IL-15, gluten and HLA-DQ8 drive tissue destruction in c

Nature 578, 600-604 DOI: 10.1038/s41586-020-2003-8

Citation Report

#	Article	IF	CITATIONS
1	Host immune interactions in chronic inflammatory gastrointestinal conditions. Current Opinion in Gastroenterology, 2020, 36, 479-484.	1.0	8
2	Aryl hydrocarbon receptor ligand production by the gut microbiota is decreased in celiac disease leading to intestinal inflammation. Science Translational Medicine, 2020, 12, .	5.8	98
3	TG6 Auto-Antibodies in Dermatitis Herpetiformis. Nutrients, 2020, 12, 2884.	1.7	6
4	Can Microbes Boost Tregs to Suppress Food Sensitivities?. Trends in Immunology, 2020, 41, 967-971.	2.9	3
5	Innate and adaptive immunity in celiac disease. Current Opinion in Gastroenterology, 2020, 36, 470-478.	1.0	3
6	Exploring celiac disease candidate pathways by global gene expression profiling and gene network cluster analysis. Scientific Reports, 2020, 10, 16290.	1.6	18
7	Update on celiac disease. Current Opinion in Pediatrics, 2020, 32, 654-660.	1.0	6
8	Whole exome sequencing of a Saudi family and systems biology analysis identifies CPED1 as a putative causative gene to Celiac Disease. Saudi Journal of Biological Sciences, 2020, 27, 1494-1502.	1.8	8
9	The expression levels of CHI3L1 and IL15Rα correlate with TGM2 in duodenum biopsies of patients with celiac disease. Inflammation Research, 2020, 69, 925-935.	1.6	10
10	Association Between Celiac Disease and Cancer. International Journal of Molecular Sciences, 2020, 21, 4155.	1.8	33
11	Mimicking coeliac disease in mice. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 194-195.	8.2	0
12	Coeliac Disease Pathogenesis: The Uncertainties of a Well-Known Immune Mediated Disorder. Frontiers in Immunology, 2020, 11, 1374.	2.2	41
13	Autoimmunity provoked by foreign antigens. Science, 2020, 368, 132-133.	6.0	29
14	An Untargeted Metabolomics Investigation of Jiulong Yak (Bos grunniens) Meat by 1H-NMR. Foods, 2020, 9, 481.	1.9	16
15	Recent Progress and Recommendations on Celiac Disease From the Working Group on Prolamin Analysis and Toxicity. Frontiers in Nutrition, 2020, 7, 29.	1.6	34
16	Genome-Wide Transcriptomic Analysis of Intestinal Mucosa in Celiac Disease Patients on a Gluten-Free Diet and Postgluten Challenge. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 13-32.	2.3	33
17	Current and emerging therapies for coeliac disease. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 181-195.	8.2	63
18	The use of peripheral blood mononuclear cells in celiac disease diagnosis and treatment. Expert Review of Gastroenterology and Hepatology, 2021, 15, 305-316.	1.4	9

#	Article	IF	CITATIONS
19	Sterile inflammation drives multiple programmed cell death pathways in the gut. Journal of Leukocyte Biology, 2021, 109, 211-221.	1.5	5
20	The gliadin p31–43 peptide: Inducer of multiple proinflammatory effects. International Review of Cell and Molecular Biology, 2021, 358, 165-205.	1.6	19
21	Innate Lymphoid Cells and Celiac Disease: Current Perspective. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 803-814.	2.3	14
22	An updated overview on celiac disease: from immuno-pathogenesis and immuno-genetics to therapeutic implications. Expert Review of Clinical Immunology, 2021, 17, 269-284.	1.3	10
23	Gluten-induced RNA methylation changes regulate intestinal inflammation via allele-specific <i>XPO1</i> translation in epithelial cells. Gut, 2022, 71, 68-76.	6.1	29
24	The Gluten Gene: Unlocking the Understanding of Gluten Sensitivity and Intolerance. The Application of Clinical Genetics, 2021, Volume 14, 37-50.	1.4	21
27	Interplay Between Gluten, HLA, Innate and Adaptive Immunity Orchestrates the Development of Coeliac Disease. Frontiers in Immunology, 2021, 12, 674313.	2.2	24
28	B Lymphocytes Contribute to Celiac Disease Pathogenesis. Gastroenterology, 2021, 160, 2608-2610.e4.	0.6	15
29	Transglutaminase 2 Inhibition for Prevention of Mucosal Damage in Celiac Disease. New England Journal of Medicine, 2021, 385, 76-77.	13.9	3
30	Co-Silencing of Tissue Transglutaminase-2 and Interleukin-15 Genes in a Celiac Disease Mimetic Mouse Model Using a Nanoparticle-in-Microsphere Oral System. Molecular Pharmaceutics, 2021, 18, 3099-3107.	2.3	7
31	The Promise of Novel Therapies to Abolish Gluten Immunogenicity in Celiac Disease. Gastroenterology, 2021, 161, 21-24.	0.6	4
32	Programmed Cell Death in the Small Intestine: Implications for the Pathogenesis of Celiac Disease. International Journal of Molecular Sciences, 2021, 22, 7426.	1.8	11
33	A Randomized Trial of a Transglutaminase 2 Inhibitor for Celiac Disease. New England Journal of Medicine, 2021, 385, 35-45.	13.9	98
34	IL-15 and PIM kinases direct the metabolic programming of intestinal intraepithelial lymphocytes. Nature Communications, 2021, 12, 4290.	5.8	8
35	Advances in quantification and analysis of the celiacâ€related immunogenic potential of gluten. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 4278-4298.	5.9	6
36	Co-factors, Microbes, and Immunogenetics in Celiac Disease to Guide Novel Approaches for Diagnosis and Treatment. Gastroenterology, 2021, 161, 1395-1411.e4.	0.6	32
37	Society for the Study of Celiac Disease position statement on gaps and opportunities in coeliac disease. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 875-884.	8.2	34
38	Treatment of gluten-related disorders. , 2022, , 149-182.		1

#	Article	IF	CITATIONS
41	Interplay between Type 2 Transglutaminase (TG2), Gliadin Peptide 31-43 and Anti-TG2 Antibodies in Celiac Disease. International Journal of Molecular Sciences, 2020, 21, 3673.	1.8	8
42	A Combined mRNA- and miRNA-Sequencing Approach Reveals miRNAs as Potential Regulators of the Small Intestinal Transcriptome in Celiac Disease. International Journal of Molecular Sciences, 2021, 22, 11382.	1.8	6
43	Evaluation of Thyroid Dysfunction in Adult Patients of Celiac Disease. Journal of Gandhara Medical and Dental Science, 2021, 8, 3-8.	0.1	1
46	Celiac Disease in Children. Pediatric Clinics of North America, 2021, 68, 1205-1219.	0.9	33
47	Pathogenesis of coeliac disease – a disorder driven by gluten-specific CD4+ T cells. , 2022, , 41-68.		2
48	Non-dietary therapies for celiac disease. , 2022, , 111-160.		1
52	Emergence of an adaptive immune paradigm to explain celiac disease: a perspective on new evidence and implications for future interventions and diagnosis. Expert Review of Clinical Immunology, 2022, 18, 75-91.	1.3	5
53	New Therapeutic Strategies in Celiac Disease. , 2022, , 171-191.		1
54	Reframing Immune-Mediated Inflammatory Diseases. New England Journal of Medicine, 2021, 385, e75.	13.9	5
55	The double-edged sword of gut bacteria in celiac disease and implications for therapeutic potential. Mucosal Immunology, 2022, 15, 235-243.	2.7	9
56	Nutritional Deficiencies in Celiac Disease: Current Perspectives. Nutrients, 2021, 13, 4476.	1.7	5
57	Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). European Journal of Immunology, 2021, 51, 2708-3145.	1.6	198
58	Dynamics of Gut Microbiome, IgA Response and Plasma Metabolome in Development of Pediatric Celiac Disease. SSRN Electronic Journal, 0, , .	0.4	0
60	An efficient urine peptidomics workflow identifies chemically defined dietary gluten peptides from patients with celiac disease. Nature Communications, 2022, 13, 888.	5.8	16
61	KIR ⁺ CD8 ⁺ T cells suppress pathogenic T cells and are active in autoimmune diseases and COVID-19. Science, 2022, 376, eabi9591.	6.0	113
62	Cluten-free diet exposure prohibits pathobiont expansion and gluten sensitive enteropathy in B cell deficient JH-/- mice. PLoS ONE, 2022, 17, e0264977.	1.1	3
63	The Nutritional Intervention of Resveratrol Can Effectively Alleviate the Intestinal Inflammation Associated With Celiac Disease Induced by Wheat Gluten. Frontiers in Immunology, 2022, 13, 878186.	2.2	3
64	Injection of prototypic celiac anti-transglutaminase 2 antibodies in mice does not cause enteropathy. PLoS ONE, 2022, 17, e0266543.	1.1	3

#	Article	IF	CITATIONS
66	Regulatory CD8 ⁺ T cells suppress disease. Science, 2022, 376, 243-244.	6.0	7
67	NLRX1 Deficiency Alters the Gut Microbiome and Is Further Exacerbated by Adherence to a Gluten-Free Diet. Frontiers in Immunology, 2022, 13, 882521.	2.2	4
68	Selective Targeting of IL-15Rα Is Sufficient to Reduce Inflammation. Frontiers in Immunology, 2022, 13, 886213.	2.2	2
69	Functional implications of the CpG island methylation in the pathogenesis of celiac disease. Molecular Biology Reports, 2022, 49, 10051-10064.	1.0	3
70	Wheat Amylase Trypsin Inhibitors Aggravate Intestinal Inflammation Associated with Celiac Disease Mediated by Gliadin in BALB/c Mice. Foods, 2022, 11, 1559.	1.9	4
71	Pivotal Role of Inflammation in Celiac Disease. International Journal of Molecular Sciences, 2022, 23, 7177.	1.8	12
72	Genetically modified rodent models and celiac, non-celiac gluten sensitivity: a minireview. Central European Journal of Public Health, 2022, 30, S27-S31.	0.4	0
73	Review article: Diagnosis of coeliac disease: a perspective on current and future approaches. Alimentary Pharmacology and Therapeutics, 2022, 56, .	1.9	6
74	Immunopathogenesis and environmental triggers in coeliac disease. Gut, 2022, 71, 2337-2349.	6.1	26
75	Type 2 Transglutaminase in Coeliac Disease: A Key Player in Pathogenesis, Diagnosis and Therapy. International Journal of Molecular Sciences, 2022, 23, 7513.	1.8	15
76	Interleukin 15 in murine models of colitis. Anatomical Record, 2023, 306, 1111-1130.	0.8	1
77	A Mouse Model of Celiac Disease. Current Protocols, 2022, 2, .	1.3	2
78	Histologic evaluation in the diagnosis and management of celiac disease: practical challenges, current best practice recommendations and beyond. Human Pathology, 2023, 132, 20-30.	1.1	5
79	EBV as the â€~gluten of MS' hypothesis: Bypassing autoimmunity. Multiple Sclerosis and Related Disorders, 2022, 66, 104069.	0.9	0
80	The Immunobiology and Pathogenesis of Celiac Disease. Annual Review of Pathology: Mechanisms of Disease, 2023, 18, 47-70.	9.6	34
81	Gut Dysbiosis and Fecal Microbiota Transplantation in Autoimmune Diseases. International Journal of Molecular Sciences, 2022, 23, 10729.	1.8	17
82	Ex vivo gliadin stimulation of intestinal cells. Methods in Cell Biology, 2022, , .	0.5	0
83	The implications of IL-15 trans-presentation on the immune response. Advances in Immunology, 2022, , 103-132.	1.1	5

#	Article	IF	CITATIONS
84	Novel Drug Therapeutics in Celiac Disease: A Pipeline Review. Drugs, 2022, 82, 1515-1526.	4.9	2
85	Antibiotics in the pathogenesis of diabetes and inflammatory diseases of the gastrointestinal tract. Nature Reviews Gastroenterology and Hepatology, 2023, 20, 81-100.	8.2	24
86	Autologous organoid co-culture model reveals T cell-driven epithelial cell death in Crohn's Disease. Frontiers in Immunology, 0, 13, .	2.2	9
87	Pepsin-trypsin digested gliadin treatment in intestinal cells. Methods in Cell Biology, 2022, , .	0.5	Ο
88	Elevated inflammatory fecal immune factors in men who have sex with men with HIV associate with microbiome composition and gut barrier function. Frontiers in Immunology, 0, 13, .	2.2	6
89	New Developments in Celiac Disease Treatment. International Journal of Molecular Sciences, 2023, 24, 945.	1.8	9
90	LRP-1 links post-translational modifications to efficient presentation of celiac disease-specific TÂcell antigens. Cell Chemical Biology, 2023, 30, 55-68.e10.	2.5	4
91	Dynamics of the gut microbiome, IgA response, and plasma metabolome in the development of pediatric celiac disease. Microbiome, 2023, 11, .	4.9	8
92	GATA4 controls regionalization of tissue immunity and commensal-driven immunopathology. Immunity, 2023, 56, 43-57.e10.	6.6	8
94	iPSC-derived organ-on-a-chip models for personalized human genetics and pharmacogenomics studies. Trends in Genetics, 2023, 39, 268-284.	2.9	12
95	Elucidating the role of microbes in celiac disease through gnotobiotic modeling. Methods in Cell Biology, 2023, , 77-101.	0.5	0
96	Optical imaging of the small intestine immune compartment across scales. Communications Biology, 2023, 6, .	2.0	0
98	The HLA-DQ8 transgenic mouse: A model to study the immune and cytotoxic responses to wheat gliadin. Methods in Cell Biology, 2023, , .	0.5	0
101	In vivo sensitization to gliadin by oral administration. Methods in Cell Biology, 2023, , 51-57.	0.5	0
117	Tolerance-inducing therapies in coeliac disease — mechanisms, progress and future directions. Nature Reviews Gastroenterology and Hepatology, 0, , .	8.2	1
119	Refractory celiac disease and lymphomagenesis. , 2024, , 207-227.		0
120	Immunological mechanisms of lesions in celiac disease. , 2024, , 59-75.		0
121	Potential celiac disease. , 2024, , 153-165.		Ο

ARTICLE

IF CITATIONS