in photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2023, 330, 122667.	10.8	11
356	Integration of solid acid catalyst and ceramic membrane to boost amine-based CO2 desorption. Energy, 2023, 274, 127329.	4.5	5
357	Carbon capture technology exploitation for vanadium tailings and assessment of CO2 sequestration potential. Journal of Environmental Management, 2023, 331, 117338.	3.8	4
358	Binuclear Cu complex catalysis enabling Li–CO2 battery with a high discharge voltage above 3.0 V. Nature Communications, 2023, 14, .	5.8	26
359	Efficiency in Carbon Dioxide Fixation into Cyclic Carbonates: Operating Bifunctional Polyhydroxylated Pyridinium Organocatalysts in Segmented Flow Conditions. Molecules, 2023, 28, 1530.	1.7	1
361	Nickel-Laden Dendritic Plasmonic Colloidosomes of Black Gold: Forced Plasmon Mediated Photocatalytic CO ₂ Hydrogenation. ACS Nano, 2023, 17, 4526-4538.	7.3	17
362	Porous Polymer Materials for CO2 Capture and Electrocatalytic Reduction. Materials, 2023, 16, 1630.	1.3	6
363	Synergistic promotions between CO2 capture and in-situ conversion on Ni-CaO composite catalyst. Nature Communications, 2023, 14, .	5.8	41

#	Article	IF	CITATIONS
364	Molecular simulation on carbon dioxide capture performance for carbons doped with various elements. Energy Storage and Saving, 2023, 2, 435-441.	3.0	1
365	Engineering active sites and recognizing mechanisms for CO2 fixation to dimethyl carbonate. Trends in Chemistry, 2023, 5, 312-323.	4.4	2
366	CO2 Capture Membrane for Long-Cycle Lithium-Air Battery. Molecules, 2023, 28, 2024.	1.7	0
367	Accurate prediction of carbon dioxide capture by deep eutectic solvents using quantum chemistry and a neural network. Green Chemistry, 2023, 25, 3475-3492.	4.6	12
368	The Pattern of Hydroxyphenyl-Substitution Influences CO ₂ Reduction More Strongly than the Number of Hydroxyphenyl Groups in Iron-Porphyrin Electrocatalysts. ACS Catalysis, 2023, 13, 3902-3912.	5.5	6
369	The use of electrospun nanofibers for absorption and separation of carbon dioxide: A review. Journal of Industrial Textiles, 2023, 53, 152808372311602.	1.1	5
370	One-step fabrication of size-controllable, biowaste-templated Li4SiO4 spherical pellets via freeze-drying method for cyclic CO2 capture. Chemical Engineering Journal, 2023, 462, 142297.	6.6	5
371	Production of high-purity H2 through sorption-enhanced water gas shift over a combination of two intermediate-temperature CO2 sorbents. International Journal of Hydrogen Energy, 2023, 48, 25185-25196.	3.8	3
372	Selective CO ₂ Electroreduction with Enhanced Oxygen Evolution Efficiency in Affordable Borate-Mediated Molten Electrolyte. ACS Energy Letters, 2023, 8, 1762-1771.	8.8	8
373	Insights into the CO ₂ Capture Characteristics within the Hierarchical Pores of Carbon Nanospheres Using Small-Angle Neutron Scattering. Langmuir, 2023, 39, 4382-4393.	1.6	3
374	Revealing the promoting effect of Zn on Ni-based CO ₂ hydrogenation catalysts. Journal of Materials Chemistry A, 2023, 11, 8248-8255.	5.2	3
375	Electrospun Environmentâ€Friendly Poly (Lâ€Lactic Acid)/CO ₂ â€Based Polyurea Nanofiber Film for Piezoelectric Sensor. Advanced Sustainable Systems, 2023, 7, .	2.7	6
376	Regiodivergent electroreductive defluorinative carboxylation of <i>gem</i> -difluorocyclopropanes. Green Chemistry, 2023, 25, 3095-3102.	4.6	11
377	Crystallite Phase Effect on the Redox Reactivity of Layered Double Hydroxide-Derived Iron-Based Oxygen Carriers for Chemical Looping CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2023, 11, 5999-6010.	3.2	1
378	Tail-Pipe Clean-Air Technologies. , 2023, , 1-68.		0
379	<i>In Situ</i> Synthesis of Cation-Free Zirconia-Supported Zeolite CHA Membranes for Efficient CO ₂ /CH ₄ Separation. ACS Applied Materials & amp; Interfaces, 2023, 15, 16853-16864.	4.0	7
381	Aqueous 2-Ethyl-4-methylimidazole Solution for Efficient CO2 Separation and Purification. Separations, 2023, 10, 236.	1.1	1
382	Effect of Hydrogen Bonds on CO ₂ Capture by Functionalized Deep Eutectic Solvents Derived from 4-Fluorophenol. ACS Sustainable Chemistry and Engineering, 2023, 11, 6272-6279.	3.2	4

		CITATION REP	PORT	
#	Article		IF	CITATIONS
383	Combustion, Chemistry, and Carbon Neutrality. Chemical Reviews, 2023, 123, 5139-5219.		23.0	37
384	Changes in breakdown and charge migration of cellulose/oil composite after CO _{2adsorption. Journal of Applied Physics, 2023, 133, 155103.}	D>	1.1	0
385	Heterogeneous Electrocatalysis of Carbon Dioxide to Methane. Methane, 2023, 2, 148-175.		0.8	3
386	Nanoscale Janus Zâ€5cheme Heterojunction for Boosting Artificial Photosynthesis. Small, 20	23, 19, .	5.2	6
388	Targeting Net Zero in Offshore Production: A Conceptual Review of Offshore Carbon Captur Reuse. , 2023, , .	e and		0
395	Combustion catalysts. , 2023, , 267-316.			0
396	Understanding the complexity in bridging thermal and electrocatalytic methanation of CO ₂ . Chemical Society Reviews, 2023, 52, 3627-3662.		18.7	15
416	Principles of photocatalysis. Interface Science and Technology, 2023, , 1-52.		1.6	0
423	Carbon nanotubes for rejuvenation of heavily contaminated environments. , 2023, , 127-142	. .		0
425	Nano-engineered 2D Materials for CO2 Capture. Springer Series in Materials Science, 2023, ,	409-439.	0.4	0
466	Advances and challenges in scalable carbon dioxide electrolysis. , 0, , .			0
476	Direct CO ₂ to methanol reduction on Zr ₆ -MOF based composite c critical review. Materials Advances, 2023, 4, 5479-5495.	atalysts: a	2.6	1
479	Efficient molten salt CO2 capture and selective electrochemical transformation processes to carbon neutrality: advances, challenges, and prospects. Science China Chemistry, 0, , .	ward	4.2	0
480	Simulating excited states in metal organic frameworks: from light-absorption to photochemi CO ₂ reduction. Materials Advances, 0, , .	cal	2.6	0
482	Environmental challenges of extracting unconventional petroleum reserves. , 2023, , 355-39	2.		0
487	Tail-Pipe Clean-Air Technologies. , 2023, , 1409-1476.			0
489	Hydrogen-based automotive applications: a promising future. , 2024, , 395-428.			0
491	Synergistic investigation of natural and synthetic C1-trophic microorganisms to foster a circl carbon economy. Nature Communications, 2023, 14, .	ular	5.8	2

IF CITATIONS ARTICLE # Advances in CO₂ activation by frustrated Lewis pairs: from stoichiometric to catalytic 513 3.7 1 reactions. Chemical Science, 2023, 14, 13661-13695. Laser-induced Zinc Metal Battery Anodes with Ultra-long Cycling Performance., 2023,,. 534 538 Carbon Capture by Functional Sorbents., 2023,,. 0 Hollow carbon-based materials for electrocatalytic and thermocatalytic CO₂ 542 conversion. Chemical Science, 0, , . Heterogeneous Catalysis in Environmental Applications., 2023,,. 552 0 Analytic Hierarchy Process Based Optimal Forest Economic Decision-making and Carbon Sequestration Model. , 2023, , . 574 A Strategic Analysis of Carbon Capture and Storage Technologies in Oil and Gas Industry: A 593 0.0 0 Comprehensive Approach. Springer Series in Geomechanics and Geoengineering, 2024, , 168-181.

CITATION REPORT