Designing solid-state electrolytes for safe, energy-dense

Nature Reviews Materials 5, 229-252 DOI: 10.1038/s41578-019-0165-5

Citation Report

#	Article	IF	CITATIONS
1	The opportunity of metal organic frameworks and covalent organic frameworks in lithium (ion) batteries and fuel cells. Energy Storage Materials, 2020, 33, 360-381.	18.0	47
2	Efficient room-temperature solid-state lithium ion conductors enabled by mixed-graft block copolymer architectures. Giant, 2020, 3, 100027.	5.1	29
3	Electrochemical Reactions and Failure Mechanism Study of Sodiumâ€Aqueous Polysulfide Conversion Reactions in Redox Flow Batteries. Energy Technology, 2020, 8, 2000581.	3.8	0
4	Lithium Metal-Based Composite: An Emerging Material for Next-Generation Batteries. Matter, 2020, 3, 1009-1030.	10.0	35
5	Geometric and Electronic Properties of Li2GeO3. Frontiers in Materials, 2020, 7, .	2.4	11
6	Computationâ€Guided Synthesis of New Garnetâ€Type Solidâ€State Electrolytes via an Ultrafast Sintering Technique. Advanced Materials, 2020, 32, e2005059.	21.0	15
7	Recently advances and perspectives of anode-free rechargeable batteries. Nano Energy, 2020, 78, 105344.	16.0	108
8	Advances in Materials Design for All-Solid-state Batteries: From Bulk to Thin Films. Applied Sciences (Switzerland), 2020, 10, 4727.	2.5	27
9	Recycling for All Solid-State Lithium-Ion Batteries. Matter, 2020, 3, 1845-1861.	10.0	38
10	In-Built Polymer-in-Solvent and Solvent-in-Polymer Electrolytes for High-Voltage Lithium Metal Batteries. Cell Reports Physical Science, 2020, 1, 100146.	5.6	10
11	Structural and electrochemical studies of bromide derived ionic liquid-based gel polymer electrolyte for energy storage application. Journal of Energy Storage, 2020, 32, 101723.	8.1	15
12	An ultrathin, strong, flexible composite solid electrolyte for high-voltage lithium metal batteries. Journal of Materials Chemistry A, 2020, 8, 18802-18809.	10.3	48
13	A polycarboxylic/ether composite polymer electrolyte via in situ UV-curing for all-solid-state lithium battery. Royal Society Open Science, 2020, 7, 200598.	2.4	1
14	Polyethylene Oxide-Based Composites as Solid-State Polymer Electrolytes for Lithium Metal Batteries: A Mini Review. Frontiers in Chemistry, 2020, 8, 640.	3.6	38
15	4.2Â V poly(ethylene oxide)-based all-solid-state lithium batteries with superior cycle and safety performance. Energy Storage Materials, 2020, 32, 191-198.	18.0	77
16	Performance and behavior of LLZO-based composite polymer electrolyte for lithium metal electrode with high capacity utilization. Nano Energy, 2020, 77, 105196.	16.0	32
17	Potential-Dependent Layering in the Electrochemical Double Layer of Water-in-Salt Electrolytes. ACS Applied Energy Materials, 2020, 3, 8086-8094.	5.1	28
18	Advances in materials for allâ€climate sodiumâ€ion batteries. EcoMat, 2020, 2, e12043.	11.9	32

#	Article	IF	CITATIONS
19	Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and prospects. Energy Storage Materials, 2020, 33, 26-54.	18.0	123
20	Digital Twinâ€Driven Allâ€Solidâ€State Battery: Unraveling the Physical and Electrochemical Behaviors. Advanced Energy Materials, 2020, 10, 2001563.	19.5	42
21	Multi-scale Imaging of Solid-State Battery Interfaces: From Atomic Scale to Macroscopic Scale. CheM, 2020, 6, 2199-2218.	11.7	64
22	Designing Comb-Chain Crosslinker-Based Solid Polymer Electrolytes for Additive-Free All-Solid-State Lithium Metal Batteries. Nano Letters, 2020, 20, 6914-6921.	9.1	35
23	A Function‣eparated Design of Electrode for Realizing Highâ€Performance Hybrid Zinc Battery. Advanced Energy Materials, 2020, 10, 2002992.	19.5	84
24	Pressure-induced ionic to mixed ionic and electronic conduction transition in solid electrolyte LaF ₃ . Physical Chemistry Chemical Physics, 2020, 22, 26306-26311.	2.8	10
25	Ion Solvation Engineering: How to Manipulate the Multiplicity of the Coordination Environment of Multivalent Ions. Journal of Physical Chemistry Letters, 2020, 11, 9336-9343.	4.6	24
26	A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chemical Society Reviews, 2020, 49, 8790-8839.	38.1	461
27	Progress and Perspective of All-Solid-State Lithium Batteries with High Performance at Room Temperature. Energy & Fuels, 2020, 34, 13456-13472.	5.1	44
28	Recent Advances in Highâ€Performance Microbatteries: Construction, Application, and Perspective. Small, 2020, 16, e2003251.	10.0	48
29	Recent Developments and Challenges in Hybrid Solid Electrolytes for Lithium-Ion Batteries. Frontiers in Energy Research, 2020, 8, .	2.3	52
30	Molecular‣cale Interface Engineering of Metal–Organic Frameworks toward Ion Transport Enables Highâ€Performance Solid Lithium Metal Battery. Advanced Functional Materials, 2020, 30, 2003945.	14.9	36
31	Flexible Supercapacitor Based on Organohydrogel Electrolyte with Longâ€Term Antiâ€Freezing and Antiâ€Drying Property. Advanced Functional Materials, 2020, 30, 2007291.	14.9	152
32	Structure Design of Cathode Electrodes for Solid‣tate Batteries: Challenges and Progress. Small Structures, 2020, 1, 2000042.	12.0	73
33	Correlations between the ionic conductivity and cation size in complex borohydrides. Ionics, 2020, 26, 5287-5291.	2.4	7
34	Local Structure of Glassy Lithium Phosphorus Oxynitride Thin Films: A Combined Experimental and Abâ€Initio Approach. Angewandte Chemie, 2020, 132, 22369-22377.	2.0	3
35	Interface-Compatible and High-Cyclability Lithiophilic Lithium–Zinc Alloy Anodes for Garnet-Structured Solid Electrolytes. ACS Applied Energy Materials, 2020, 3, 9010-9017.	5.1	33
36	Diffusion-Dependent Graphite Electrode for All-Solid-State Batteries with Extremely High Energy Density. ACS Energy Letters, 2020, 5, 2995-3004.	17.4	53

	CITATION RI	EPORT	
#	Article	IF	CITATIONS
37	Electrolytes for Lithium―and Sodiumâ€Metal Batteries. Chemistry - an Asian Journal, 2020, 15, 3584-3598.	3.3	28
38	Fast Charging All Solidâ€6tate Lithium Batteries Enabled by Rational Design of Dual Verticallyâ€Aligned Electrodes. Advanced Functional Materials, 2020, 30, 2005357.	14.9	24
39	Polymer electrolytes for rechargeable lithium metal batteries. Sustainable Energy and Fuels, 2020, 4, 5469-5487.	4.9	41
40	Interface engineering of inorganic solid-state electrolytes for high-performance lithium metal batteries. Energy and Environmental Science, 2020, 13, 3780-3822.	30.8	96
41	NASICON Li _{1.2} Mg _{0.1} Zr _{1.9} (PO ₄) ₃ Solid Electrolyte for an All‧olid‧tate Liâ€Metal Battery. Small Methods, 2020, 4, 2000764.	8.6	42
42	Computational Discovery of Stable Heteroanionic Oxychalcogenides ABXO (A, B = Metals; X = S, Se, and) Tj ETQ	q1 <u>1</u> 0.784	4314 rgBT /
43	Local Structure of Glassy Lithium Phosphorus Oxynitride Thin Films: A Combined Experimental and Abâ€Initio Approach. Angewandte Chemie - International Edition, 2020, 59, 22185-22193.	13.8	21
44	Sulfide and Oxide Inorganic Solid Electrolytes for All-Solid-State Li Batteries: A Review. Nanomaterials, 2020, 10, 1606.	4.1	179
45	Perspective and advanced development of lead–carbon battery for inhibition of hydrogen evolution. Emergent Materials, 2020, 3, 791-805.	5.7	8
46	UV-Cured Interpenetrating Networks of Single-ion Conducting Polymer Electrolytes for Rechargeable Lithium Metal Batteries. ACS Applied Energy Materials, 2020, 3, 12532-12539.	5.1	20
47	Nano energy for miniaturized systems. Nano Materials Science, 2020, , .	8.8	15
48	Effects of Ion Size and Dielectric Constant on Ion Transport and Transference Number in Polymer Electrolytes. Macromolecules, 2020, 53, 10086-10096.	4.8	41
49	Potential jumps at transport bottlenecks cause instability of nominally ionic solid electrolytes in electrochemical cells. Acta Materialia, 2020, 199, 264-277.	7.9	38
50	Thin laminar composite solid electrolyte with high ionic conductivity and mechanical strength towards advanced all-solid-state lithium–sulfur battery. Journal of Materials Chemistry A, 2020, 8, 23344-23353.	10.3	52
51	Ultrathin Aramid/COF Heterolayered Membrane for Solid-State Li-Metal Batteries. Nano Letters, 2020, 20, 8120-8126.	9.1	63
52	Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chemical Society Reviews, 2020, 49, 3565-3604.	38.1	617
53	Tailoring Solution-Processable Li Argyrodites Li _{6+<i>x</i>} P _{1–<i>x</i>} M _{<i>x</i>} S ₅ I (M = Ge, Sn) and Their Microstructural Evolution Revealed by Cryo-TEM for All-Solid-State Batteries. Nano Letters, 2020, 20, 4337-4345.	9.1	67
54	A review on energy chemistry of fast-charging anodes. Chemical Society Reviews, 2020, 49, 3806-3833.	38.1	323

#	Article	IF	CITATIONS
55	Origin of Superionic Li ₃ Y _{1–<i>x</i>} In _{<i>x</i>} Cl ₆ Halide Solid Electrolytes with High Humidity Tolerance. Nano Letters, 2020, 20, 4384-4392.	9.1	94
56	Relationships Between Na ⁺ Distribution, Concerted Migration, and Diffusion Properties in Rhombohedral NASICON. Advanced Energy Materials, 2020, 10, 2001486.	19.5	64
57	Synthesis of a well-defined polyelectrolyte by controlled/"living―nitroxide-mediated radical polymerization. Kinetic study. European Polymer Journal, 2020, 134, 109815.	5.4	7
58	Emerging organic potassium-ion batteries: electrodes and electrolytes. Journal of Materials Chemistry A, 2020, 8, 15547-15574.	10.3	69
59	Reduced Sintering Temperatures of Li+ Conductive Li1.3Al0.3Ti1.7(PO4)3 Ceramics. Crystals, 2020, 10, 408.	2.2	34
60	Ion-Conducting Dynamic Solid Polymer Electrolyte Adhesives. ACS Macro Letters, 2020, 9, 500-506.	4.8	35
61	Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Chemical Society Reviews, 2020, 49, 2701-2750.	38.1	310
62	Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes. Chemical Reviews, 2020, 120, 6878-6933.	47.7	676
63	Advanced Characterization Techniques for Interface in Allâ€Solidâ€State Batteries. Small Methods, 2020, 4, 2000111.	8.6	35
64	Composite electrolytes based on ammonium salt of 12-phosphotungstic acid and calixarene. Solid State Ionics, 2020, 353, 115378.	2.7	5
65	Conductivity and structural properties of fast Ag-ion-conducting GaGeSbS–AgI glassy electrolytes. Ceramics International, 2020, 46, 24882-24886.	4.8	4
66	Recent progress and perspective on electrolytes for sodium/potassium-based devices. Energy Storage Materials, 2020, 31, 328-343.	18.0	68
67	Recent Advances and Applications of Inorganic Electrides. Journal of Physical Chemistry Letters, 2020, 11, 3841-3852.	4.6	43
68	A Polymer-Rich Quaternary Composite Solid Electrolyte for Lithium Batteries. Journal of the Electrochemical Society, 2020, 167, 070557.	2.9	23
69	Stabilization Perspective on Metal Anodes for Aqueous Batteries. Advanced Energy Materials, 2021, 11, 2000962.	19.5	106
70	Monoanion-regulated high-voltage nitrile-based solid electrolyte with compatible lithium inertness. Energy Storage Materials, 2021, 34, 640-647.	18.0	18
71	Armed lithium metal anodes with functional skeletons. Materials Today Nano, 2021, 13, 100103.	4.6	38
72	Protecting lithium metal anode in all-solid-state batteries with a composite electrolyte. Rare Metals, 2021, 40, 409-416.	7.1	49

#	Article	IF	CITATIONS
73	Development of polymer electrolyte membranes based on biodegradable polymer. Materials Today: Proceedings, 2021, 34, 856-862.	1.8	15
74	Polyimide separators for rechargeable batteries. Journal of Energy Chemistry, 2021, 58, 170-197.	12.9	82
75	Tailoring percolative conduction networks and reaction interfaces via infusion of polymeric ionic conductor for high-performance solid-state batteries. Chemical Engineering Journal, 2021, 408, 127274.	12.7	5
76	Hybridizing polymer electrolyte with poly(ethylene glycol) grafted polymer-like quantum dots for all-solid-state lithium batteries. Journal of Membrane Science, 2021, 618, 118702.	8.2	26
77	Fibrous Materials for Flexible Li–S Battery. Advanced Energy Materials, 2021, 11, 2002580.	19.5	85
78	Interfacial challenges for all-solid-state batteries based on sulfide solid electrolytes. Journal of Materiomics, 2021, 7, 209-218.	5.7	82
79	Challenges of today for Na-based batteries of the future: From materials to cell metrics. Journal of Power Sources, 2021, 482, 228872.	7.8	169
80	Hierarchical Compositeâ€Solidâ€Electrolyte with High Electrochemical Stability and Interfacial Regulation for Boosting Ultraâ€Stable Lithium Batteries. Advanced Functional Materials, 2021, 31, .	14.9	57
81	Regulating Interfacial Chemistry in Lithiumâ€lon Batteries by a Weakly Solvating Electrolyte**. Angewandte Chemie, 2021, 133, 4136-4143.	2.0	74
82	Nano-interface engineering in all-solid-state lithium metal batteries: Tailoring exposed crystal facets of epitaxially grown LiNi0.5Mn1.5O4 films. Nano Energy, 2021, 79, 105480.	16.0	20
83	Kinetic-matching between electrodes and electrolyte enabling solid-state sodium-ion capacitors with improved voltage output and ultra-long cyclability. Chemical Engineering Journal, 2021, 421, 127832.	12.7	6
84	Defect Electrocatalysts and Alkaline Electrolyte Membranes in Solidâ€6tate Zinc–Air Batteries: Recent Advances, Challenges, and Future Perspectives. Small Methods, 2021, 5, e2000868.	8.6	42
85	Engineering the interface between LiCoO ₂ and Li ₁₀ GeP ₂ S ₁₂ solid electrolytes with an ultrathin Li ₂ CoTi ₃ O ₈ interlayer to boost the performance of all-solid-state batteries. Energy and Environmental Science, 2021, 14, 437-450.	30.8	82
86	Solid Electrolytes for Highâ€Temperature Stable Batteries and Supercapacitors. Advanced Energy Materials, 2021, 11, 2002869.	19.5	64
87	Dimethyl carbonate adsorption enabling enhanced overall electrochemical properties for solid composite electrolyte. Journal of Alloys and Compounds, 2021, 853, 157340.	5.5	6
88	A brief review of recent advances in garnet structured solid electrolyte based lithium metal batteries. Journal of Energy Storage, 2021, 33, 102157.	8.1	48
89	Operando EDXRD Study of Allâ€Solidâ€State Lithium Batteries Coupling Thioantimonate Superionic Conductors with Metal Sulfide. Advanced Energy Materials, 2021, 11, 2002861.	19.5	25
90	Metal-organic frameworks containing solid-state electrolytes for lithium metal batteries and beyond. Materials Chemistry Frontiers, 2021, 5, 1771-1794.	5.9	34

#	Article	IF	CITATIONS
91	Recent Advances and Perspectives of Znâ€Metal Free "Rockingâ€Chairâ€â€Type Znâ€Ion Batteries. Advanced Energy Materials, 2021, 11, 2002529.	19.5	111
92	Materials and Structure Design for Solid-State Zinc-Ion Batteries: A Mini-Review. Frontiers in Energy Research, 2021, 8, .	2.3	19
93	Nanoscale modelling of polymer electrolytes for rechargeable batteries. Energy Storage Materials, 2021, 36, 77-90.	18.0	14
94	Two-dimensional lithiophilic YFδ enabled lithium dendrite removal for quasi-solid-state lithium batteries. Journal of Materiomics, 2021, 7, 355-365.	5.7	7
95	A Solidâ€6tate Battery Cathode with a Polymer Composite Electrolyte and Low Tortuosity Microstructure by Directional Freezing and Polymerization. Advanced Energy Materials, 2021, 11, 2002387.	19.5	38
96	Regulating Interfacial Chemistry in Lithiumâ€lon Batteries by a Weakly Solvating Electrolyte**. Angewandte Chemie - International Edition, 2021, 60, 4090-4097.	13.8	373
97	The role of polymers in lithium solid-state batteries with inorganic solid electrolytes. Journal of Materials Chemistry A, 2021, 9, 18701-18732.	10.3	47
98	Organoboron ontaining Polymer Electrolytes for Highâ€Performance Lithium Batteries. Advanced Functional Materials, 2021, 31, 2008632.	14.9	28
99	Application of <i>in</i> - <i>situ</i> characterization techniques in all-solid-state lithium batteries. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 198102.	0.5	15
100	Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes. Chemical Society Reviews, 2021, 50, 3178-3210.	38.1	126
101	A flame-retardant polymer electrolyte for high performance lithium metal batteries with an expanded operation temperature. Energy and Environmental Science, 2021, 14, 3510-3521.	30.8	156
102	Na _{1+<i>x</i>} Mn _{<i>x</i>/2} Zr _{2–<i>x</i>/2} (PO ₄) _{3as a Li⁺ and Na⁺ Super Ion Conductor for Solid-State Batteries. ACS Energy Letters, 2021, 6, 429-436.}	ıb> 17.4	20
103	<i>In situ</i> formation of a Li ₃ N-rich interface between lithium and argyrodite solid electrolyte enabled by nitrogen doping. Journal of Materials Chemistry A, 2021, 9, 13531-13539.	10.3	62
104	The power of architecture – <i>cage</i> -shaped PEO and its application as a polymer electrolyte. Polymer Chemistry, 2021, 12, 4326-4331.	3.9	8
105	Highly elastic and mechanically robust polymer electrolytes with high ionic conductivity and adhesiveness for high-performance lithium metal batteries. Journal of Materials Chemistry A, 2021, 9, 13597-13607.	10.3	43
106	Building a Spontaneously Formed and Self-healing Protective Layer with a F-rich Electrochemically Active Organic Molecule for Ultra-stable Li Metal Batteries. Sustainable Energy and Fuels, 0, , .	4.9	3
107	Layered double hydroxides as advanced tracks to promote ionic conductivity in metal borohydride. Materials Chemistry Frontiers, 2021, 5, 4989-4996.	5.9	6
108	Two-dimensional materials as a stabilized interphase for the solid-state electrolyte Li ₁₀ GeP ₂ S ₁₂ in lithium metal batteries. Journal of Materials Chemistry A, 2021, 9, 4810-4821.	10.3	12

#	Article	IF	CITATIONS
109	All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy and Environmental Science, 2021, 14, 2577-2619.	30.8	201
110	100th Anniversary of Macromolecular Science Viewpoint: Solid Polymer Electrolytes in Cathode Electrodes for Lithium Batteries. Current Challenges and Future Opportunities. ACS Macro Letters, 2021, 10, 141-153.	4.8	20
111	Atomic and molecular layer deposition in pursuing better batteries. Journal of Materials Research, 2021, 36, 2-25.	2.6	22
112	Proton-conductive coordination polymer glass for solid-state anhydrous proton batteries. Chemical Science, 2021, 12, 5818-5824.	7.4	47
113	A phase-convertible fast ionic conductor with a monolithic plastic crystalline host. Journal of Materials Chemistry A, 2021, 9, 10838-10845.	10.3	3
114	Chalcogenide-based inorganic sodium solid electrolytes. Journal of Materials Chemistry A, 2021, 9, 5134-5148.	10.3	23
115	Peculiarly fast Li-ion conduction mechanism in a succinonitrile-based molecular crystal electrolyte: a molecular dynamics study. Journal of Materials Chemistry A, 2021, 9, 14897-14903.	10.3	12
116	<i>In situ</i> polymerization process: an essential design tool for lithium polymer batteries. Energy and Environmental Science, 2021, 14, 2708-2788.	30.8	140
117	Metal–organic frameworks and zeolite materials as active fillers for lithium-ion battery solid polymer electrolytes. Materials Advances, 2021, 2, 3790-3805.	5.4	27
118	Anti-perovskites for solid-state batteries: recent developments, current challenges and future prospects. Journal of Materials Chemistry A, 2021, 9, 18746-18772.	10.3	68
119	Multifunctional SnSe–C composite modified 3D scaffolds to regulate lithium nucleation and fast transport for dendrite-free lithium metal anodes. Journal of Materials Chemistry A, 2021, 9, 21695-21702.	10.3	18
120	A composite solid electrolyte with an asymmetric ceramic framework for dendrite-free all-solid-state Li metal batteries. Journal of Materials Chemistry A, 2021, 9, 9665-9674.	10.3	30
121	Perspective on High oncentration Electrolytes for Lithium Metal Batteries. Small Structures, 2021, 2, 2000122.	12.0	81
122	Integrated interface between composite electrolyte and cathode with low resistance enables ultra-long cycle-lifetime in solid-state lithium-metal batteries. Science China Chemistry, 2021, 64, 673-680.	8.2	16
123	Solid Polymer Electrolytes with High Conductivity and Transference Number of Li Ions for Liâ€Based Rechargeable Batteries. Advanced Science, 2021, 8, 2003675.	11.2	172
124	Synergistic effect of nanoionic destabilization and partial dehydrogenation for enhanced ionic conductivity in MBH4-C60 (M = Li+, Na+) nanocomposites. Journal of Solid State Electrochemistry, 2021, 25, 1441-1452.	2.5	7
125	A Review on Lithium Phosphorus Oxynitride. Journal of Physical Chemistry C, 2021, 125, 3651-3667.	3.1	34
126	Molecular Dynamics Simulations of Ion-Containing Polymers Using Generic Coarse-Grained Models. Macromolecules, 2021, 54, 2031-2052.	4.8	45

#	Article	IF	CITATIONS
127	Isotropous Sulfurized Polyacrylonitrile Interlayer with Homogeneous Na ⁺ Flux Dynamics for Solid‧tate Na Metal Batteries. Advanced Energy Materials, 2021, 11, 2003469.	19.5	31
128	Interfacial Atomistic Mechanisms of Lithium Metal Stripping and Plating in Solid tate Batteries. Advanced Materials, 2021, 33, e2008081.	21.0	53
129	Preparation and electrochemical properties of ionic-liquid-modified Na3SbS4 membrane composite electrolytes. Journal of Materials Science, 2021, 56, 10565-10574.	3.7	9
130	Processing thin but robust electrolytes for solid-state batteries. Nature Energy, 2021, 6, 227-239.	39.5	328
131	NASICONâ€Type Na ₃ Zr ₂ Si ₂ PO ₁₂ Solidâ€State Electrolytes for Sodium Batteries**. ChemElectroChem, 2021, 8, 1035-1047.	3.4	68
132	Influence of Structural Distortion and Lattice Dynamics on Li-Ion Diffusion in Li ₃ OCl _{1–<i>x</i>} Br <i>_x</i> Superionic Conductors. ACS Applied Energy Materials, 2021, 4, 2107-2114.	5.1	16
133	High Li ⁺ and Na ⁺ Conductivity in New Hybrid Solid Electrolytes based on the Porous MILâ€121 Metal Organic Framework. Advanced Energy Materials, 2021, 11, 2003542.	19.5	24
134	Signal Origin of Electrochemical Strain Microscopy and Link to Local Chemical Distribution in Solid State Electrolytes. Small Methods, 2021, 5, 2001279.	8.6	10
135	Low Resistance and High Stable Solid–Liquid Electrolyte Interphases Enable Highâ€Voltage Solidâ€State Lithium Metal Batteries. Advanced Functional Materials, 2021, 31, 2010611.	14.9	34
136	Modeling the electrical double layer at solid-state electrochemical interfaces. Nature Computational Science, 2021, 1, 212-220.	8.0	35
137	Nanostructured Polymer Composite Electrolytes with Self-Assembled Polyoxometalate Networks for Proton Conduction. CCS Chemistry, 2022, 4, 151-161.	7.8	35
138	Dendrites in Solid‧tate Batteries: Ion Transport Behavior, Advanced Characterization, and Interface Regulation. Advanced Energy Materials, 2021, 11, 2003250.	19.5	69
139	Ionically Charged Topological Defects in Nematic Fluids. Physical Review X, 2021, 11, .	8.9	1
140	Solid-State Electrolytes for Sodium Metal Batteries. Energy & amp; Fuels, 2021, 35, 9063-9079.	5.1	60
141	Porous Mixed Ionic Electronic Conductor Interlayers for Solid-State Batteries. Energy Material Advances, 2021, 2021, .	11.0	31
142	Challenges and Development of Composite Solid Electrolytes for All-solid-state Lithium Batteries. Chemical Research in Chinese Universities, 2021, 37, 210-231.	2.6	26
143	Spontaneous In Situ Surface Alloying of Li-Zn Derived from a Novel Zn2+-Containing Solid Polymer Electrolyte for Steady Cycling of Li Metal Battery. ACS Sustainable Chemistry and Engineering, 2021, 9, 4282-4292.	6.7	4
144	HKUST-1@IL-Li Solid-state Electrolyte with 3D Ionic Channels and Enhanced Fast Li+ Transport for Lithium Metal Batteries at High Temperature. Nanomaterials, 2021, 11, 736.	4.1	18

#	Article	IF	CITATIONS
145	A Performance and Cost Overview of Selected Solid-State Electrolytes: Race between Polymer Electrolytes and Inorganic Sulfide Electrolytes. Batteries, 2021, 7, 18.	4.5	41
146	Polymerized Ionic Networks Solid Electrolyte with High Ionic Conductivity for Lithium Batteries. Industrial & Engineering Chemistry Research, 2021, 60, 4630-4638.	3.7	9
147	3D Confinement Strategy for Dendriteâ€Free Sodium Metal Batteries. Advanced Energy Materials, 2022, 12, 2100359.	19.5	68
148	Interfacial compatibility issues in rechargeable solid-state lithium metal batteries: a review. Science China Chemistry, 2021, 64, 879-898.	8.2	28
149	Bifunctional In Situ Polymerized Interface for Stable LAGPâ€Based Lithium Metal Batteries. Advanced Materials Interfaces, 2021, 8, 2100072.	3.7	22
150	Nanophase-Separated, Elastic Epoxy Composite Thin Film as an Electrolyte for Stable Lithium Metal Batteries. Nano Letters, 2021, 21, 3611-3618.	9.1	47
151	Challenges for and Pathways toward Li-Metal-Based All-Solid-State Batteries. ACS Energy Letters, 0, , 1399-1404.	17.4	228
152	High-performance sandwiched hybrid solid electrolytes by coating polymer layers for all-solid-state lithium-ion batteries. Rare Metals, 2021, 40, 3175.	7.1	72
153	Manufacturing scalability implications of materials choice in inorganic solid-state batteries. Joule, 2021, 5, 564-580.	24.0	33
154	Nonaqueous Rechargeable Aluminum Batteries: Progresses, Challenges, and Perspectives. Chemical Reviews, 2021, 121, 4903-4961.	47.7	147
155	Influence of hydrated protons on temperature and humidity responsiveness of silk fibroin hydrogel ionotronics. Giant, 2021, 5, 100044.	5.1	17
156	Garnet-Based Solid-State Li Batteries: From Materials Design to Battery Architecture. ACS Energy Letters, 2021, 6, 1920-1941.	17.4	66
157	Enhancing the Thermal Stability of NASICON Solid Electrolyte Pellets against Metallic Lithium by Defect Modification. ACS Applied Materials & Interfaces, 2021, 13, 18743-18749.	8.0	29
158	Multiâ€Functional Cerium Modification to Accelerate the Oxygen Reduction Reaction of Spinel Co ₃ O ₄ . ChemistrySelect, 2021, 6, 3512-3518.	1.5	9
159	Strategies for fabrication, confinement and performance boost of Li2S in lithium-sulfur, silicon-sulfur & amp; related batteries. Materials Today, 2021, 49, 253-270.	14.2	29
160	Designing inorganic electrolytes for solid-state Li-ion batteries: A perspective of LGPS and garnet. Materials Today, 2021, 50, 418-441.	14.2	59
161	Molecular-level insights into structure and dynamics in ionic liquids and polymer gel electrolytes. Journal of Molecular Liquids, 2021, 329, 115454.	4.9	13
162	Li-ion conductivity of NASICON-type Li1+2xZr2â~'xCax(PO4)3 solid electrolyte prepared by spark plasma sintering. Journal of Alloys and Compounds, 2021, 862, 158641.	5.5	9

#	Article	IF	CITATIONS
163	Review—Progress in Electrolytes for Rechargeable Aluminium Batteries. Journal of the Electrochemical Society, 2021, 168, 056509.	2.9	31
164	Quasi-Solid-State Li–O ₂ Batteries Performance Enhancement Using an Integrated Composite Polymer-Based Architecture. ACS Applied Energy Materials, 2021, 4, 6221-6232.	5.1	8
165	Microstructural Tuning of Solid Electrolyte Na ₃ Zr ₂ Si ₂ PO ₁₂ by Polymer-Assisted Solution Synthesis Method and Its Effect on Ionic Conductivity and Dielectric Properties. ACS Applied Energy Materials, 2021, 4, 5475-5485.	5.1	23
166	Crossroads in the renaissance of rechargeable aqueous zinc batteries. Materials Today, 2021, 45, 191-212.	14.2	171
167	Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule, 2021, 5, 1119-1142.	24.0	233
168	Smart Construction of an Intimate Lithium Garnet Interface for Allâ€Solidâ€State Batteries by Tuning the Tension of Molten Lithium. Advanced Functional Materials, 2021, 31, 2101556.	14.9	97
169	A Stretchable and Safe Polymer Electrolyte with a Protecting‣ayer Strategy for Solid‣tate Lithium Metal Batteries. Advanced Science, 2021, 8, 2003241.	11.2	46
170	Challenges, fabrications and horizons of oxide solid electrolytes for solidâ€state lithium batteries. Nano Select, 2021, 2, 2256-2274.	3.7	26
171	Operando characterization of interfacial charge transfer processes. Journal of Applied Physics, 2021, 129, .	2.5	12
172	A solid-like dual-salt polymer electrolyte for Li-metal batteries capable of stable operation over an extended temperature range. Energy Storage Materials, 2021, 37, 609-618.	18.0	49
173	Recent Advances on Materials for Lithium-Ion Batteries. Energies, 2021, 14, 3145.	3.1	26
174	Energetic Stability and Its Role in the Mechanism of Ionic Transport in NASICON-Type Solid-State Electrolyte Li _{1+<i>x</i>} Al _{<i>x</i>} Ti _{2–<i>x</i>} (PO ₄) ₃ . Iournal of Physical Chemistry Letters. 2021. 12. 4400-4406.	4.6	8
175	Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nature Reviews Materials, 2021, 6, 1003-1019.	48.7	409
176	Hunting Sodium Dendrites in NASICON-Based Solid-State Electrolytes. Energy Material Advances, 2021, 2021, .	11.0	57
177	Interfacial engineering of <scp>lithiumâ€polymer</scp> batteries with in situ <scp>UV</scp> crossâ€linking. InformaÄnÃ-Materiály, 2021, 3, 1016-1027.	17.3	10
178	Enabling Highâ€Performance NASICONâ€Based Solidâ€State Lithium Metal Batteries Towards Practical Conditions. Advanced Functional Materials, 2021, 31, 2102765.	14.9	32
179	Polynorbornene-Based Polyelectrolytes with Covalently Attached Metallacarboranes: Synthesis, Characterization, and Lithium-Ion Mobility. Macromolecules, 2021, 54, 6867-6877.	4.8	4
180	Improvement of Synaptic Properties in Oxygenâ€Based Synaptic Transistors Due to the Accelerated Ion Migration in Subâ€Stoichiometric Channels. Advanced Electronic Materials, 2021, 7, 2100219.	5.1	24

	CITATION RE	PORT	
# 181	ARTICLE Bidirectionally Compatible Buffering Layer Enables Highly Stable and Conductive Interface for 4.5ÂV Sulfideâ€Based Allâ€Solidâ€State Litbium Batteries, Advanced Energy Materials, 2021, 11, 2100881	lF 19.5	Citations
182	Comparative performance of ex situ artificial solid electrolyte interphases for Li metal batteries with liquid electrolytes. IScience, 2021, 24, 102578.	4.1	17
183	Li-Ion Conductivity Enhancement of LiBH ₄ · <i>x</i> NH ₃ with <i>In Situ</i> Formed Li ₂ O Nanoparticles. ACS Applied Materials & Interfaces, 2021, 13, 31635-31641.	8.0	14
184	Review on Computational-Assisted to Experimental Synthesis, Interfacial Perspectives of Garnet-Solid Electrolytes for All-Solid-State Lithium Batteries. Journal of the Electrochemical Society, 2021, 168, 060529.	2.9	13
185	Unlocking the Failure Mechanism of Solid State Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, 2100748.	19.5	129
186	Ultrathin Yet Robust Single Lithiumâ€lon Conducting Quasiâ€Solidâ€State Polymerâ€Brush Electrolytes Enable Ultralongâ€Life and Dendriteâ€Free Lithiumâ€Metal Batteries. Advanced Materials, 2021, 33, e2100943.	21.0	88
187	Homogeneous Li ⁺ Flux Distribution Enables Highly Stable and Temperatureâ€Tolerant Lithium Anode. Advanced Functional Materials, 2021, 31, 2102158.	14.9	41
188	Engineering Two-Dimensional Metal–Organic Framework on Molecular Basis for Fast Li ⁺ Conduction. Nano Letters, 2021, 21, 5805-5812.	9.1	31
189	Organosiliconâ€Based Functional Electrolytes for Highâ€Performance Lithium Batteries. Advanced Energy Materials, 2021, 11, 2101057.	19.5	26
190	Solid‣tate Post Li Metal Ion Batteries: A Sustainable Forthcoming Reality?. Advanced Energy Materials, 2021, 11, .	19.5	49
191	Ionâ€Gating Engineering of Organic Semiconductors toward Multifunctional Devices. Advanced Functional Materials, 2021, 31, 2102149.	14.9	13
192	In-situ thermal polymerization boosts succinonitrile-based composite solid-state electrolyte for high performance Li-metal battery. Journal of Power Sources, 2021, 496, 229861.	7.8	49
193	Mechanics, Ionics, and Optics of Metal–Organic Framework and Coordination Polymer Glasses. Nano Letters, 2021, 21, 6382-6390.	9.1	39
194	In situ monitoring nanoscale solid-state phase transformation of Ag nanowire during electrochemical reaction. Scripta Materialia, 2021, 199, 113835.	5.2	1
195	<i>In Situ</i> / <i>Operando</i> Methods of Characterizing All-Solid-State Li-Ion Batteries: Understanding Li-Ion Transport during Cycle. Journal of Physical Chemistry C, 2021, 125, 16921-16937.	3.1	9
196	Oriented Attachment Strategy Toward Enhancing Ionic Conductivity in Garnet-Type Electrolytes for Solid-State Lithium Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 34385-34396.	8.0	20
197	Amorphous-Carbon-Coated 3D Solid Electrolyte for an Electro-Chemomechanically Stable Lithium Metal Anode in Solid-State Batteries. Nano Letters, 2021, 21, 6163-6170.	9.1	29
198	Structure and Dynamics of Stockmayer Polymer Electrolyte. Macromolecules, 2021, 54, 7160-7173.	4.8	5

#	Article	IF	CITATIONS
199	Superior All‣olid‣tate Batteries Enabled by a Gasâ€Phase‣ynthesized Sulfide Electrolyte with Ultrahigh Moisture Stability and Ionic Conductivity. Advanced Materials, 2021, 33, e2100921.	21.0	110
200	Synergistic effects in cross-linked blends of ion-conducting PEO-/PPO-based unsaturated polyesters. Ionics, 2021, 27, 3857-3867.	2.4	2
201	Recent Advances of Composite Solid-State Electrolytes for Lithium-Based Batteries. Energy & Fuels, 2021, 35, 11118-11140.	5.1	16
202	Intermetallic interphases in lithium metal and lithium ion batteries. InformaÄnÃ-Materiály, 2021, 3, 1083-1109.	17.3	35
203	A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries. Nature Communications, 2021, 12, 4410.	12.8	141
204	Microstructure engineering of solid-state composite cathode via solvent-assisted processing. Joule, 2021, 5, 1845-1859.	24.0	42
205	In situ preparation of gel polymer electrolyte for lithium batteries: Progress and perspectives. InformaÄnÃ-Materiály, 2022, 4, .	17.3	93
206	Advanced Highâ€Voltage Allâ€Solidâ€State Liâ€Ion Batteries Enabled by a Dualâ€Halogen Solid Electrolyte. Advanced Energy Materials, 2021, 11, 2100836.	19.5	64
207	Current Advances on Zn Anodes for Aqueous Zincâ€lon Batteries. ChemNanoMat, 2021, 7, 1162-1176.	2.8	14
208	Roadmap of Solid-State Lithium-Organic Batteries toward 500 Wh kg ^{–1} . ACS Energy Letters, 2021, 6, 3287-3306.	17.4	31
209	Improved ionic conductivity and battery function in a lithium iodide solid electrolyte via particle size modification. Electrochimica Acta, 2021, 388, 138569.	5.2	6
210	Highâ€Voltageâ€Tolerant Covalent Organic Framework Electrolyte with Holistically Oriented Channels for Solidâ€State Lithium Metal Batteries with Nickelâ€Rich Cathodes. Angewandte Chemie, 0, , .	2.0	3
211	Dilute Element Compounds: A Route to Enriching Inorganic Functional Materials. Journal of Physical Chemistry Letters, 2021, 12, 8194-8202.	4.6	1
212	2D Silicate Materials for Composite Polymer Electrolytes. Chemistry - an Asian Journal, 2021, 16, 2842-2851.	3.3	9
213	Review—Inorganic Solid State Electrolytes: Insights on Current and Future Scope. Journal of the Electrochemical Society, 2021, 168, 080536.	2.9	11
214	Structural Design of Composite Polymer Electrolytes for Solidâ€state Lithium Metal Batteries. ChemNanoMat, 2021, 7, 1177-1187.	2.8	11
215	Highâ€Voltageâ€Tolerant Covalent Organic Framework Electrolyte with Holistically Oriented Channels for Solidâ€6tate Lithium Metal Batteries with Nickelâ€Rich Cathodes. Angewandte Chemie - International Edition, 2021, 60, 24915-24923.	13.8	67
216	Singleâ€Ion Conducting Soft Electrolytes for Semiâ€Solid Lithium Metal Batteries Enabling Cell Fabrication and Operation under Ambient Conditions. Advanced Energy Materials, 2021, 11, 2101813.	19.5	26

#	Article	IF	CITATIONS
217	Computational discovery of energy materials in the era of big data and machine learning: A critical review. Materials Reports Energy, 2021, 1, 100047.	3.2	24
218	Regulating Deposition Behavior of Sodium Ions for Dendriteâ€Free Sodiumâ€Metal Anode. Advanced Energy Materials, 2021, 11, 2101976.	19.5	51
219	Commercializationâ€Driven Electrodes Design for Lithium Batteries: Basic Guidance, Opportunities, and Perspectives. Small, 2021, 17, e2102233.	10.0	38
220	Issues and Advances in Scaling up Sulfide-Based All-Solid-State Batteries. Accounts of Chemical Research, 2021, 54, 3390-3402.	15.6	97
221	"Series and parallel―design of ether linkage and imidazolium cation synergistically regulated four-armed polymerized ionic liquid for all-solid-state polymer electrolyte. Chinese Chemical Letters, 2022, 33, 1407-1411.	9.0	10
222	A Multimodal Hydrogel Soft-Robotic Sensor for Multi-Functional Perception. Frontiers in Robotics and AI, 2021, 8, 692754.	3.2	5
223	Asymmetry-structure electrolyte with rapid Li+ transfer pathway towards high-performance all-solid-state lithium–sulfur battery. Journal of Membrane Science, 2021, 634, 119432.	8.2	21
224	Airâ€stable inorganic solidâ€state electrolytes for high energy density lithium batteries: Challenges, strategies, and prospects. InformaÄnÃ-Materiály, 2022, 4, .	17.3	71
225	Ionâ€Conducting Channel Implanted Anode Matrix for Allâ€Solidâ€State Batteries with High Rate Capability and Stable Anode/Solid Electrolyte Interface. Advanced Energy Materials, 2021, 11, 2102045.	19.5	19
226	Recent applications of ionic liquids in quasi-solid-state lithium metal batteries. Green Chemical Engineering, 2021, 2, 253-265.	6.3	46
227	High Energy Density Solid State Lithium Metal Batteries Enabled by Subâ€5 µm Solid Polymer Electrolytes. Advanced Materials, 2021, 33, e2105329.	21.0	123
228	Lithium Oxide Superionic Conductors Inspired by Garnet and NASICON Structures. Advanced Energy Materials, 2021, 11, 2101437.	19.5	33
229	Lithium-Conducting Branched Polymers: New Paradigm of Solid-State Electrolytes for Batteries. Nano Letters, 2021, 21, 7435-7447.	9.1	47
230	Applied Machine Learning for Developing Nextâ€Generation Functional Materials. Advanced Functional Materials, 2021, 31, 2104195.	14.9	28
231	Progress in solid-state high voltage lithium-ion battery electrolytes. Advances in Applied Energy, 2021, 4, 100070.	13.2	36
232	Electrode Architecture Design to Promote Chargeâ€Transport Kinetics in High‣oading and Highâ€Energy Lithiumâ€Based Batteries. Small Methods, 2021, 5, e2100518.	8.6	27
233	Biomimetic Woodâ€Inspired Batteries: Fabrication, Electrochemical Performance, and Sustainability within a Circular Perspective. Advanced Sustainable Systems, 2021, 5, 2100236.	5.3	8
234	Self-Healing Solid Polymer Electrolyte for Room-Temperature Solid-State Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 46794-46802.	8.0	37

#	Article	IF	CITATIONS
235	Interface engineering for composite cathodes in sulfide-based all-solid-state lithium batteries. Journal of Energy Chemistry, 2021, 60, 32-60.	12.9	64
236	Perovskite Quantum Dots for Lewis Acid–Base Interactions and Interface Engineering in Lithium-Metal Batteries. ACS Applied Energy Materials, 2021, 4, 11470-11479.	5.1	7
237	Functional additives for solid polymer electrolytes in flexible and highâ€energyâ€density solidâ€state lithiumâ€ion batteries. , 2021, 3, 929-956.		63
238	High-Voltage and Wide-Temperature Lithium Metal Batteries Enabled by Ultrathin MOF-Derived Solid Polymer Electrolytes with Modulated Ion Transport. ACS Applied Materials & Interfaces, 2021, 13, 47163-47173.	8.0	42
239	Rational design of biomimetic ant-nest solid polymer electrolyte for high-voltage Li-metal battery with robust mechanical and electrochemical performance. Energy Storage Materials, 2021, 41, 51-60.	18.0	35
240	Solid electrolytes reinforced by infinite coordination polymer nano-network for dendrite-free lithium metal batteries. Energy Storage Materials, 2021, 41, 436-447.	18.0	67
241	Na5YSi4O12: A sodium superionic conductor for ultrastable quasi-solid-state sodium-ion batteries. Energy Storage Materials, 2021, 41, 196-202.	18.0	23
242	Designs and applications of multi-functional covalent organic frameworks in rechargeable batteries. Energy Storage Materials, 2021, 41, 354-379.	18.0	52
243	Insights into evolution processes and degradation mechanisms of anion-tunable interfacial stability in all-solid-state lithium-sulfur batteries. Energy Storage Materials, 2021, 41, 642-649.	18.0	17
244	Functional polymers for lithium metal batteries. Progress in Polymer Science, 2021, 122, 101453.	24.7	39
245	Solid-state polymer electrolytes with polypropylene separator-reinforced sandwich structure for room-temperature lithium ion batteries. Journal of Membrane Science, 2021, 638, 119713.	8.2	24
246	Harnessing artificial intelligence to holistic design and identification for solid electrolytes. Nano Energy, 2021, 89, 106337.	16.0	16
247	Effect of lithiation on the elastic moduli of carbon fibres. Carbon, 2021, 185, 234-241.	10.3	20
248	New insights into "dead lithium―during stripping in lithium metal batteries. Journal of Energy Chemistry, 2021, 62, 289-294.	12.9	115
249	A thin and flexible solid electrolyte templated by controllable porous nanocomposites toward extremely high performance all-solid-state lithium-ion batteries. Chemical Engineering Journal, 2021, 425, 130632.	12.7	30
250	Promote the conductivity of solid polymer electrolyte at room temperature by constructing a dual range ionic conduction path. Journal of Energy Chemistry, 2022, 64, 395-403.	12.9	24
251	Polar interaction of polymer host–solvent enables stable solid electrolyte interphase in composite lithium metal anodes. Journal of Energy Chemistry, 2022, 64, 172-178.	12.9	42
252	Enhanced electrochemical performance enabled by ionic-liquid-coated Na3SbS4 electrolyte encapsulated in flexible filtration membrane. Chemical Engineering Journal, 2022, 428, 132094.	12.7	22

#	Article	IF	CITATIONS
253	Flexible and freestanding heterostructures based on COF-derived N-doped porous carbon and two-dimensional MXene for all-solid-state lithium-sulfur batteries. Chemical Engineering Journal, 2022, 428, 131040.	12.7	29
254	Sheet-like garnet structure design for upgrading PEO-based electrolyte. Chemical Engineering Journal, 2022, 429, 132343.	12.7	42
255	Syntheses and Characterization of Novel Perovskite-Type LaScO3-Based Lithium Ionic Conductors. Molecules, 2021, 26, 299.	3.8	9
256	An Airâ€Stable and Liâ€Metalâ€Compatible Glassâ€Ceramic Electrolyte enabling Highâ€Performance Allâ€Solidâ€ Li Metal Batteries. Advanced Materials, 2021, 33, e2006577.	State 21.0	82
257	Characterization of the interfacial Li-ion exchange process in a ceramic–polymer composite by solid state NMR. Journal of Materials Chemistry A, 2021, 9, 17812-17820.	10.3	21
258	Rapid ionic conductivity of ternary composite electrolytes for superior solid-state batteries with high-rate performance and long cycle life operated at room temperature. Journal of Materials Chemistry A, 2021, 9, 18338-18348.	10.3	23
259	Molecular engineering of carbonyl organic electrodes for rechargeable metal-ion batteries: fundamentals, recent advances, and challenges. Energy and Environmental Science, 2021, 14, 4228-4267.	30.8	100
260	The rise of metal–organic frameworks for electrolyte applications. Journal of Materials Chemistry A, 2021, 9, 20837-20856.	10.3	26
261	Mechanical failures in solid-state lithium batteries and their solution. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 226201.	0.5	5
262	Advance in interface and characterizations of sulfide solid electrolyte materials. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 228803.	0.5	24
263	3D printing of advanced lithium batteries: a designing strategy of electrode/electrolyte architectures. Journal of Materials Chemistry A, 2021, 9, 25237-25257.	10.3	50
264	Configuring solid-state batteries to power electric vehicles: a deliberation on technology, chemistry and energy. Chemical Communications, 2021, 57, 12587-12594.	4.1	18
265	A Three-Dimensional Electrospun Li6.4La3Zr1.4Ta0.6O12–Poly (Vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5 Batteries. Frontiers in Chemistry, 2021, 9, 751476.	0 267 Td 3.6	(Fluoride-He 4
266	Mechanically Interlocked Polymer Electrolyte with Builtâ€In Fast Molecular Shuttles for Allâ€Solidâ€State Lithium Batteries. Advanced Energy Materials, 2021, 11, 2102583.	19.5	27
267	Efficient Solid-State Electrolytes Based on Aryl-Modified Imidazolium Ionic Crystals for Quantum Dot-Sensitized Solar Cells. ACS Applied Energy Materials, 2021, 4, 10739-10747.	5.1	2
268	A Flexible, Fireproof, Composite Polymer Electrolyte Reinforced by Electrospun Polyimide for Room-Temperature Solid-State Batteries. Polymers, 2021, 13, 3622.	4.5	7
269	An All-Solid-State Lithium Metal Battery Based on Electrodes-Compatible Plastic Crystal Electrolyte. Energies, 2021, 14, 6946.	3.1	2
270	The influence of hafnium impurities on the electrochemical performance of tantalum substituted Li7La3Zr2O12 solid electrolytes. Ionics, 2022, 28, 53-62.	2.4	10

#	Article	IF	CITATIONS
271	Cooperative Shielding of Bi-Electrodes via In Situ Amorphous Electrode–Electrolyte Interphases for Practical High-Energy Lithium-Metal Batteries. Journal of the American Chemical Society, 2021, 143, 16768-16776.	13.7	68
272	Singleâ€Crystal‣ayered Niâ€Rich Oxide Modified by Phosphate Coating Boosting Interfacial Stability of Li ₁₀ SnP ₂ S ₁₂ â€Based Allâ€Solidâ€State Li Batteries. Small, 2021, 17, e2103830.	10.0	19
273	Theoretical analysis of reversible phase evolution in Li-ion conductive halides. Applied Surface Science, 2022, 574, 151621.	6.1	2
274	Influence of Ionic Interaction Strength on Glass Formation of an Ion-Containing Polymer Melt. Macromolecules, 2021, 54, 9587-9601.	4.8	12
275	Functional Electrolytes: Game Changers for Smart Electrochemical Energy Storage Devices. Small Science, 2022, 2, 2100080.	9.9	16
276	Reaction of Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ and LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ in Co-Sintered Composite Cathodes for Solid-State Batteries. ACS Applied Materials & Interfaces, 2021, 13, 47488-47498.	8.0	20
277	Stable Cycling of Allâ€Solidâ€State Batteries with Sacrificial Cathode and Lithiumâ€Free Indium Layer. Advanced Functional Materials, 2022, 32, 2108203.	14.9	21
278	Ultrathin zwitterionic polymeric interphases for stable lithium metal anodes. Matter, 2021, 4, 3753-3773.	10.0	35
279	Effect of Composition on Mechanical Properties and Conductivity of the Dual-Ion Conductor Na _{1+<i>x</i>} Mn _{<i>x</i>/2} Zr _{2–<i>x</i>/2} (PO ₄) _{3for Solid-State Batteries. ACS Applied Energy Materials, 2021, 4, 11684-11692.}	u b >1	6
280	A Novel Filler for Gel Polymer Electrolyte with a High Lithium-Ion Transference Number toward Stable Cycling for Lithium-Metal Anodes in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 48622-48633.	8.0	15
281	Computational Auxiliary for the Progress of Sodium-Ion Solid-State Electrolytes. ACS Nano, 2021, 15, 17232-17246.	14.6	42
282	LiF-doped Li1.3Al0.3Ti1.7(PO4)3 superionic conductors with enhanced ionic conductivity for all-solid-state lithium-ion batteries. Ionics, 2022, 28, 73-83.	2.4	8
283	Anionâ€Rectifying Polymeric Single Lithiumâ€lon Conductors. Advanced Functional Materials, 2022, 32, 2107753.	14.9	25
284	Anode interface in all-solid-state lithium-metal batteries: Challenges and strategies. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 228805.	0.5	5
285	Revisiting Classical Rocking Chair Lithium-Ion Battery. Macromolecular Research, 2020, 28, 1175-1191.	2.4	14
286	Improving ionic conductivity of doped Li7La3Zr2O12 using optimized machine learning with simplistic descriptors. Materials Letters, 2022, 308, 131159.	2.6	5
287	Extended Condensed Ultraphosphate Frameworks with Monovalent Ions Combine Lithium Mobility with High Computed Electrochemical Stability. Journal of the American Chemical Society, 2021, 143, 18216-18232.	13.7	7
288	All-Solid-State Lithium–Sulfur Batteries Enhanced by Redox Mediators. Journal of the American Chemical Society, 2021, 143, 18188-18195.	13.7	66

#	Article	IF	CITATIONS
289	Redox-active polymers: The magic key towards energy storage – a polymer design guideline progress in polymer science. Progress in Polymer Science, 2022, 125, 101474.	24.7	48
290	Rechargeable aqueous Zn-based energy storage devices. Joule, 2021, 5, 2845-2903.	24.0	201
291	Emerging Characterization Techniques for Electrode Interfaces in Sulfideâ€Based Allâ€Solidâ€State Lithium Batteries. Small Structures, 2022, 3, 2100146.	12.0	21
292	High ionic conductivity PEO-based electrolyte with 3D framework for Dendrite-free solid-state lithium metal batteries at ambient temperature. Chemical Engineering Journal, 2022, 431, 133352.	12.7	61
293	Designing double comb copolymer as highly lithium ionic conductive solid-state electrolyte membranes. Reactive and Functional Polymers, 2021, 169, 105093.	4.1	3
294	Electrical modification of a composite electrode for room temperature operable polyethylene oxide-based lithium polymer batteries. Materials Research Express, 2020, 7, 075504.	1.6	0
295	Atomic and molecular layer deposition in pursuing better batteries. Journal of Materials Research, 0, , 1-24.	2.6	1
296	An ultra-thin polymer electrolyte based on single-helical-structured agarose for high performance solid-state lithium batteries. Journal of Materials Chemistry A, 2021, 9, 26939-26948.	10.3	10
297	Facile Li-Ion Conduction and Synergistic Electrochemical Performance Via Dual Functionalization of Flexible Solid Electrolyte for Li Metal Batteries. SSRN Electronic Journal, 0, , .	0.4	0
298	The ionic interphases of the lithium anode in solid state batteries. Current Opinion in Solid State and Materials Science, 2022, 26, 100973.	11.5	7
299	A roadmap of battery separator development: Past and future. Current Opinion in Electrochemistry, 2022, 31, 100858.	4.8	24
300	Improving ultra-fast charging performance and durability of all solid state thin film Li-NMC battery-on-chip systems by in situ TEM lamella analysis. Applied Materials Today, 2022, 26, 101282.	4.3	2
301	Electrode-to-electrode monolithic integration for high-voltage bipolar solid-state batteries based on plastic-crystal polymer electrolyte. Chemical Engineering Journal, 2022, 433, 133753.	12.7	7
302	Swallowing Lithium Dendrites in Allâ€Solidâ€State Battery by Lithiation with Silicon Nanoparticles. Advanced Science, 2022, 9, e2103786.	11.2	27
303	Supramolecular "flame-retardant―electrolyte enables safe and stable cycling of lithium-ion batteries. Energy Storage Materials, 2022, 45, 182-190.	18.0	25
304	Ultrafast Synthesis of lâ€Rich Lithium Argyrodite Glass–Ceramic Electrolyte with High Ionic Conductivity. Advanced Materials, 2022, 34, e2107346.	21.0	34
305	Preparing Twoâ€Dimensional Ordered Li _{0.33} La _{0.557} TiO ₃ Crystal in Interlayer Channel of Thin Laminar Inorganic Solidâ€State Electrolyte towards Ultrafast Li ⁺ Transfer. Angewandte Chemie, 2022, 134, .	2.0	4
306	Zwitterions Raise the Dielectric Constant of Soft Materials. Physical Review Letters, 2021, 127, 228001.	7.8	24

#	Article	IF	CITATIONS
307	Crosslinked Polymerâ€Brush Electrolytes: An Approach to Safe Allâ€Solidâ€State Lithium Metal Batteries at Room Temperature. Batteries and Supercaps, 2022, 5, .	4.7	7
308	High-purity and high-concentration liquid fuels through CO2 electroreduction. Nature Catalysis, 2021, 4, 943-951.	34.4	143
309	Rapid synthesis of garnet-type Li7La3Zr2O12 solid electrolyte with superior electrochemical performance. Journal of the European Ceramic Society, 2022, 42, 1568-1575.	5.7	9
310	Li-Rich Antiperovskite/Nitrile Butadiene Rubber Composite Electrolyte for Sheet-Type Solid-State Lithium Metal Battery. Frontiers in Chemistry, 2021, 9, 744417.	3.6	8
311	Decoupling the Modulus and Toughness Effects of Solid Polymer Electrolytes in All-Solid-State Lithium Batteries. ACS Applied Energy Materials, 2021, 4, 14093-14101.	5.1	4
312	Evaluation of Scalable Synthesis Methods for Aluminum-Substituted Li7La3Zr2O12 Solid Electrolytes. Materials, 2021, 14, 6809.	2.9	13
313	Preparing Twoâ€Dimensional Ordered Li _{0.33} La _{0.557} TiO ₃ Crystal in Interlayer Channel of Thin Laminar Inorganic Solidâ€State Electrolyte towards Ultrafast Li ⁺ Transfer. Angewandte Chemie - International Edition, 2022, 61, .	13.8	42
314	In Situ Formed Agâ€Li Intermetallic Layer for Stable Cycling of Allâ€Solidâ€State Lithium Batteries. Advanced Science, 2022, 9, e2103826.	11.2	27
315	Recent Advances in Electrolytes for "Beyond Aqueous―Zincâ€Ion Batteries. Advanced Materials, 2022, 34, e2106409.	21.0	167
316	Assessing the Importance of Cation Size in the Tetragonalâ€Cubic Phase Transition in Lithiumâ€Garnet Electrolytes**. Chemistry - A European Journal, 2022, 28, .	3.3	5
317	Designing Lithium Argyrodite Solidâ€State Electrolytes for Highâ€Performance Allâ€Solidâ€State Lithium Batteries. Batteries and Supercaps, 2022, 5, .	4.7	8
318	Enhancement of ionic conductivity in novel LiON-AlOx multilayer heterostructures prepared by atomic layer deposition. Solid State Ionics, 2021, 373, 115796.	2.7	0
319	An effective solid-electrolyte interphase for stable solid-state batteries. CheM, 2021, 7, 3195-3197.	11.7	11
320	Effect of Chemical Substituents Attached to the Zwitterion Cation on Dielectric Constant. Journal of Chemical Physics, 2021, 155, 244505.	3.0	2
321	Where are those promising solid-state batteries?. Europhysics News, 2021, 52, 28-31.	0.3	0
322	Covalent Organic Frameworks. RSC Smart Materials, 2021, , 226-343.	0.1	0
323	Core–Shell NaBH ₄ @Na ₂ B ₁₂ H ₁₂ Nanoparticles as Fast Ionic Conductors for Sodium-Ion Batteries. ACS Applied Nano Materials, 2022, 5, 373-379.	5.0	14
324	Segmental and interfacial dynamics quantitatively determine ion transport in solid polymer composite electrolytes. Journal of Applied Polymer Science, 0, , 52143.	2.6	4

#	Article	IF	CITATIONS
325	Lignin-derived materials and their applications in rechargeable batteries. Green Chemistry, 2022, 24, 565-584.	9.0	37
326	Upgrading Carbonate Electrolytes for Ultraâ€stable Practical Lithium Metal Batteries. Angewandte Chemie, 2022, 134, e202116214.	2.0	9
327	Recent progress in the development of glass and glass-ceramic cathode/solid electrolyte materials for next-generation high capacity all-solid-state sodium-ion batteries: A review. Journal of Power Sources, 2022, 521, 230930.	7.8	35
328	Preparation of free-standing Li3InCl6 solid electrolytes film with infiltration-method enable roll-to-roll manufacture. Materials Letters, 2022, 310, 131463.	2.6	9
329	Gradient lithiation to load controllable, high utilization lithium in graphitic carbon host for high-energy batteries. Nano Energy, 2022, 93, 106808.	16.0	14
330	Electrochemical impedance characteristics at various conditions for commercial solid–liquid electrolyte lithium-ion batteries: Part 1. experiment investigation and regression analysis. Energy, 2022, 242, 122880.	8.8	25
331	Molecular bridges stabilize lithium metal anode and solid-state electrolyte interface. Chemical Engineering Journal, 2022, 432, 134271.	12.7	9
332	In situ and operando characterisation of Li metal – Solid electrolyte interfaces. Current Opinion in Solid State and Materials Science, 2022, 26, 100978.	11.5	18
333	Computational design of materials for metal-ion batteries. , 2023, , 404-429.		4
334	Enhanced storage behavior of quasi-solid-state aluminum–selenium battery. RSC Advances, 2021, 11, 39484-39492.	3.6	3
335	Understanding the Solid-State Electrode–Electrolyte Interface of a Model System Using First-Principles Statistical Mechanics and Thin-Film X-ray Characterization. ACS Applied Materials & Interfaces, 2022, 14, 7428-7439.	8.0	1
336	Characteristics of a Li ₃ BS ₃ Thioborate Glass Electrolyte Obtained via a Mechanochemical Process. ACS Applied Energy Materials, 2022, 5, 1421-1426.	5.1	12
337	A strong Lewis acid imparts high ionic conductivity and interfacial stability to polymer composite electrolytes towards all-solid-state Li-metal batteries. Science China Materials, 2022, 65, 2179-2188.	6.3	21
338	All-solid-state batteries. , 2022, , 343-361.		1
339	Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. Journal of Energy Chemistry, 2022, 69, 194-204.	12.9	82
340	Self-Constructed Intimate Interface on a Silicon Anode Enabled by a Phase-Convertible Electrolyte for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 805-813.	8.0	6
341	Optimizing the Na metal/solid electrolyte interface through a grain boundary design. Journal of Materials Chemistry A, 2022, 10, 5280-5286.	10.3	18
342	Guanineâ€Based Gâ€Quadruplexes Templated by Various Cations toward Potential Use as Singleâ€lon Conductors. ChemSusChem, 2022, 15, .	6.8	1

#	Article	IF	CITATIONS
343	Multiscale understanding of high-energy cathodes in solid-state batteries: from atomic scale to macroscopic scale. Materials Futures, 2022, 1, 012101.	8.4	34
344	Recycling of Lithiumâ€ion Batteries—Current State of the Art, Circular Economy, and Next Generation Recycling. Advanced Energy Materials, 2022, 12, .	19.5	268
345	Lithium-Ion-Conducting Ceramics-Coated Separator for Stable Operation of Lithium Metal-Based Rechargeable Batteries. Materials, 2022, 15, 322.	2.9	9
346	Upgrading Carbonate Electrolytes for Ultraâ€stable Practical Lithium Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, e202116214.	13.8	38
347	Functional Applications of Polymer Electrolytes in Highâ€Energyâ€Density Lithium Batteries. Macromolecular Chemistry and Physics, 2022, 223, .	2.2	11
348	Strategies of regulating Zn ²⁺ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy and Environmental Science, 2022, 15, 499-528.	30.8	313
349	A low resistance and stable lithium-garnet electrolyte interface enabled by a multifunctional anode additive for solid-state lithium batteries. Journal of Materials Chemistry A, 2022, 10, 2519-2527.	10.3	22
350	Designing Versatile Polymers for Lithium-Ion Battery Applications: A Review. Polymers, 2022, 14, 403.	4.5	19
351	Long-chain fluorocarbon-driven hybrid solid polymer electrolyte for lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 4881-4888.	10.3	12
352	11,11,12,12â€ŧetracyanoâ€9,10â€anthraquinonedimethane as a sustainable cathode for room temperature all solidâ€state lithium battery. International Journal of Energy Research, 2022, 46, 7686-7693.	4.5	3
353	Worldwide ubiquitous utilization of lithium-ion batteries: What we have done, are doing, and could do safely once they are dead?. Journal of Power Sources, 2022, 523, 231015.	7.8	24
354	A novel thioctic acid-functionalized hybrid network for solid-state batteries. Energy Storage Materials, 2022, 46, 570-576.	18.0	13
355	High entropy lithium garnets – Testing the compositional flexibility of the lithium garnet system. Journal of Solid State Chemistry, 2022, 308, 122944.	2.9	10
356	Impacts of 3Li2O-2GeO2 melt on fabrication and electrical performance of novel LLZTO@Li4GeO4/Li2O composite electrolytes. Journal of the European Ceramic Society, 2022, 42, 2290-2298.	5.7	6
357	A flexible, robust, and high ion-conducting solid electrolyte membranes enabled by interpenetrated network structure for all-solid-state lithium metal battery. Journal of Energy Chemistry, 2022, 68, 603-611.	12.9	26
358	Enhanced ionic conductivity and interface compatibility of PVDF-LLZTO composite solid electrolytes by interfacial maleic acid modification. Journal of Colloid and Interface Science, 2022, 613, 368-375.	9.4	25
359	Review—An Overview on Supercapacitors and Its Applications. Journal of the Electrochemical Society, 2022, 169, 020552.	2.9	33
360	Interfacial Self-assembly of Organics/MXene Hybrid Cathodes Toward High-Rate-Performance Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 8036-8047.	8.0	11

#	Article	IF	CITATIONS
361	Onâ€Chip Batteries for Dustâ€Sized Computers. Advanced Energy Materials, 2022, 12, .	19.5	36
362	Revisiting the LiPON/Li thin film as a bifunctional interlayer for NASICON solid electrolyte-based lithium metal batteries. Applied Surface Science, 2022, 586, 152790.	6.1	18
363	Challenges, interface engineering, and processing strategies toward practical <scp>sulfideâ€based allâ€solidâ€state</scp> lithium batteries. InformaÄnÃ-Materiály, 2022, 4, .	17.3	92
364	Facile Li-ion conduction and synergistic electrochemical performance via dual functionalization of flexible solid electrolyte for Li metal batteries. Journal of Membrane Science, 2022, 648, 120349.	8.2	11
365	Achieving fast ionic conductivity and high electrochemical stability through polyhedral structure design. Energy Storage Materials, 2022, 47, 70-78.	18.0	2
366	Topology Crafting of Polyvinylidene Difluoride Electrolyte Creates Ultra-Long Cycling High-Voltage Lithium Metal Solid-State Batteries. SSRN Electronic Journal, 0, , .	0.4	0
367	Nonflammable Quasi-Solid Electrolyte for Energy-Dense and Long-Cycling Lithium Metal Batteries with High-Voltage Ni-Rich Layered Cathodes. SSRN Electronic Journal, 0, , .	0.4	0
368	Recent advances in lithium-ion battery separators with enhanced safety. , 2022, , 269-304.		3
369	Stabilizing Solid Electrolyte/Li Interface Via Polymer-in-Salt Artificial Protection Layer for High-Rate and Stable Lithium Metal Batteries. SSRN Electronic Journal, 0, , .	0.4	0
370	Covalent organic frameworks for solid-state electrolytes of lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 7497-7516.	10.3	28
371	Scalable Synthesis of Hydroxyl-Functionalized Boron Nanosheets for High Ion-Conductive Solid-State Electrolyte Application. Chemical Communications, 2022, , .	4.1	0
372	Dual Interface Design of Ga-Doped Li7la3zr2o12/Polymer Composite Electrolyte for Solid-State Lithium Batteries. SSRN Electronic Journal, 0, , .	0.4	0
373	Decoupling mechano- and electrochemical gating: a direct visualization for piezo-ionic propelled proton tunneling in self-charging supercapacitors. Journal of Materials Chemistry A, 2022, 10, 7818-7829.	10.3	20
374	Reprocessable and Recyclable Polymer Network Electrolytes via Incorporation of Dynamic Covalent Bonds. Chemistry of Materials, 2022, 34, 2393-2399.	6.7	43
375	Scalable, Ultrathin, and Highâ€Temperatureâ€Resistant Solid Polymer Electrolytes for Energyâ€Dense Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, .	19.5	132
376	Allâ€Climate and Ultrastable Dualâ€Ion Batteries with Long Life Achieved via Synergistic Enhancement of Cathode and Anode Interfaces. Advanced Functional Materials, 2022, 32, .	14.9	60
378	Sheet-Like Stacking SnS ₂ /rGO Heterostructures as Ultrastable Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 11739-11749.	8.0	28
379	Electrolyte formulation strategies for potassiumâ€based batteries. Exploration, 2022, 2, .	11.0	18

#	Article	IF	CITATIONS
380	High-temperature vibrational spectroscopy of molten electrolytes. Applied Spectroscopy Reviews, 2023, 58, 489-508.	6.7	4
381	Machine learning in energy storage materials. , 2022, 1, 175-195.		45
382	Crystal structure, ion transport and optical properties of new high-conductivity Ag7(Si1 â^' xGex)S5I solid solutions. Journal of Materials Science, 2022, 57, 6706-6722.	3.7	11
383	Ionic Liquid@Metal-Organic Framework as a Solid Electrolyte in a Lithium-Ion Battery: Current Performance and Perspective at Molecular Level. Nanomaterials, 2022, 12, 1076.	4.1	12
384	Promoting Mechanistic Understanding of Lithium Deposition and Solidâ€Electrolyte Interphase (SEI) Formation Using Advanced Characterization and Simulation Methods: Recent Progress, Limitations, and Future Perspectives. Advanced Energy Materials, 2022, 12, .	19.5	47
385	Deep Generative Models for Materials Discovery and Machine Learning-Accelerated Innovation. Frontiers in Materials, 2022, 9, .	2.4	19
386	Polymer-Stabilized Liquid Metal Nanoparticles as a Scalable Current Collector Engineering Approach Enabling Lithium Metal Anodes. ACS Applied Energy Materials, 2022, 5, 3615-3625.	5.1	6
387	Insights into the sinterability and electrical properties of Li1.3Al0.3Ti1.7(PO4)3-(Li2CO3·Bi2O3) composite electrolytes. Ceramics International, 2022, 48, 8387-8394.	4.8	17
388	Selfâ€Healing Polymer Electrolyte for Dendriteâ€Free Li Metal Batteries with Ultraâ€Highâ€Voltage Niâ€Rich Layered Cathodes. Small, 2022, 18, e2200891.	10.0	23
389	Printed electronics to accelerate solid-state battery development. Nano Express, 2022, 3, 021002.	2.4	11
390	Ionic Conductivity Enhancement in UHMW PEO Gel Electrolytes Based on Room-Temperature Ionic Liquids and Deep Eutectic Solvents. ACS Applied Polymer Materials, 2022, 4, 2860-2870.	4.4	8
391	High-Energy Batteries: Beyond Lithium-Ion and Their Long Road to Commercialisation. Nano-Micro Letters, 2022, 14, 94.	27.0	79
392	KB ₃ H ₈ ·NH ₃ B ₃ H ₇ Complex as a Potential Solid-State Electrolyte with Excellent Stability against K Metal. ACS Applied Materials & Interfaces, 2022, 14, 17378-17387.	8.0	12
393	Safe and Energy-Dense Flexible Solid-State Lithium–Oxygen Battery with a Structured Three-Dimensional Polymer Electrolyte. ACS Sustainable Chemistry and Engineering, 2022, 10, 4894-4903.	6.7	4
394	Bacteria cellulose framework-supported solid composite polymer electrolytes for ambient-temperature lithium metal batteries. Nanotechnology, 2022, 33, 415401.	2.6	3
395	A Series of Ternary Metal Chloride Superionic Conductors for Highâ€Performance Allâ€Solidâ€State Lithium Batteries. Advanced Energy Materials, 2022, 12, .	19.5	42
396	Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes. Nature Communications, 2022, 13, 1909.	12.8	82
397	Li3PO4 electrolyte of high conductivity for all-solid-state lithium battery prepared by plasma spray. Journal of the European Ceramic Society, 2022, 42, 4239-4247.	5.7	3

#	Article	IF	CITATIONS
398	Hybrid amorphous-crystalline silicate composites as feasible solid-state electrolytes. Materials and Design, 2022, 217, 110599.	7.0	7
399	Nonflammable quasi-solid electrolyte for energy-dense and long-cycling lithium metal batteries with high-voltage Ni-rich layered cathodes. Energy Storage Materials, 2022, 47, 542-550.	18.0	34
400	Systematic study and effective improvement of voltammetry for accurate electrochemical window measurement of solid electrolytes. Electrochimica Acta, 2022, 414, 140210.	5.2	1
401	Composition - Structure - Property relationship of Li2.3C0.7B0.3O3 – Li6.4La3Zr1.4Ta0.6O12 for composite cathodes in all solid-state batteries. Solid State Ionics, 2022, 378, 115900.	2.7	2
402	UV-Cured Semi-Interpenetrating polymer networks of solid electrolytes for rechargeable lithium metal batteries. Chemical Engineering Journal, 2022, 437, 135329.	12.7	14
403	Non-invasive current density imaging of lithium-ion batteries. Journal of Power Sources, 2022, 533, 231312.	7.8	14
404	Topology crafting of polyvinylidene difluoride electrolyte creates ultra-long cycling high-voltage lithium metal solid-state batteries. Energy Storage Materials, 2022, 48, 375-383.	18.0	61
405	Design of a fast ion-transport interlayer on cathode-electrolyte interface for solid-state lithium metal batteries. Energy Storage Materials, 2022, 48, 205-211.	18.0	9
406	Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: Properties, applications, and perspectives. Energy Storage Materials, 2022, 48, 244-262.	18.0	166
407	Stabilizing the interphase between Li and Argyrodite electrolyte through synergistic phosphating process for all-solid-state lithium batteries. Nano Energy, 2022, 96, 107104.	16.0	43
408	Surface-roughened current collectors for anode-free all-solid-state batteries. Journal of Energy Chemistry, 2022, 70, 248-257.	12.9	14
409	Interfacial electric field effect of Double-Network composite electrolyte for Ultra-Stable lithium batteries. Chemical Engineering Journal, 2022, 440, 135779.	12.7	7
410	Solid polymer electrolytes with hydrates for structural supercapacitors. Journal of Energy Storage, 2022, 51, 104459.	8.1	6
411	Research progress on solid polymer electrolytes. Chinese Science Bulletin, 2021, , .	0.7	2
412	Selfâ€Enhancing Gel Polymer Electrolyte by In Situ Construction for Enabling Safe Lithium Metal Battery. Advanced Science, 2022, 9, e2103663.	11.2	81
413	Role of residual thermal stress on the electrochemical performance of a solid-state half-cell. Journal of Applied Physics, 2021, 130, 245101.	2.5	0
414	Long-Life and High-Rate-Charging Lithium Metal Batteries Enabled by a Flexible Active Solid Electrolyte Interphase Layer. ACS Applied Materials & Interfaces, 2021, 13, 60678-60688.	8.0	9
415	Effect of UV light polymerization time on the properties of plastic crystal composite polyacrylate polymer electrolyte for all solidâ€state lithiumâ€ion batteries. Journal of Applied Polymer Science, 2022, 139, .	2.6	6

#	Article	IF	CITATIONS
416	Synthesis of Lithium Phosphorus Oxynitride (LiPON) Thin Films by Li3PO4 Anodic Evaporation in Nitrogen Plasma of a Low-Pressure Arc Discharge. Membranes, 2022, 12, 40.	3.0	6
417	Nanocomposite Polymer Electrolytes for Zinc and Magnesium Batteries: From Synthetic to Biopolymers. Polymers, 2021, 13, 4284.	4.5	7
418	Hybrid Liquid-Crystalline Electrolytes with High-Temperature-Stable Channels for Anhydrous Proton Conduction. Journal of the American Chemical Society, 2021, 143, 21433-21442.	13.7	45
420	Graphite–Silicon Diffusionâ€Ðependent Electrode with Short Effective Diffusion Length for Highâ€Performance Allâ€Solidâ€State Batteries. Advanced Energy Materials, 2022, 12, .	19.5	34
421	A Hollow Porous Metalâ€Organic Framework Enabled Polyethylene Oxide Based Composite Polymer Electrolytes for Allâ€Solidâ€State Lithium Batteries. Batteries and Supercaps, 2022, 5, .	4.7	6
422	Multilayered Solid Polymer Electrolytes with Sacrificial Coating for Suppressing Lithium Dendrite Growth. ACS Applied Materials & Interfaces, 2022, 14, 484-491.	8.0	4
423	Suppression of lithium dendrites in all-solid-state lithium batteries by using a Janus-structured composite solid electrolyte. Chemical Engineering Journal, 2022, 443, 136479.	12.7	13
424	Atomic Defect Mediated Li-Ion Diffusion in a Lithium Lanthanum Titanate Solid-State Electrolyte. ACS Nano, 2022, 16, 6898-6905.	14.6	7
425	Electrolytes for rechargeable aluminum batteries. Progress in Materials Science, 2022, 128, 100960.	32.8	32
426	Ionic Conductivity Enhancement of Polymer Electrolytes by Directed Crystallization. ACS Macro Letters, 2022, 11, 595-602.	4.8	16
427	In Situ Crossâ€Linked Plastic Crystal Electrolytes for Wideâ€Temperature and Highâ€Energyâ€Density Lithium Metal Batteries. Advanced Functional Materials, 2022, 32, .	14.9	30
428	Atomically Intimate Solid Electrolyte/Electrode Contact Capable of Surviving Long-Term Cycling with Repeated Phase Transitions. Nano Letters, 2022, 22, 3457-3464.	9.1	5
429	Reducing Safety Hazards by Optimizing the Morphology of the LiNi _{0.5} Co _{0.25} Mn _{0.25} O ₂ Cathode Material under Abuse Conditions. ACS Applied Energy Materials, 0, , .	5.1	1
430	Zwitterionic Bifunctional Layer for Reversible Zn Anode. ACS Energy Letters, 2022, 7, 1719-1727.	17.4	81
431	Xenon Ion Implantation Induced Surface Compressive Stress for Preventing Dendrite Penetration in Solid‣tate Electrolytes. Small, 2022, 18, e2108124.	10.0	8
432	Electrolyte chemistry for lithium metal batteries. Science China Chemistry, 2022, 65, 840-857.	8.2	25
433	Electrolyte-free graphite electrode with enhanced interfacial conduction using Li+-conductive binder for high-performance all-solid-state batteries. Energy Storage Materials, 2022, 49, 481-492.	18.0	10
434	Scalable fabrication of sheet-type electrodes for practical all-solid-state batteries employing sulfide solid electrolytes. Current Opinion in Electrochemistry, 2022, 34, 101026.	4.8	7

ARTICLE IF CITATIONS # Solid state lithium metal batteries – Issues and challenges at the lithium-solid electrolyte interface. 435 11.5 29 Current Opinion in Solid State and Materials Science, 2022, 26, 100999. Stable all-solid-state lithium metal batteries enabled by ultrathin LiF/Li3Sb hybrid interface layer. 18.0 Energy Storage Materials, 2022, 49, 246-254. Ion dynamics of the Li Mn2O4 cathode in thin-film solid-state batteries revealed by in situ Raman 437 2.7 6 spectroscopy. Solid State Ionics, 2022, 380, 115925. Understanding Enhanced Ionic Conductivity in Composite Solidâ€State Electrolyte in a Wide Frequency 11.2 Range of 10 ^{–2} –10 ¹⁰ ÂHz. Advanced Science, 2022, , 2200213. Exchange-Mediated Transport in Battery Electrolytes: Ultrafast or Ultraslow?. Journal of the 440 13.7 18 American Chemical Society, 2022, 144, 8591-8604. Thermal, structural and dynamic properties of ionic liquids and organic ionic plastic crystals with a small ether-functionalised cation. Materials Chemistry Frontiers, 2022, 6, 1437-1455. Li-ion conductivity in Li₂OHCl_{1â^'<i>x</i>}Br_{<i>x</i>} solid electrolytes: grains, grain boundaries and interfaces. Journal of Materials Chemistry A, 2022, 10, 442 10.3 24 11574-11586. Stabilizing Solid Electrolyte/Li Interface Via Polymer-in-Salt Artificial Protection Layer for High-Rate 0.4 and Stable Lithium Metal Batteries. SSRN Electronic Journal, 0, , . Lithiumâ€Ion Battery Technology for Voltage Control of Perpendicular Magnetization. Advanced 444 14.9 11 Functional Materials, 2022, 32, . Emerging Halide Superionic Conductors for All-Solid-State Batteries: Design, Synthesis, and Practical 445 Applications. ACS Energy Letters, 2022, 7, 1776-1805. A Polymerizedâ€lonicâ€Liquidâ€Based Polymer Electrolyte with High Oxidative Stability for 4 and 5ÂV Class 446 19.5 34 Solidâ€State Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, . Cl-Doped Li₁₀SnP₂S₁₂ with Enhanced Ionic Conductivity and 447 8.0 Lower Li-Ion Migration Barrier. ACS Applied Materials & amp; Interfaces, 2022, 14, 22225-22232. Oâ€Tailored Microstructureâ€Engineered Interface toward Advanced Room Temperature Allâ€Solidâ€State Na 448 14.9 14 Batteries. Advanced Functional Materials, 2022, 32, . Theory-guided experimental design in battery materials research. Science Advances, 2022, 8, eabm2422. 449 Achieving enhanced densification and superior ionic conductivity of garnet electrolytes via a 450 co-doping strategy coupled with pressureless sintering. Journal of the European Ceramic Society, 5.714 2022, 42, 5023-5028. Solidâ€State Iontronic Devices: Mechanisms and Applications. Advanced Materials Technologies, 2022, 7, 5.8 Organic Crystalline Solid Electrolytes with High Mg-Ion Conductivity Composed of Nonflammable 452 4.0 3 Ionic Liquid Analogs and Mg(TFSA)₂. Inorganic Chemistry, 2022, 61, 7358-7364. Uniform Zn²⁺ Flux Distribution Achieved by an Artificial Three-Dimensional Framework: The Enhanced Ion-Transfer Kinetics for Long-Life and Dendrite-Free Zn Anodes. ACS Applied Materials & Interfaces, 2022, 14, 23558-23569.

\sim			NL E) – –	ODT
<u> </u>	LIA.	ПU	IN IN	CΕΡ	ORT

#	Article	IF	CITATIONS
454	Super Longâ€Cycling Allâ€Solidâ€State Battery with Thin Li ₆ PS ₅ Clâ€Based Electrolyte. Advanced Energy Materials, 2022, 12, .	19.5	58
455	Investigation of Ordering on Oxygenâ€Deficient LiNi _{0.5} Mn _{1.5} O _{4â€Î́} Thin Films for Boosting Electrochemical Performance in Allâ€Solidâ€State Thinâ€Film Batteries. Small, 2022, , 2201134.	10.0	3
456	A gel polymer electrolyte film based on chitosan derivative and ionic liquid for the LiFePO4 cathode solid Li metal battery. Materials Today Communications, 2022, 31, 103597.	1.9	3
457	Improving the stability of NASICON-type electrolyte with Li metal anode by interfacial modification. Journal of Power Sources, 2022, 536, 231491.	7.8	14
458	A liquid cathode/anode based solid-state lithium-sulfur battery. Electrochimica Acta, 2022, 421, 140456.	5.2	3
459	In-situ generated Li3N/Li-Al alloy in reduced graphene oxide framework optimizing ultra-thin lithium metal electrode for solid-state batteries. Energy Storage Materials, 2022, 49, 546-554.	18.0	24
460	Research Progress and Perspective on Lithium/Sodium Metal Anodes for Nextâ€Generation Rechargeable Batteries. ChemSusChem, 2022, 15, .	6.8	22
461	Advanced inorganic/polymer hybrid electrolytes for all-solid-state lithium batteries. Journal of Advanced Ceramics, 2022, 11, 835-861.	17.4	45
462	On the interfacial lithium dynamics in Li7La3Zr2O12:poly(ethylene oxide) (LiTFSI) composite polymer-ceramic solid electrolytes under strong polymer phase confinement. Journal of Colloid and Interface Science, 2022, 623, 870-882.	9.4	14
463	Revealing the Solidâ€State Electrolyte Interfacial Stability Model with Na–K Liquid Alloy. Angewandte Chemie - International Edition, 2022, 61, .	13.8	10
464	Toward practical lithium-ion battery recycling: adding value, tackling circularity and recycling-oriented design. Energy and Environmental Science, 2022, 15, 2732-2752.	30.8	110
465	Review on the lithium transport mechanism in solidâ€state battery materials. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	14.6	11
466	Multiscale Polymeric Materials for Advanced Lithium Battery Applications. Advanced Materials, 2023, 35, .	21.0	18
467	Quantifying lithium enrichment at grain boundaries in Li7La3Zr2O12 solid electrolyte by correlative microscopy. Journal of Power Sources, 2022, 539, 231417.	7.8	13
468	Processing of Lithium Metal for the Production of Post-Lithium-Ion Batteries Using a Pulsed Nanosecond Fiber Laser. SSRN Electronic Journal, 0, , .	0.4	1
469	Fast Li+ Transport Pathways of Composite Solid-State Electrolyte Constructed by 3d Mof Composite Nanofibrous Network for Dendrite-Free Lithium Metal Battery. SSRN Electronic Journal, 0, , .	0.4	0
470	Fast Li+ Transport Pathways of Composite Solid-State Electrolyte Constructed by 3d Mof Composite Nanofibrous Network for Dendrite-Free Lithium Metal Battery. SSRN Electronic Journal, 0, , .	0.4	0
471	Anodeâ€Free Solidâ€State Lithium Batteries: A Review. Advanced Energy Materials, 2022, 12,	19.5	81

#	Article	IF	Citations
472	The Effect of Particle Cohesiveness and Plastic Deformability on the Powder Compression Process. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2022, 29, 97-100.	0.0	0
473	Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries. ACS Applied Materials & Interfaces, 2022, 14, 25534-25544.	8.0	8
474	Gradient Design for Highâ€Energy and Highâ€Power Batteries. Advanced Materials, 2022, 34, .	21.0	53
475	<i>In-Situ</i> Construction of Ceramic–Polymer All-Solid-State Electrolytes for High-Performance Room-Temperature Lithium Metal Batteries. , 2022, 4, 1297-1305.		13
476	Revealing the Solid‣tate Electrolyte Interfacial Stability Model with Na–K Liquid Alloy. Angewandte Chemie, 2022, 134, .	2.0	3
477	A double cross-linked hydrogel electrolyte with high mechanical strength and excellent electrochemical performance for flexible supercapacitor and zinc ion capacitor. Journal of Alloys and Compounds, 2022, 918, 165688.	5.5	16
478	Research progress in stable interfacial constructions between composite polymer electrolytes and electrodes. Energy and Environmental Science, 2022, 15, 2753-2775.	30.8	62
479	Strategies and characterization methods for achieving high performance PEO-based solid-state lithium-ion batteries. Chemical Communications, 2022, 58, 8182-8193.	4.1	24
480	Phase Evolution and Li Diffusion in LATP Solidâ€State Electrolyte Synthesized via a Direct Heatâ€Cycling Method. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	3
481	Progress, Key Issues, and Future Prospects for Liâ€Ion Battery Recycling. Global Challenges, 2022, 6, .	3.6	56
482	Computational Elucidation of Mechanical Degradation in NMC Cathodes: Impact on Cell Performance. Journal of Electrochemical Energy Conversion and Storage, 2022, 19, .	2.1	1
483	Highly crystalline vinylene-linked covalent organic frameworks enhanced solid polycarbonate electrolyte for dendrite-free solid lithium metal batteries. Nano Research, 2022, 15, 8083-8090.	10.4	11
484	The interphasial degradation of 4.2ÂV-class poly(ethylene oxide)-based solid batteries beyond electrochemical voltage limit. Journal of Energy Chemistry, 2022, 75, 504-511.	12.9	9
485	Automatically Capturing Key Features for Predicting Superionic Conductivity of Solid-State Electrolytes Using a Neural Network. ACS Applied Energy Materials, 2022, 5, 8042-8048.	5.1	2
486	Cationic Solid-State Electrolytes. ACS Symposium Series, 0, , 255-274.	0.5	0
487	3D stress mapping reveals the origin of lithium-deposition heterogeneity in solid-state lithium-metal batteries. Cell Reports Physical Science, 2022, 3, 100938.	5.6	17
488	Unveiling the Side-Chain Effect on Ionic Conductivity of Poly(ethylene oxide)-Based Polymer-Brush Electrolytes. ACS Applied Energy Materials, 2022, 5, 8410-8418.	5.1	7
489	Solid-State Rechargeable Lithium-Ion Batteries: Component Chemistries and Battery Architectures. ACS Symposium Series, 0, , 21-37.	0.5	0

#	Article	IF	CITATIONS
490	Troubleshooting the Limited Zn ²⁺ Storage Performance of the Ag ₂ V ₄ O ₁₁ Cathode in Zinc Sulfate Electrolytes via Favorable Synergism with Reduced Graphene Oxides. ACS Applied Energy Materials, 2022, 5, 8292-8303.	5.1	9
491	Stabilizing solid electrolyte/Li interface via polymer-in-salt artificial protection layer for high-rate and stable lithium metal batteries. Chemical Engineering Journal, 2022, 449, 137682.	12.7	10
492	Controlling Architecture and Mechanical Properties of Polyether Networks with Organoaluminum Catalysts. Macromolecules, 2022, 55, 5601-5609.	4.8	8
493	Interrupted anion-network enhanced Li+-ion conduction in Li3+yPO4ly. Energy Storage Materials, 2022, 51, 88-96.	18.0	6
494	Bifunctional surface modification coupled with oxygen defect engineering enables high performance Li-rich cathodes. Journal of Materials Chemistry A, 2022, 10, 16046-16060.	10.3	19
495	Regulating Na/Nascion Electrolyte Interface Chemistry for Stable Solid-State Na Metal Batteries at Room Temperature. SSRN Electronic Journal, 0, , .	0.4	0
496	A sulfur-containing polymer-plasticized poly(ethylene oxide)-based electrolyte enables highly effective lithium dendrite suppression. Journal of Materials Chemistry A, 2022, 10, 14849-14856.	10.3	4
497	The Preliminary Exploration of Composition Origin of Garnet Type Solid Inorganic Electrolytes by Cluster-Plus-Glue-Atom Model. SSRN Electronic Journal, 0, , .	0.4	0
498	Enhanced Ionic Conductivity and Air Stability of Bi2se3-Doped 80li2s-20p2s5 Solid-State Electrolytes. SSRN Electronic Journal, 0, , .	0.4	0
499	Application of sol-gel processes to materials and interfaces in oxide-based all-solid-state batteries. Journal of Sol-Gel Science and Technology, 2022, 103, 680-689.	2.4	0
500	Thioâ€∤LISICON and LGPSâ€Type Solid Electrolytes for Allâ€Solidâ€State Lithiumâ€Ion Batteries. Advanced Functional Materials, 2022, 32, .	14.9	35
501	Decoupled aqueous batteries using pH-decoupling electrolytes. Nature Reviews Chemistry, 2022, 6, 505-517.	30.2	44
502	<scp>Highâ€Performance Quasiâ€Solidâ€State</scp> Pouch Cells Enabled by in situ Solidification of a Novel Polymer Electrolyte. Energy and Environmental Materials, 2023, 6, .	12.8	12
503	Recent Advances in Cu-Based Metal–Organic Frameworks and Their Derivatives for Battery Applications. ACS Applied Energy Materials, 2022, 5, 7842-7873.	5.1	11
504	Coldâ€Starting Allâ€Solidâ€State Batteries from Room Temperature by Thermally Modulated Current Collector in Subâ€Minute. Advanced Materials, 2022, 34, .	21.0	5
505	Highâ€Performance Composite Lithium Anodes Enabled by Electronic/Ionic Dualâ€Conductive Paths for Solid‧tate Li Metal Batteries. Small, 2022, 18, .	10.0	11
506	Ion Conductivity–Shear Modulus Relationship of Single-Ion Solid Polymer Electrolytes Composed of Polyanionic Miktoarm Star Copolymers. Macromolecules, 2022, 55, 6131-6139.	4.8	4
507	Porous Electrode Modeling and its Applications to Li″on Batteries. Advanced Energy Materials, 2022, 12, .	19.5	50

		CITATION REPORT		
#	Article		IF	Citations
508	Soft Ionics: Governing Physics and State of Technologies. Frontiers in Physics, 0, 10, .		2.1	5
509	Customizable solid-state batteries toward shape-conformal and structural power suppl Today, 2022, 58, 297-312.	ies. Materials	14.2	11
510	Recent Advances and Perspectives of Air Stable Sulfideâ€Based Solid Electrolytes for A Lithium Batteries. Chemical Record, 2022, 22, .	lâ€Solidâ€State	5.8	9
511	Wet-slurry fabrication using PVdF-HFP binder with sulfide electrolytes via synergetic co approach for all-solid-state batteries. Chemical Engineering Journal, 2022, 450, 138047	solvent	12.7	13
512	COFâ€based single Li ⁺ solid electrolyte accelerates the ion diffusion and r growth in quasiâ€solidâ€state organic batteries. , 2023, 5, .	estrains dendrite		24
513	Chemomechanics of Rechargeable Batteries: Status, Theories, and Perspectives. Chemi 122, 13043-13107.	cal Reviews, 2022,	47.7	59
514	Are Polymerâ€Based Electrolytes Ready for Highâ€Voltage Lithium Battery Applications Degradation Mechanisms and Battery Performance. Advanced Energy Materials, 2022,	;? An Overview of 12, .	19.5	70
515	Toward Automated Computational Discovery of Battery Materials. Advanced Materials 2023, 8, .	Technologies,	5.8	5
516	Oxygen vacancies boosted fast Mg2+ migration in solids at room temperature. Energy Materials, 2022, 51, 630-637.	Storage	18.0	23
517	Key issues and emerging trends in sulfide all solid state lithium battery. Energy Storage 2022, 51, 527-549.	Materials,	18.0	31
518	High-performance gel electrolyte for enhanced interface compatibility and lithium meta high-voltage lithium battery. Colloids and Surfaces A: Physicochemical and Engineering 651, 129665.	ıl stability in Aspects, 2022,	4.7	13
519	Integrated energy conversion and storage devices: Interfacing solar cells, batteries and supercapacitors. Energy Storage Materials, 2022, 51, 400-434.		18.0	133
520	Highly conductive thin composite solid electrolyte with vertical Li7La3Zr2O12 sheet ar high-energy-density all-solid-state lithium battery. Chemical Engineering Journal, 2022,	rays for 450, 137994.	12.7	8
521	Quantifying Lithium in Lithium-ion battery solid electrolyte by atom probe tomography with high-resolution scanning electron microscopy. Microscopy and Microanalysis, 202	correlated 2, 28, 760-762.	0.4	2
522	Solid Li- and Na-Ion Electrolytes for Next Generation Rechargeable Batteries. Chemistry 2022, 34, 6637-6658.	of Materials,	6.7	24
523	Molecular Insights into the Effect of Asymmetric Anions on Lithium Coordination and T Properties in Salt-Doped Poly(ionic liquid) Electrolytes. Macromolecules, 2022, 55, 670	ransport 3-6715.	4.8	4
524	Disulfide Metathesis-Assisted Lithium-Ion Conduction for PEO-Based Polymer Electrolyt Letters, 2022, 11, 991-998.	es. ACS Macro	4.8	16
525	N-doped carbon nanocube with zinc oxide sodiophilic sites enables a superior sodium r Nano Research, 2023, 16, 411-419.	netal anode.	10.4	6

#	Article	IF	CITATIONS
526	Environmental Impact Assessment of Solid Polymer Electrolytes for Solidâ€6tate Lithium Batteries. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	4
527	Air Stability of Solid-State Sulfide Batteries and Electrolytes. Electrochemical Energy Reviews, 2022, 5, ·	25.5	54
528	Superionic Conduction in One-Dimensional Nanostructures. ACS Nano, 2022, 16, 12445-12451.	14.6	3
529	On the way to understand the keys for the stabilization of the conductive phase in doped- NASICON-type materials. Ceramics International, 2022, 48, 31755-31762.	4.8	2
530	Dynamic Observation of Nanovoid Formation in Lithium- Manganese-rich Cathode Materials with Solid Electrolyte. Microscopy and Microanalysis, 2022, 28, 1928-1929.	0.4	0
531	Cationic polymer-in-salt electrolytes for fast metal ion conduction and solid-state battery applications. Nature Materials, 2022, 21, 1175-1182.	27.5	64
532	Low electronic conductivity of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Li</mml:mi><mml:mi mathvariant="normal">O<mml:mn>12</mml:mn></mml:mi </mml:msub></mml:mrow> solid electrolytes from first principles. Physical Review Materials, 2022, 6, .</mml:math 	1>72.4	:mn>
533	Lithium-ion conductive glass-ceramic electrolytes enable safe and practical Li batteries. Materials Today Energy, 2022, 29, 101118.	4.7	8
534	Effect of Tethering Anions in Block Copolymer Electrolytes via Molecular Dynamics Simulations. Macromolecules, 2022, 55, 7945-7955.	4.8	3
535	Thermally Depolymerizable Polyether Electrolytes for Convenient and Low ost Recycling of LiTFSI. Angewandte Chemie, 0, , .	2.0	6
536	Enhanced Electrochemical Properties and Optimized Li ⁺ Transmission Pathways of <scp>PEO</scp> / <scp>LLZTO</scp> â€Based Composite Electrolytes Modified by Supramolecular Combination. Energy and Environmental Materials, 2024, 7, .	12.8	10
537	Difunctional NH2-modified MOF supporting plentiful ion channels and stable LiF-rich SEI construction via organocatalysis for all-solid-state lithium metal batteries. Journal of Materials Science and Technology, 2023, 136, 140-148.	10.7	17
538	Roomâ€Temperature Anodeâ€Less Allâ€Solidâ€State Batteries via the Conversion Reaction of Metal Fluorides. Advanced Materials, 2022, 34, .	21.0	24
539	A High Airâ€Stability and Liâ€Metalâ€Compatible Li _{3+2x} P _{1â^x} Bi _x S _{4â^1.5x} O _{1.5x} Sulfide Electrolyte for Allâ€Solidâ€State Li–Metal Batteries. Advanced Functional Materials, 2022, 32, .	14.9	17
540	In Situ Catalytic Polymerization of a Highly Homogeneous PDOL Composite Electrolyte for Long ycle Highâ€Voltage Solidâ€State Lithium Batteries. Advanced Energy Materials, 2022, 12, .	19.5	52
541	A Ceramic Rich Quaternary Composite Solid-State Electrolyte for Solid-State Lithium Metal Batteries. Journal of the Electrochemical Society, 2022, 169, 080510.	2.9	4
542	Thermally Depolymerizable Polyether Electrolytes for Convenient and Low ost Recycling of LiTFSI. Angewandte Chemie - International Edition, 2022, 61, .	13.8	12
543	Design and fabrication of PEOâ€HPMC@Ht composite solidâ€state electrolytes in allâ€solidâ€state lithium battery. Electroanalysis, 0, ,	2.9	1

	CITATION	Report	
#	Article	IF	CITATIONS
544	Priority and Prospect of Sulfideâ€Based Solidâ€Electrolyte Membrane. Advanced Materials, 2023, 35, .	21.0	15
545	Dual Protection of a Li–Ag Alloy Anode for All-Solid-State Lithium Metal Batteries with the Argyrodite Li ₆ PS ₅ Cl Solid Electrolyte. ACS Applied Materials & Interfaces, 2022, 14, 37738-37746.	8.0	17
546	Li ⁺ Transport in Single-Ion Conducting Side-Chain Polymer Electrolytes with Nanoscale Self-Assembly of Ordered Ionic Domains. Macromolecules, 2022, 55, 7752-7762.	4.8	4
548	An Interdigitated Liâ€Solid Polymer Electrolyte Framework for Interfacial Stable Allâ€Solidâ€State Batteries. Advanced Energy Materials, 2022, 12, .	19.5	9
549	Plastic crystal in rubbery matrix for light and safe batteries. Matter, 2022, 5, 2457-2460.	10.0	10
550	Fast Li+ transport pathways of quasi-solid-state electrolyte constructed by 3D MOF composite nanofibrous network for dendrite-free lithium metal battery. Materials Today Energy, 2022, 29, 101117.	4.7	10
551	Processing of lithium metal for the production of post-lithium-ion batteries using a pulsed nanosecond fiber laser. Results in Materials, 2022, 15, 100305.	1.8	5
552	Highly stable lithium batteries enabled by composite solid electrolyte with synergistically enhanced in-built ion-conductive framework. Journal of Power Sources, 2022, 545, 231928.	7.8	3
553	In situ characterization of the electrolyte electrode interface evolution in solid-state lithium batteries. Current Opinion in Green and Sustainable Chemistry, 2022, 37, 100658.	5.9	3
554	Intrinsic structural optimization of zinc anode with uniform second phase for stable zinc metal batteries. Energy Storage Materials, 2022, 52, 161-168.	18.0	24
555	Strategies for rational design of polymer-based solid electrolytes for advanced lithium energy storage applications. Energy Storage Materials, 2022, 52, 430-464.	18.0	44
556	High-throughput screening of protective layers to stabilize the electrolyte-anode interface in solid-state Li-metal batteries. Nano Energy, 2022, 102, 107640.	16.0	12
557	Numerical analysis on the combustion characteristic of lithium-ion battery vent gases and the suppression effect. Fuel, 2022, 330, 125450.	6.4	18
558	Sb-doped Li10GeP2S12-type electrolyte Li10SnP2-xSbxS12 with enhanced ionic conductivity and lower lithium-ion migration barrier. Journal of Colloid and Interface Science, 2022, 627, 1039-1046.	9.4	6
559	In situ polymerization of 1,3-dioxolane infiltrating 3D garnet framework with high ionic conductivity and excellent interfacial stability for integrated solid-state Li metal battery. Rare Metals, 2022, 41, 3694-3705.	7.1	14
560	Ion Transport Kinetics in Lowâ€Temperature Lithium Metal Batteries. Advanced Energy Materials, 2022, 12,	19.5	94
561	Quasi-solid polymer electrolytes with fast interfacial transport for lithium metal batteries. Surfaces and Interfaces, 2022, 34, 102299.	3.0	8
562	Lithium ion capacitor based on polyoxide-polythiol co-networks. Solid State Ionics, 2022, 385, 116010.	2.7	5

#	Article	IF	CITATIONS
563	Developing practical solid-state rechargeable Li-ion batteries: Concepts, challenges, and improvement strategies. Journal of Energy Storage, 2022, 55, 105688.	8.1	11
564	Overcoming the trade-off between ion conduction and stability using thin composite solid electrolyte for high performance all-solid-state lithium battery. Electrochimica Acta, 2022, 432, 141226.	5.2	2
565	Ion coordination to improve ionic conductivity in polymer electrolytes for high performance solid-state batteries. Nano Energy, 2022, 103, 107763.	16.0	9
566	Enabling an electron/ion conductive composite lithium anode for solid-state lithium-metal batteries with garnet electrolyte. Energy Storage Materials, 2022, 53, 204-211.	18.0	10
567	Amorphous silicon nitride induced high dielectric constant toward long-life solid lithium metal battery. Energy Storage Materials, 2022, 53, 305-314.	18.0	7
568	Intimate interaction of TFSIâ^' anions with MoO3â^'x oxygen vacancies boost ionic conductivity of cathode-supported solid polymer electrolyte. Chemical Engineering Journal, 2023, 452, 139088.	12.7	3
569	High ionic conductivity and ion conduction mechanism in ZIF-8 based quasi-solid-state electrolytes: a positron annihilation and broadband dielectric spectroscopy study. Physical Chemistry Chemical Physics, 2022, 24, 24999-25009.	2.8	4
570	Mechanical Properties of Solid State Li-Ion Batteries. , 2022, , .		Ο
571	Tape-cast Ce-substituted Li ₇ La ₃ Zr ₂ O ₁₂ electrolyte for improving electrochemical performance of solid-state lithium batteries. Journal of Materials Chemistry A, 2022, 10, 22512-22522.	10.3	4
572	Anion chemical composition of poly(ethylene oxide)-based sulfonylimide and sulfonate lithium ionomers controls ion aggregation and conduction. Journal of Materials Chemistry C, 2022, 10, 14569-14579.	5.5	5
573	Compositional and structural control in LLZO solid electrolytes. RSC Advances, 2022, 12, 23466-23480.	3.6	4
574	Proton conductivity dependence on the surface polymer thickness of core–shell type nanoparticles in a proton exchange membrane. Nanoscale Advances, 2022, 4, 4714-4723.	4.6	4
575	An amorphous ZnO and oxygen vacancy modified nitrogen-doped carbon skeleton with lithiophilicity and ionic conductivity for stable lithium metal anodes. Journal of Materials Chemistry A, 2022, 10, 17395-17405.	10.3	20
576	Molecular structure design of planar zwitterionic polymer electrode materials for all-organic symmetric batteries. Chemical Science, 2022, 13, 11614-11622.	7.4	6
577	Enhancing first-principles simulations of complex solid-state ion conductors using topological analysis of procrystal electron density. Npj Computational Materials, 2022, 8, .	8.7	2
578	Stabilized cathode/sulfide solid electrolyte interface via Li2ZrO3 coating for all-solid-state batteries. Rare Metals, 2022, 41, 3639-3645.	7.1	10
579	An Asymmetric Crossâ€Linked Ionic Copolymer Hybrid Solid Electrolyte with Super Stretchability for Lithiumâ€lon Batteries. Macromolecular Rapid Communications, 2023, 44, .	3.9	4
580	An Ultra-Thin Crosslinked Carbonate Ester Electrolyte for 24 V Bipolar Lithium-Metal Batteries. Journal of the Electrochemical Society, 2022, 169, 090509.	2.9	7

C_{1TATI}	ON	
CHAH		REPORT

#	Article	IF	CITATIONS
581	The Critical Stack Pressure to Alter Void Generation at Li/Solid-Electrolyte Interfaces during Stripping. Journal of the Electrochemical Society, 2022, 169, 090526.	2.9	7
582	Effects of different glass formers on Li ₂ S–P ₂ S ₅ –MS ₂ (MÂ=ÂSi, Ge, Sn) chalcogenide solidâ€state electrolytes. Journal of the American Ceramic Society, 2023, 106, 354-364.	3.8	4
583	Insights Into the Interfacial Degradation of High-Voltage All-Solid-State Lithium Batteries. Nano-Micro Letters, 2022, 14, .	27.0	30
584	Organic batteries for a greener rechargeable world. Nature Reviews Materials, 2023, 8, 54-70.	48.7	109
585	Metalâ€Organic Framework Sandwiching Porous Superâ€Engineering Polymeric Membranes as Anionphilic Separators for Dendriteâ€free Lithium Metal Batteries. Advanced Functional Materials, 2022, 32, .	14.9	42
586	Silicon-carbide fiber-reinforced polymer electrolyte for all-solid-state lithium-metal batteries. Rare Metals, 2022, 41, 3774-3782.	7.1	5
587	Two-Dimensional Imide-Based Covalent Organic Frameworks with Tailored Pore Functionality as Separators for High-Performance Li–S Batteries. ACS Applied Materials & Interfaces, 2022, 14, 42018-42029.	8.0	15
588	Ion slippage through Li ⁺ -centered G-quadruplex. Science Advances, 2022, 8, .	10.3	1
589	Stable Sodiumâ€Metal Batteries in Carbonate Electrolytes Achieved by Bifunctional, Sustainable Separators with Tailored Alignment. Advanced Materials, 2022, 34, .	21.0	15
590	Uniform Na Metal Plating/Stripping Design for Highly Reversible Solid‣tate Na Metal Batteries at Room Temperature. Small, 2022, 18, .	10.0	11
591	Hydrogels Enable Future Smart Batteries. ACS Nano, 2022, 16, 15528-15536.	14.6	39
592	Single vs Dual Shuttle Cycling of Polyferrocenyl Cathodes for Redox Targeting Flow Batteries. ACS Energy Letters, 2022, 7, 3337-3344.	17.4	5
593	Revealing the Impact of Cl Substitution on the Crystallization Behavior and Interfacial Stability of Superionic Lithium Argyrodites. Advanced Functional Materials, 2022, 32, .	14.9	18
594	Exploring ionic liquid-laden metal-organic framework composite materials as hybrid electrolytes in metal (ion) batteries. Frontiers in Chemistry, 0, 10, .	3.6	7
595	Borderline Metal Centers on Nonporous Metalâ€Organic FrameworkÂNanowire Boost Fast Liâ€ i on Interfacial Transport of Composite Polymer Electrolyte. Small, 2022, 18, .	10.0	10
596	Buffering Volume Change in Solid-State Battery Composite Cathodes with CO ₂ -Derived Block Polycarbonate Ethers. Journal of the American Chemical Society, 2022, 144, 17477-17486.	13.7	32
597	Role of Interfaces in Solidâ \in State Batteries. Advanced Materials, 2023, 35, .	21.0	29
598	Metal-organic framework (MOF)-incorporated polymeric electrolyte realizing fast lithium-ion transportation with high Li+ transference number for solid-state batteries. Frontiers in Chemistry, 0, 10	3.6	6

#	Article	IF	CITATIONS
599	Combating Li metal deposits in all-solid-state battery via the piezoelectric and ferroelectric effects. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	11
600	All-solid-state Li battery with atomically intimate electrode–electrolyte contact. Applied Physics Letters, 2022, 121, 143904.	3.3	2
601	Effect of the mechanical strength on the ion transport in a transition metal lithium halide electrolyte: first-principle calculations. Materials Today Communications, 2022, 33, 104570.	1.9	4
602	Design and Analysis of the Electrical Properties of a Solid-State Lithium-Boron-Phosphate Electrolyte. Reviews on Advanced Materials and Technologies, 2021, 3, 47-51.	0.3	1
603	Towards the Intercalation and Lithium Plating Mechanism for High Safety and Fast-Charging Lithium-ion Batteries: A Review. , 0, 1, .		1
604	An organic additive assisting with high ionic conduction and dendrite resistance of polymer electrolytes. Journal of Materials Chemistry A, 2022, 10, 24269-24279.	10.3	7
605	The plastic crystal composite polyacrylate polymer electrolyte with a semi-interpenetrating network structure for all-solid-state LIBs. New Journal of Chemistry, 2022, 46, 21640-21647.	2.8	2
606	Polypropylene separator-reinforced polymer-in-salt solid composite electrolytes for high-performance lithium ion batteries at room temperature. Sustainable Energy and Fuels, 2022, 6, 5503-5513.	4.9	2
607	A strongly complexed solid polymer electrolyte enables a stable solid state high-voltage lithium metal battery. Energy and Environmental Science, 2022, 15, 5149-5158.	30.8	40
608	How to commercialize solid-state batteries: a perspective from solid electrolytes. , 2023, 2, 20220036.		2
609	A Practical Polymer Electrolyte for Lithium and Sodium Batteries: Poly(pentyl malonate). ACS Energy Letters, 2022, 7, 3791-3797.	17.4	10
610	On the impact of the type of anion on the properties of solid-state electrolytes. Polymer, 2022, 262, 125443.	3.8	1
611	Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes. Chemical Reviews, 2022, 122, 17155-17239.	47.7	67
612	Silicon as Emerging Anode in Solid-State Batteries. ACS Energy Letters, 2022, 7, 4005-4016.	17.4	59
613	Thermally Stable Polymerâ€Rich Solid Electrolyte Interphase for Safe Lithium Metal Pouch Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	51
614	Thermally Stable Polymerâ€Rich Solid Electrolyte Interphase for Safe Lithium Metal Pouch Cells. Angewandte Chemie, 2022, 134, .	2.0	4
615	Orderâ€structured solidâ€state electrolytes. SusMat, 2022, 2, 660-678.	14.9	7
616	Electrochemical Ionic Synapses: Progress and Perspectives. Advanced Materials, 2023, 35, .	21.0	13

#	Article	IF	CITATIONS
617	Supramolecular Anchoring of Polyoxometalate Amphiphiles into Nafion Nanophases for Enhanced Proton Conduction. ACS Nano, 2022, 16, 19240-19252.	14.6	20
618	Tailoring grain boundary structures and chemistry of Li7La3Zr2O12 solid electrolytes for enhanced air stability. Energy Storage Materials, 2023, 54, 543-552.	18.0	19
619	Achieving High Performance of Lithium Metal Batteries by Improving the Interfacial Compatibility between Organic and Inorganic Electrolytes Using a Lithium Single-Ion Polymer. ACS Applied Energy Materials, 2022, 5, 14175-14184.	5.1	1
620	Multi-component solid PVDF-HFP/PPC/LLTO-nanorods composite electrolyte enabling advanced solid-state lithium metal batteries. Electrochimica Acta, 2022, 435, 141384.	5.2	7
621	First-principles study on selenium-doped Li10GeP2S12 solid electrolyte: Effects of doping on moisture stability and Li-ion transport properties. Materials Today Chemistry, 2022, 26, 101223.	3.5	3
622	Effects of Li contents on the stability, electronic and Li-ion diffusion properties of Li _{3x} La _{(2/3)-x} <teshuzifu>†_{(1/3)-2x}Ti surface. Wuli Xuebao/Acta Physica Sinica, 2023, .</teshuzifu>	O <sub8< td=""><td>ւցԵյ3</sub</td></sub8<>	ւց Ե յ3</sub
623	Interfacial stability analysis between Ca-doped Na3PS4 solid electrolyte and Na anode from first-principles calculations. Computational Materials Science, 2023, 216, 111848.	3.0	1
624	Regulating Na/NASCION electrolyte interface chemistry for stable solid-state Na metal batteries at room temperature. Energy Storage Materials, 2023, 54, 403-409.	18.0	12
625	Unconventional solid-state electrolytes for lithium-based batteries: Recent advances and challenges. Journal of Power Sources, 2023, 553, 232257.	7.8	6
626	Stabilizing the Li _{1.4} Al _{0.4} Ti _{1.6} (PO ₄) ₃ /Li interface with an <i>in situ</i> constructed multifunctional interlayer for high energy density batteries. Journal of Materials Chemistry A, 2022, 10, 25500-25508.	10.3	3
627	Lithium-Ion Conduction in a Class of Aluminoborates Li MAlB12O24 (M = Ba, Sr, Ca, or La; n = 7 or 6). Materials Research Bulletin, 2023, 159, 112087.	5.2	0
628	High-entropy metal oxide containing hybrid electrolyte for long-life Li-metal batteries. Oxford Open Materials Science, 2022, 2, .	1.8	1
629	Disentangling Cation and Anion Dynamics in Li ₃ PS ₄ Solid Electrolytes. Chemistry of Materials, 2022, 34, 10561-10571.	6.7	13
630	Highâ€Entropy Microdomain Interlocking Polymer Electrolytes for Advanced Allâ€Solidâ€State Battery Chemistries. Advanced Materials, 2023, 35, .	21.0	25
631	Progress and perspectives of space charge limited current models in all-solid-state batteries. Journal of Materials Research, 2022, 37, 4017-4034.	2.6	7
632	The preliminary exploration of composition origin of garnet-type solid inorganic electrolytes by cluster-plus-glue-atom model. Applied Physics A: Materials Science and Processing, 2022, 128, .	2.3	0
633	Surface-modified and sulfide electrolyte-infiltrated LiNi0.6Co0.2Mn0.2O2 cathode for all-solid-state lithium batteries. Journal of Colloid and Interface Science, 2023, 632, 11-18.	9.4	4
634	A Polymer Electrolyte with High Cationic Transport Number for Safe and Stable Solid Li-Metal Batteries. ACS Energy Letters, 2022, 7, 4342-4351.	17.4	21

#	Article	IF	CITATIONS
635	A novel solid-state poly(urethane-b-siloxane) block copolymer-based electrolyte with flexibility and high ion transference number for lithium metal battery. Journal of Materials Science, 2022, 57, 20320-20334.	3.7	1
636	Role of Bicontinuous Structure in Elastomeric Electrolytes for Highâ€Energy Solidâ€State Lithiumâ€Metal Batteries. Advanced Materials, 2023, 35, .	21.0	19
637	Ultrafast Laserâ€Induced Cathode/Electrolyte Interphase for Highâ€Voltage Poly(Ethylene Oxide)â€Based Solid Batteries. Advanced Functional Materials, 2023, 33, .	14.9	7
638	Fast Sodium-Ion Conduction in a Novel <i>Conjuncto</i> -Hydroborate of Na ₄ B ₂₀ H ₁₈ . ACS Applied Energy Materials, 2022, 5, 15578-15585.	5.1	4
639	Constructing a multi-functional polymer network for ultra-stable and safe Li-metal batteries. Energy Storage Materials, 2023, 55, 214-224.	18.0	10
640	Soft anharmonic coupled vibrations of Li and SiO ₄ enable Li-ion diffusion in amorphous Li ₂ Si ₂ O ₅ . Journal of Materials Chemistry A, 2023, 11, 1712-1722.	10.3	2
641	An <i>in situ</i> formed copolymer electrolyte with high ionic conductivity and high lithium-ion transference number for dendrite-free solid-state lithium metal batteries. Journal of Materials Chemistry A, 2023, 11, 1966-1977.	10.3	17
642	Ionic liquid crystal electrolytes: Fundamental, applications and prospects. Nano Energy, 2023, 106, 108087.	16.0	23
643	Liquid metallic Ga as sintering aid to promote the densification of garnet electrolytes for all-solid-state Li-ion batteries. Journal of Power Sources, 2023, 556, 232527.	7.8	4
644	Zwitterionic surfactant–stabilized ionogel electrolytes with high ionic conductivity for lithium secondary batteries. Journal of Power Sources, 2023, 557, 232565.	7.8	11
645	A review on system and materials for aqueous flexible metalâ \in "air batteries. , 2023, 5, .		8
646	High-Performance Poly(vinylidene fluoride)-Based Composite Polymer Electrolytes for Lithium Batteries Based on Halloysite Nanotubes with Polyethylene Oxide Additives. ACS Applied Nano Materials, 2022, 5, 17859-17869.	5.0	3
647	Effects of fluorination on crystal structure and electrochemical performance of antiperovskite solid electrolytes. Journal of Energy Chemistry, 2023, 77, 521-528.	12.9	11
648	Halide Solidâ€State Electrolytes: Stability and Application for High Voltage Allâ€Solidâ€State Li Batteries. Advanced Energy Materials, 2023, 13, .	19.5	29
649	Cathode materials for single-phase solid-solid conversion Li-S batteries. Matter, 2023, 6, 316-343.	10.0	14
650	Segmental Motion Adjustment of the Polycarbonate Electrolyte for Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 55653-55663.	8.0	4
651	Wideâ€Temperature, Longâ€Cycling, and Highâ€Loading Pyrite Allâ€Solidâ€State Batteries Enabled by Argyrodite Thioarsenate Superionic Conductor. Advanced Functional Materials, 2023, 33, .	14.9	15
652	Metal-air batteries: progress and perspective. Science Bulletin, 2022, 67, 2449-2486.	9.0	61

#	Article	IF	CITATIONS
653	Dual fluorination of polymer electrolyte and conversion-type cathode for high-capacity all-solid-state lithium metal batteries. Nature Communications, 2022, 13, .	12.8	64
654	A comparative study of hydroxyethylcelluloseâ€based solid polymer electrolytes for solid state Zn batteries. Nano Select, 2023, 4, 102-111.	3.7	5
655	Double Crosslinked Polymer Electrolyte by C–S–C Group and Metal–Organic Framework for Solid‣tate Lithium Batteries. Small Structures, 2023, 4, .	12.0	7
656	Fluorinated Solidâ€State Electrolytes for Lithium Batteries: Interface Design and Ion Conduction Mechanisms. Advanced Engineering Materials, 2023, 25, .	3.5	2
657	Ultrathin thiol-ene crosslinked polymeric electrolyte for solid-state and high-performance lithium metal batteries. Science China Materials, 2023, 66, 1332-1340.	6.3	2
658	Ultraâ€Stretchable, Ionic Conducting, Pressureâ€Sensitive Adhesive with Dual Role for Stable Liâ€Metal Batteries. Advanced Functional Materials, 2023, 33, .	14.9	11
659	Perspective—Morphology and Dynamics of Metal Dendrites in Batteries Revealed by X-ray Computed Tomography. Journal of the Electrochemical Society, 0, , .	2.9	0
660	Environmental life cycle assessment of emerging solid-state batteries: A review. Chemical Engineering Journal Advances, 2023, 13, 100439.	5.2	8
661	Blocking Directional Lithium Diffusion in Solid-State Electrolytes at the Interface: First-Principles Insights into the Impact of the Space Charge Layer. ACS Applied Materials & Interfaces, 2022, 14, 55471-55479.	8.0	0
662	Single-Ion Conducting Polymeric Protective Interlayer for Stable Solid Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 56110-56119.	8.0	11
663	Modified cathode-electrolyte interphase toward high-performance batteries. Cell Reports Physical Science, 2022, 3, 101197.	5.6	7
664	Toward Understanding of the Li-lon Migration Pathways in the Lithium Aluminum Sulfides Li ₃ AlS ₃ and Li _{4.3} AlS _{3.3} Cl _{0.7} via ^{6,7} Li Solid-State Nuclear Magnetic Resonance Spectroscopy. Chemistry of Materials, 2023, 35, 27,40	6.7	3
665	A Stable Solid Polymer Electrolyte for Lithium Metal Battery with Electronically Conductive Fillers. Angewandte Chemie, 0, , .	2.0	0
666	Accelerating Li-ion diffusion in β-eucryptite by tuning Li–Li correlation. Applied Physics Letters, 2022, 121, .	3.3	1
667	A Stable Solid Polymer Electrolyte for Lithium Metal Battery with Electronically Conductive Fillers. Angewandte Chemie - International Edition, 2023, 62, .	13.8	13
668	Performance of solid-state Li-ion conducting battery using biopolymer electrolyte based on agar–agar/lithium chloride. Journal of Solid State Electrochemistry, 2023, 27, 539-557.	2.5	7
669	Folic acid-based supramolecules for enhanced stability in potassium ion batteries. Chinese Chemical Letters, 2023, 34, 108095.	9.0	0
670	Large-scale preparation of ultrathin composite polymer electrolytes with excellent mechanical properties and high thermal stability for solid-state lithium-metal batteries. Energy Storage Materials, 2023, 55, 847-856.	18.0	11

#	Article	IF	CITATIONS
671	Facile Li ⁺ Transport in Interpenetrating O―and Fâ€Containing Polymer Networks for Solidâ€State Lithium Batteries. Advanced Functional Materials, 2023, 33, .	14.9	2
672	UV-cured Polymer Solid Electrolyte Reinforced using a Ceramic-Polymer Composite Layer for Stable Solid-State Li Metal Batteries. Journal of Electrochemical Science and Technology, 2023, 14, 85-95.	2.2	2
673	Novel quasi-solid-state composite electrolytes boost interfacial Li+ transport for long-cycling and dendrite-free lithium metal batteries. Energy Storage Materials, 2023, 56, 258-266.	18.0	3
674	Metastable Decomposition Realizing Dendriteâ€Free Solidâ€State Li Metal Batteries. Advanced Energy Materials, 2023, 13, .	19.5	29
676	Nitrogen Plasma Enhanced Low Temperature Atomic Layer Deposition of Magnesium Phosphorus Oxynitride (MgPON) Solid‧tate Electrolytes. Angewandte Chemie, 2023, 135, .	2.0	1
677	PEO composite solid polymer electrolytes with the synergistic effect of cryogenic engineering and trace BP nanosheets for nearly room temperature and 4 V class all-solid-state lithium batteries. Sustainable Energy and Fuels O	4.9	1
678	Interface Design Enabling Stable Polymer/Thiophosphate Electrolyte Separators for Dendriteâ€Free Lithium Metal Batteries. Angewandte Chemie - International Edition, 2023, 62, .	13.8	15
679	Ion Conduction in Composite Polymer Electrolytes: Potential Electrolytes for Sodiumâ€ion Batteries. ChemSusChem, 2023, 16, .	6.8	5
680	Recent Progress and Perspectives of Solid State Na-CO2 Batteries. Batteries, 2023, 9, 36.	4.5	4
681	From atomistic modeling to materials design: computation-driven material development in lithium-ion batteries. Science China Chemistry, 2024, 67, 276-290.	8.2	2
682	Nitrogen Plasma Enhanced Low Temperature Atomic Layer Deposition of Magnesium Phosphorus Oxynitride (MgPON) Solidâ€5tate Electrolytes. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
683	Synthesis of hydrazineâ€fumaryl chlorideâ€based polyamide and its electrical conductivity studies. Polymer Engineering and Science, 2023, 63, 584-592.	3.1	5
684	Flexible LATP composite membrane for lithium extraction from seawater via an electrochemical route. Journal of Membrane Science, 2023, 671, 121358.	8.2	6
685	Solid-State NMR Revealing the Impact of Polymer Additives on Li-Ion Motions in Plastic-Crystalline Succinonitrile Electrolytes. Journal of Physical Chemistry C, 2023, 127, 1464-1474.	3.1	2
686	Interface Design Enabling Stable Polymer/Thiophosphate Electrolyte Separators for Dendriteâ€Free Lithium Metal Batteries. Angewandte Chemie, 0, , .	2.0	1
687	A review of the effect of external pressure on all-solid-state batteries. ETransportation, 2023, 15, 100220.	14.8	18
688	Probing the particle size dependence of nonhomogeneous degradation in nickel-rich cathodes for high-energy lithium-ion batteries. ETransportation, 2023, 16, 100223.	14.8	11
689	The Role of Polymer-Based Materials in Sustainable, Safe, and Efficient Metal Batteries. Engineering Materials, 2023, , 415-441.	0.6	0

#	Article	IF	CITATIONS
690	Negatively Charged Holey Titania Nanosheets Added Electrolyte to Realize Dendriteâ€Free Lithium Metal Battery. Small, 2023, 19, .	10.0	3
691	First principles study on Li metallic phase nucleation at grain boundaries in a lithium lanthanum titanium oxide (LLTO) solid electrolyte. Journal of Materials Chemistry A, 2023, 11, 2889-2898.	10.3	2
692	Optimization on transport of charge carriers in cathode of sulfide electrolyte-based solid-state lithium-sulfur batteries. Nano Research, 2023, 16, 8139-8158.	10.4	4
693	Tailoring of Li/LATP-PEO Interface via a Functional Organic Layer for High-Performance Solid Lithium Metal Batteries. ACS Sustainable Chemistry and Engineering, 2023, 11, 785-795.	6.7	9
694	Novel PEO-based composite electrolyte for low-temperature all-solid-state lithium metal batteries enabled by interfacial cation-assistance. Energy Storage Materials, 2023, 56, 121-131.	18.0	30
695	Toward better batteries: Solid-state battery roadmap 2035+. ETransportation, 2023, 16, 100224.	14.8	24
696	Highly electrochemically stable Li2B12H12-Al2O3 nanocomposite electrolyte enabling A 3.8ÂV room-temperature all-solid-state Li-ion battery. Journal of Alloys and Compounds, 2023, 938, 168689.	5.5	6
697	An enhanced interface between garnet solid electrolyte and lithium through multifunctional lithium titanate anode-additive for solid-state lithium batteries. Journal of Alloys and Compounds, 2023, 939, 168774.	5.5	4
698	Boosting fast interfacial Li+ transport in solid-state Li metal batteries via ultrathin Al buffer layer. Nano Research, 2023, 16, 6825-6832.	10.4	6
699	Rational Design of Flexible Zn-Based Batteries for Wearable Electronic Devices. ACS Nano, 2023, 17, 1764-1802.	14.6	50
700	Tailoring polymer electrolyte ionic conductivity for production of low- temperature operating quasi-all-solid-state lithium metal batteries. Nature Communications, 2023, 14, .	12.8	47
701	Influencing Factors on Liâ€ion Conductivity and Interfacial Stability of Solid Polymer Electrolytes, Exampled by Polycarbonates, Polyoxalates and Polymalonates. Angewandte Chemie, 2023, 135, .	2.0	3
702	Mechanical regulation of lithium intrusion probability in garnet solid electrolytes. Nature Energy, 0, ,	39.5	8
703	Solidâ€State Batteries Based on Organic Cathode Materials. Batteries and Supercaps, 2023, 6, .	4.7	3
704	Ionic Conduction in Polymerâ \in Based Solid Electrolytes. Advanced Science, 2023, 10, .	11.2	66
706	Fundamentals of the Cathodeâ€Electrolyte Interface in Allâ€solidâ€state Lithium Batteries. ChemSusChem, 2023, 16, .	6.8	1
707	High-areal-capacity anode-free all-solid-state lithium batteries enabled by interconnected carbon-reinforced ionic-electronic composites. Journal of Materials Chemistry A, 2023, 11, 12713-12718.	10.3	10
708	In situ/operando methods for investigation of ionic transport mechanisms in solid-state architectures. , 2023, , 197-222.		0

#	Article		CITATIONS
709	All-round supramolecular zwitterionic hydrogel electrolytes enabling environmentally adaptive dendrite-free aqueous zinc ion capacitors. Energy and Environmental Science, 2023, 16, 1291-1311.		39
710	Fast Li ⁺ Transport via Silica Networkâ€Driven Nanochannels in Ionomerâ€inâ€Framework for Lithium Metal Batteries. Advanced Functional Materials, 2023, 33, .		6
711	Tape-Casting Method of Hybrid Solid Electrolytes with a Residual Active Solvent of Tetraethylene Glycol Dimethyl Ether. ACS Applied Energy Materials, 2023, 6, 2031-2038.	5.1	3
712	Cellulose nanofiber-reinforced solid polymer electrolytes with high ionic conductivity for lithium batteries. Journal of Materials Chemistry A, 2023, 11, 9521-9529.	10.3	4
713	Defect engineering of two-dimensional materials for advanced energy conversion and storage. Chemical Society Reviews, 2023, 52, 1723-1772.	38.1	66
714	The Batteries' New Clothes: Li and H Dynamics in Poorly Conducting Li ₂ OHCl Directly Probed by Nuclear Spin Relaxation. Journal of Physical Chemistry C, 2023, 127, 7433-7444.	3.1	1
715	Revealing the Influence of Surface Microstructure on Li Wettability and Interfacial Ionic Transportation for Garnetâ€īype Electrolytes. Advanced Energy Materials, 2023, 13, .	19.5	8
716	Thin Li1.3Al0.3Ti1.7(PO4)3-based composite solid electrolyte with a reinforced interface of in situ formed poly(1,3-dioxolane) for lithium metal batteries. Journal of Colloid and Interface Science, 2023, 644, 53-63.	9.4	6
717	Long-term cycling quasi-solid-state lithium batteries enabled by 3D nanofibrous TiO2â^'x@Li anodes and in-situ polymerized gel-electrolytes. Chemical Engineering Journal, 2023, 464, 142627.	12.7	4
718	Integrated interface configuration by in-situ interface chemistry enabling uniform lithium deposition in all-solid-state lithium metal batteries. Journal of Energy Chemistry, 2023, 80, 458-465.	12.9	19
719	Highly conductive polyacrylonitrile-based hybrid aqueous/ionic liquid solid polymer electrolytes with tunable passivation for Li-ion batteries. Electrochimica Acta, 2023, 453, 142349.	5.2	3
720	Green recycling of short-circuited garnet-type electrolyte for high-performance solid-state lithium batteries. Journal of Energy Chemistry, 2023, 80, 492-500.	12.9	5
721	Role of Fe3+ doping vis-Ã-vis secondary phases on the electrical transport of LiTi2(PO4)3 solid electrolyte. Materials Today Communications, 2023, 35, 105621.	1.9	2
722	Selfâ€Formed Fluorinated Interphase with Fe Valence Gradient for Dendriteâ€Free Solidâ€State Sodiumâ€Metal Batteries. Advanced Functional Materials, 2024, 34, .	14.9	5
723	Polyetherâ€bâ€Amide Based Solid Electrolytes with Wellâ€Adhered Interface and Fast Kinetics for Ultralow Temperature Solidâ€6tate Lithium Metal Batteries. Advanced Functional Materials, 2023, 33, .	14.9	10
724	Ag nanoparticles incorporated interlayer enables ultrahigh critical current density for Li6PS5Cl-based all-solid-state lithium batteries. Journal of Power Sources, 2023, 563, 232836.	7.8	10
725	A deformable spinel-type chloride cathode with high ionic conductivity for all-solid-state Li batteries. , 2022, 52, 4.		0
726	In Situ Polymerized 1,3â€Dioxolane Electrolyte for Integrated Solidâ€State Lithium Batteries. Angewandte Chemie, 2023, 135,	2.0	7

	CITATION I	Report	
#	Article	IF	CITATIONS
727	Solid electrolytes for Li-ion batteries via machine learning. Materials Letters, 2023, 337, 133926.	2.6	5
728	In Situ Polymerized 1,3â€Dioxolane Electrolyte for Integrated Solidâ€State Lithium Batteries. Angewandte Chemie - International Edition, 2023, 62, .	13.8	9
729	Molecular Structure, Dynamics, and Vibrational Spectroscopy of the Acetylene:Ammonia (1:1) Plastic Co-Crystal at Titan Conditions. ACS Earth and Space Chemistry, 2023, 7, 479-489.	2.7	2
730	Influencing Factors on Liâ€ion Conductivity and Interfacial Stability of Solid Polymer Electrolytes, Exampled by Polycarbonates, Polyoxalates and Polymalonates. Angewandte Chemie - International Edition, 2023, 62, .	13.8	19
731	Recent progress of theoretical research on inorganic solid state electrolytes for Li metal batteries. Journal of Power Sources, 2023, 561, 232720.	7.8	6
732	Advances in thermalâ€related analysis techniques for solidâ€state lithium batteries. InformaÄnÃ-Materiály, 2023, 5, .	17.3	13
733	State of the art of lithium-ion battery material potentials: An analytical evaluations, issues and future research directions. Journal of Cleaner Production, 2023, 394, 136246.	9.3	28
734	Designing All-Solid-State Batteries by Theoretical Computation: A Review. Electrochemical Energy Reviews, 2023, 6, .	25.5	17
735	Electrolytes in Organic Batteries. Chemical Reviews, 2023, 123, 1712-1773.	47.7	57
736	Achieving Highâ€Power and Dendriteâ€Free Lithium Metal Anodes via Interfacial Ionâ€Transportâ€Rectifying Pump. Advanced Energy Materials, 2023, 13, .	19.5	18
737	An endâ€ŧoâ€end artificial intelligence platform enables realâ€ŧime assessment of superionic conductors. SmartMat, 2023, 4, .	10.7	1
738	Suppression of CO2 induced lithium anode corrosion by fluorinated functional group in quasi-solid polymer electrolyte enabling long-cycle and high-safety Li-CO2 batteries. Energy Storage Materials, 2023, 57, 260-268.	18.0	7
739	Investigation of the structure and ionic conductivity of a Li3InCl6 modified by dry room annealing for solid-state Li-ion battery applications. Materials and Design, 2023, 227, 111690.	7.0	15
740	Halogenâ€Rich Lithium Argyrodite Solidâ€State Electrolytes: A Review. Batteries and Supercaps, 2023, 6, .	4.7	10
741	Covalent organic frameworks as electrode materials for rechargeable metalâ€ion batteries. , 2023, 2, 231-259.		14
742	Ultrathin positively charged electrode skin for durable anion-intercalation battery chemistries. Nature Communications, 2023, 14, .	12.8	9
743	Surface engineering of inorganic solid-state electrolytes via interlayers strategy for developing long-cycling quasi-all-solid-state lithium batteries. Nature Communications, 2023, 14, .	12.8	31
744	Advanced Characterization Techniques for Sulfideâ€Based Solidâ€State Lithium Batteries. Advanced Energy Materials, 2023, 13, .	19.5	12

#	Article		CITATIONS
745	Solvent-Free and Long-Cycling Garnet-Based Lithium-Metal Batteries. ACS Energy Letters, 2023, 8, 1468-1476.		9
746	12µmâ€Thick Sintered Garnet Ceramic Skeleton Enabling Highâ€Energyâ€Density Solidâ€State Lithium Metal Batteries. Advanced Energy Materials, 2023, 13, .	19.5	35
747	Li+ affinity ultra-thin solid polymer electrolyte for advanced all-solid-state lithium-ion battery. Chemical Engineering Journal, 2023, 461, 141995.	12.7	7
748	Synthesis and Characterization of Impurityâ€Free Li _{6/16} Sr _{7/16} Ta _{3/4} Hf _{1/4} O ₃ Perovskite as a Solidâ€State Lithiumâ€Ion Conductor. Energy Technology, 2023, 11, .	3.8	1
749	Durable and Adjustable Interfacial Engineering of Polymeric Electrolytes for Both Stable Niâ€Rich Cathodes and Highâ€Energy Metal Anodes. Advanced Materials, 2023, 35, .	21.0	6
750	Cu Current Collector with Binderâ€Free Lithiophilic Nanowire Coating for High Energy Density Lithium Metal Batteries. Small, 2023, 19, .	10.0	12
751	Phaseâ€Changeable Dynamic Conformal Electrode/electrolyte Interlayer enabling Pressureâ€Independent Solidâ€State Lithium Metal Batteries. Advanced Materials, 2023, 35, .	21.0	10
752	Challenges and Opportunities to Mitigate the Catastrophic Thermal Runaway of Highâ€Energy Batteries. Advanced Energy Materials, 2023, 13, .	19.5	22
753	Self-Healing Polymer Electrolytes for Next-Generation Lithium Batteries. Polymers, 2023, 15, 1145.	4.5	10
754	Highâ€Entropy Solidâ€&tate Naâ€Ion Conductor for Stable Sodiumâ€Metal Batteries. Chemistry - A European Journal, 2023, 29, .	3.3	1
755	Surface Construction of a High-Ionic-Conductivity Buffering Layer on a LiNi0.6Co0.2Mn0.2O2 Cathode for Stable All-Solid-State Sulfide-Based Batteries. Journal of Electronic Materials, 2023, 52, 2904-2912.	2.2	4
756	Tubular Polypyrrole with Chloride Ion Dopants as an Ultrafast Organic Anode for Highâ€Power Lithiumâ€Ion Batteries. ChemSusChem, 2023, 16, .	6.8	1
757	Enhanced properties of solid polymer electrolytes by a bilayer nonwoven PET/nanofiber PVDF substrate for use in all-solid-state lithium metal batteries. Journal of Power Sources, 2023, 564, 232851.	7.8	4
758	Understanding the evolution of lithium dendrites at Li6.25Al0.25La3Zr2O12 grain boundaries via operando microscopy techniques. Nature Communications, 2023, 14, .	12.8	24
759	Determining the Role of Ion Transport Throughput in Solidâ€6tate Lithium Batteries. Angewandte Chemie, 2023, 135, .	2.0	0
760	Determining the Role of Ion Transport Throughput in Solidâ€State Lithium Batteries. Angewandte Chemie - International Edition, 2023, 62, .	13.8	8
761	Ultra-long-life and ultrathin quasi-solid electrolytes fabricated by solvent-free technology for safe lithium metal batteries. Energy Storage Materials, 2023, 58, 132-141.	18.0	11
762	Lipoic Acid-Assisted In Situ Integration of Ultrathin Solid-State Electrolytes. ACS Applied Energy Materials, 2023, 6, 3321-3328.	5.1	3

#	Article	IF	Citations
763	Lithium-ion transport enhancement with bridged ceramic-polymer interface. Energy Storage Materials, 2023, 58, 40-47.	18.0	3
764	Stable all-solid-state Li-Te battery with Li3TbBr6 superionic conductor. Nano Research, 2023, 16, 9344-9351.	10.4	1
765	Suppression of Dehydrofluorination Reactions of a Li _{0.33} La _{0.557} TiO ₃ -Nanofiber-Dispersed Poly(vinylidene) Tj ETQq0 0 0 rgf Fluorine-Rich Succinonitrile Interlayer, ACS Applied Materials & amp: Interfaces, 2023, 15, 15429-15438.	3T /Overlo 8.0	ck 10 Tf 50 6
766	Pressure and polymer selections for solid-state batteries investigated with high-throughput simulations. Cell Reports Physical Science, 2023, 4, 101328.	5.6	4
767	Li ⁺ Conduction in Glass-Forming Single-Ion Conducting Polymer Electrolytes with and without Ion Clusters. Macromolecules, 2023, 56, 2515-2525.	4.8	0
768	Achieving high-energy and high-safety lithium metal batteries with high-voltage-stable solid electrolytes. Matter, 2023, 6, 1096-1124.	10.0	26
769	Defect chemistry and ion transport in low-dimensional-networked Li-rich anti-perovskites as solid electrolytes for solid-state batteries. Energy Advances, 2023, 2, 653-666.	3.3	4
770	Zn Microbatteries Explore Ways for Integrations in Intelligent Systems. Small, 2023, 19, .	10.0	7
771	Engineered Li ₇ La ₃ Zr ₂ O ₁₂ (LLZO) for Pseudo-Solid-State Lithium Metal Batteries (SSLMBs): Tailor-Made Synthesis, Evolution of the Microstructure, Suppression of Dendritic Growth, and Enhanced Electrochemical Performance. ACS Applied Energy Materials, 2023, 6, 4035-4052.	5.1	2
772	Rectifying interphases for preventing Li dendrite propagation in solid-state electrolytes. Energy and Environmental Science, 2023, 16, 2167-2176.	30.8	7
773	Development of Silicon Polymer Electrodes with a Hybrid Polymer Electrolyte for All-Solid-State Lithium-Ion Batteries. Journal of the Electrochemical Society, 2023, 170, 030541.	2.9	0
774	Intermolecular Interactions and Electrochemical Studies on Highly Concentrated Acetate-Based Water-in-Salt and Ionic Liquid Electrolytes. Journal of Physical Chemistry B, 2023, 127, 2979-2990.	2.6	2
775	Interface Engineering of a NASICON-Type Electrolyte Using Ultrathin CuS Film for Lithium Metal Batteries. Batteries, 2023, 9, 194.	4.5	2
776	Membrane $\hat{a} \in$ Free Alkali Metal $\hat{a} \in$ Iodide Battery with a Molten Salt. Energy Technology, 0, , .	3.8	0
777	Ultrathin and Robust Composite Electrolyte for Stable Solid-State Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2023, 15, 17978-17985.	8.0	8
778	Covalent Organic Framework with Multiâ€Cationic Molecular Chains for Gate Mechanism Controlled Superionic Conduction in Allâ€Solidâ€State Batteries. Angewandte Chemie - International Edition, 2023, 62,	13.8	8
779	Covalent Organic Framework with Multiâ€Cationic Molecular Chains for Gate Mechanism Controlled Superionic Conduction in Allâ€Solidâ€State Batteries. Angewandte Chemie, 2023, 135, .	2.0	3
780	Interfacial Modification, Electrode/Solid-Electrolyte Engineering, and Monolithic Construction of Solid-State Batteries. Electrochemical Energy Reviews, 2023, 6, .	25.5	26

#	Article		CITATIONS
781	Electrochemical Stability and Li Ion Diffusion Kinetics of Grain Boundaries in Li ₁₀ GeP ₂ S ₁₂ Solid Electrolyte. Journal of Physical Chemistry C, 2023, 127, 7528-7535.	3.1	2
782	Lamellar Ionic Liquid Composite Electrolyte for Wideâ€Temperature Solidâ€State Lithiumâ€Metal Battery. Advanced Energy Materials, 2023, 13, .	19.5	7
783	Nanotomography Investigation of 3D Printed Batteries with a Water-in-Salt Gel Polymer Electrolyte. , 2023, 5, 1466-1475.		2
784	Recent Progress in and Perspectives on Emerging Halide Superionic Conductors for All-Solid-State Batteries. Electrochemical Energy Reviews, 2023, 6, .	25.5	30
785	Composite electrolytes with efficient Li+ transport across ceramic/polymer interface. Science China Chemistry, 0, , .	8.2	1
786	Transient Polarization and Dendrite Initiation Dynamics in Ceramic Electrolytes. ACS Energy Letters, 2023, 8, 2141-2149.	17.4	4
789	An Ionâ€Channelâ€Restructured Zwitterionic Covalent Organic Framework Solid Electrolyte for Allâ€Solidâ€State Lithiumâ€Metal Batteries. Advanced Materials, 2023, 35, .	21.0	17
790	Extremely Tough, Stretchable Gel Electrolytes with Strong Interpolymer Hydrogen Bonding Prepared Using Concentrated Electrolytes to Stabilize Lithiumâ€Metal Anodes. Advanced Materials, 2023, 35, .	21.0	8
791	A novel flame-retardant nitrile-based gel polymer electrolyte for quasi-solid-state lithium metal batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 670, 131487.	4.7	1
792	Boosting the Naâ€lon Conductivity in the Clusterâ€lon Based Antiâ€Perovskite Na ₂ BH ₄ NH ₂ . Advanced Functional Materials, 2023, 33, .	14.9	3
793	Solid-state inorganic electrolytes (oxides, sulfides, and halides). , 2023, , 77-117.		0
794	Polymer-ceramic composite solid-state electrolytes. , 2023, , 119-156.		Ο
795	Metal–organic frameworks for solid-state electrolytes: A mini review. Electrochemistry Communications, 2023, 150, 107491.	4.7	18
796	Quantifying the Morphology Evolution of Lithium Battery Materials Using Operando Electron Microscopy. , 2023, 5, 1506-1526.		10
797	Recrystallization effect on mechanical parameters and increasing of Ag+ ionic conductivity in Ag7(Si1-xGex)S5I ceramic materials. Solid State Sciences, 2023, 140, 107203.	3.2	2
798	Design of composite cathodes for sulfide-based all-solid-state batteries. ETransportation, 2023, 17, 100246.	14.8	6
799	A three-in-one C ₆₀ -integrated PEO-based solid polymer electrolyte enables superior all-solid-state lithium–sulfur batteries. Journal of Materials Chemistry A, 2023, 11, 11426-11435.	10.3	8
800	Toward Sustainable All Solidâ€State Li–Metal Batteries: Perspectives on Battery Technology and Recycling Processes. Advanced Materials, 2023, 35, .	21.0	14

#	Article		CITATIONS
801	A hybrid solid-state electrolyte endows a Li metal battery with excellent cycling life at 120 ŰC. Journal of Materials Chemistry A, 2023, 11, 13446-13458.		7
802	IonML: A physically inspired machine learning platform to directed design superionic conductors. Energy Storage Materials, 2023, 59, 102781.	18.0	3
803	A scalable one-pot strategy for the development of polymer electrolytes adaptable to room-temperature high-voltage lithium batteries. Chinese Chemical Letters, 2024, 35, 108482.	9.0	0
804	Sodium systems – Low temperature (LIB equivalent) Sodium Systems Low Temperature: Overview. , 2023, , .		2
805	Strategies for enhancing ionic conductivity and energy density of gel polymer electrolytes for next-generation flexible energy storage devices. Sustainable Materials and Technologies, 2023, 36, e00635.	3.3	3
806	Composite Solid Electrolyte with Continuous and Fast Organic–Inorganic Ion Transport Highways Created by 3D Crimped Nanofibers@functional Ceramic Nanowires. Small, 2023, 19, .	10.0	4
807	Efficient nanoarchitectonics of solid-electrolyte-interface for high-performance all-solid-state lithium metal batteries via mild fluorination on polyethylene oxide. Electrochimica Acta, 2023, 456, 142482.	5.2	4
808	Monolithic Titanium Alkoxide Networks for Lithium-Ion Conductive All-Solid-State Electrolytes. Nano Letters, 2023, 23, 4066-4073.	9.1	4
809	Advances on single Li-ion conducting polymer solid-state electrolytes. Scientia Sinica Chimica, 2023, , .	0.4	0
810	Halloysite nanotubes modified poly(vinylidenefluoride-co-hexafluoropropylene)-based polymer-in-salt electrolyte to achieve high-performance Li metal batteries. Journal of Colloid and Interface Science, 2023, 645, 45-54.	9.4	7
811	A comprehensive review on cement-based batteries and their performance parameters. Journal of Engineering and Applied Science, 2023, 70, .	2.0	0
812	Enhanced interface stability of ammine magnesium borohydride by <i>in situ</i> decoration of MgBr ₂ ·2NH ₃ nanoparticles. Chemical Communications, 2023, 59, 6726-6729.	4.1	2
813	Ultrafast microwave heated form-stable thermal package providing operating temperature for PEO all-solid-state batteries. Energy Storage Materials, 2023, 60, 102814.	18.0	5
814	Polyimides as Promising Materials for Lithium-Ion Batteries: A Review. Nano-Micro Letters, 2023, 15, .	27.0	20
815	Experimental Discovery of a Fast and Stable Lithium Thioborate Solid Electrolyte, Li _{6+2<i>x</i>} [B ₁₀ S ₁₈]S _{<i>x</i>} (<i>x</i> â‰^ 1). ACS Energy Letters, 2023, 8, 2762-2771.	17.4	5
816	Superior lithium dendrite suppression and air stability of dual Sc and O substituted Li-argyrodites and their enhanced cyclability in Li-batteries. Journal of Energy Storage, 2023, 68, 107715.	8.1	2
817	Synergistic Ion Diffusion in Lithium Titanium Phosphate Conductors: A Tale from Solo to Ensemble. Chemistry of Materials, 2023, 35, 4541-4548.	6.7	1
818	Ion/electron conductive layer with double-layer-like structure for dendrite-free solid-state lithium metal batteries. Nano Energy, 2023, 113, 108573.	16.0	7

#	Article	IF	CITATIONS
819	Semiâ€5olid Supramolecular Ionic Network Electrolytes Formed by Zwitterionic Liquids and Polyoxometalate Nanoclusters for High Proton Conduction. Macromolecular Rapid Communications, 0, , .	3.9	0
821	Flower-like SnS2/honeycomb-like g-C3N4 composite as an anode material for high-rate, long-term lithium-ion batteries. Journal of Energy Storage, 2023, 68, 107894.	8.1	1
822	Dendritic Solid Polymer Electrolytes: A New Paradigm for Highâ€Performance Lithiumâ€Based Batteries. Advanced Materials, 2023, 35, .	21.0	9
823	Engineering the Structural Uniformity of Gel Polymer Electrolytes via Patternâ€Guided Alignment for Durable, Safe Solid‧tate Lithium Metal Batteries. Advanced Materials, 2023, 35, .	21.0	18
824	Electrical and Mechanical Characterisation of Poly(ethylene)oxide-Polysulfone Blend for Composite Structural Lithium Batteries. Polymers, 2023, 15, 2581.	4.5	0
825	Recent Configurational Advances for Solid-State Lithium Batteries Featuring Conversion-Type Cathodes. Molecules, 2023, 28, 4579.	3.8	3
827	3D printing of self-supported solid electrolytes made of glass-derived Li _{1.5} Al _{0.5} Ge _{1.5} P ₃ O ₁₂ for all-solid-state lithium-metal batteries. Journal of Materials Chemistry A, 2023, 11, 13677-13686.	10.3	5
828	Building Better Full Manganese-Based Cathode Materials for Next-Generation Lithium-Ion Batteries. Electrochemical Energy Reviews, 2023, 6, .	25.5	10
829	Realizing fast Li-ion conduction of Li ₃ PO ₄ solid electrolyte at low temperature by mechanochemical formation of lithium-containing dual-shells. Materials Advances, 0, ,	5.4	0
830	Engineering 3D Interpenetrated ZIF-8 Network in Poly(ethylene oxide) Composite Electrolyte for Fast Lithium-Ion Conduction and Effective Lithium-Dendrite Inhibition. ACS Sustainable Chemistry and Engineering, 2023, 11, 9337-9348.	6.7	5
831	Impact of Fluorineâ€Based Lithium Salts on SEI for Allâ€Solidâ€State PEOâ€Based Lithium Metal Batteries. Advanced Functional Materials, 2023, 33, .	14.9	10
832	Software for Evaluating Ionic Conductivity of Inorganic–Polymer Composite Solid Electrolytes. Energy Material Advances, 2023, 4, .	11.0	2
833	In situ curing enables high performance all-solid-state lithium metal batteries based on ultrathin-layer solid electrolytes. Energy Storage Materials, 2023, 60, 102838.	18.0	1
834	Lithium-site substituted argyrodite-type Li6PS5I solid electrolytes with enhanced ionic conduction for all-solid-state batteries. Science China Technological Sciences, 0, , .	4.0	0
835	Preparation and Characterization of Zr-Nanofiller-Based PEO/PVDF-HFP-Mg Polymer Electrolyte Membranes for Battery Application. Smart Innovation, Systems and Technologies, 2023, , 307-316.	0.6	0
836	Insight of electro-chemo-mechanical process inside integrated configuration of composite cathode for solid-state batteries. Energy Storage Materials, 2023, 61, 102864.	18.0	1
837	Application of Liquid Metal Electrodes in Electrochemical Energy Storage. , 0, , .		0
838	Structural pseudocapacitors with reinforced interfaces to increase multifunctional efficiency. Science Advances, 2023, 9, .	10.3	4

		CITATION REPORT		
#	Article		IF	CITATIONS
839	Polymers for flexible energy storage devices. Progress in Polymer Science, 2023, 143,	101714.	24.7	11
840	Three-dimensional reconstruction and computational analysis of a structural battery co electrolyte. Communications Materials, 2023, 4, .	omposite	6.9	4
841	Regulating Liâ€lon Transport through Ultrathin Molecular Membrane to Enable Highâ€ Allâ€Solidâ€State–Battery. Small, 2023, 19, .	Performance	10.0	3
842	Sintering-free preparation of Li7La3Zr2O12–LiBH4-based solid-state electrolytes and conductivities. Electrochimica Acta, 2023, 457, 142488.	d their electrical	5.2	1
843	Design of Microstructure-Engineered Polymers for Energy and Environmental Conserva 2023, 3, 1284-1300.	ation. Jacs Au,	7.9	7
844	Ultra-Thin Solid Electrolyte in Lithium-Ion Batteries. , 2023, 1, 1-17.			1
845	Incombustible Polymer Electrolyte Boosting Safety of Solid‣tate Lithium Batteries: A Advanced Functional Materials, 2023, 33, .	A Review.	14.9	29
846	Engineered Grain Boundary Enables the Room Temperature Solid-State Sodium Metal Batteries, 2023, 9, 252.	Batteries.	4.5	3
847	Impact of thermal treatment on the Li-ion transport, interfacial properties, and compo of LLZO garnets for solid-state electrolytes. Journal of Materials Chemistry A, 2023, 11	site preparation , 11675-11683.	10.3	5
848	Polythiourea Superionic Conductors for Solid-State Batteries. Macromolecules, 2023,	56, 3660-3667.	4.8	2
849	First-principles calculations and Yb3+ doping effects study of garnet-type solid state e Solid State Ionics, 2023, 397, 116244.	ectrolytes.	2.7	1
850	Impedance analysis of PEG plasticized PEO-based composite polymer electrolytes for s batteries. Functional Materials Letters, 2023, 16, .	odium-ion	1.2	0
851	Dry Preâ€Lithiation for Graphiteâ€Silicon Diffusionâ€Dependent Electrode for Allâ€So Advanced Energy Materials, 2023, 13, .	lidâ€State Battery.	19.5	10
852	Considering cell volume in dopant screening for improving Li-ion mobility in an amorph solid-state electrolyte: an <i>ab initio</i> study. RSC Advances, 2023, 13, 14379-1438	nous LiPON 33.	3.6	0
853	Overview of emerging catalytic materials for electrochemical green ammonia synthesis 2023, 5, .	s and process. ,		3
854	Dynamic Electrode–Electrolyte Intermixing in Solid-State Sodium Nano-Batteries. AC Materials & Interfaces, 2023, 15, 24271-24283.	CS Applied	8.0	0
855	State-of-the-Art of Solid-State Electrolytes on the Road Map of Solid-State Lithium Met E-Mobility. ACS Sustainable Chemistry and Engineering, 2023, 11, 7927-7964.	al Batteries for	6.7	4
856	Machine learning-guided discovery of ionic polymer electrolytes for lithium metal batte Communications, 2023, 14, .	eries. Nature	12.8	5

#	Article	IF	CITATIONS
857	Fast Li+-conducting Zr4+-based oxychloride electrolyte with good thermal and solvent stability. Science China Materials, 2023, 66, 3123-3128.	6.3	5
858	The electrochemical failure mechanism investigation of Li _{1+<i>x</i>} Al _{<i>x</i>} Ti _{2â^'<i>x</i>} (PO ₄) ₃ solid-state electrolytes. Journal of Materials Chemistry A, 2023, 11, 12034-12042.	10.3	3
859	Fiber-reinforced quasi-solid polymer electrolytes enabling stable Li-metal batteries. Materials Advances, 2023, 4, 3452-3460.	5.4	2
860	In Situ Polymerization on a 3D Ceramic Framework of Composite Solid Electrolytes for Roomâ€Temperature Solidâ€State Batteries. Advanced Science, 2023, 10, .	11.2	7
861	High-Performance Zn–I ₂ Batteries Enabled by a Metal-Free Defect-Rich Carbon Cathode Catalyst. ACS Applied Materials & Interfaces, 2023, 15, 25558-25566.	8.0	6
862	The Application of Novel Functional Materials to Machine Learning. , 2023, , 95-115.		0
863	Anion Trapping and Ionic Conductivity Enhancement in PEO-Based Composite Polymer–Li ₇ La ₃ Zr ₂ O ₁₂ Electrolytes: The Role of the Garnet Li Molar Content. Macromolecules, 2023, 56, 4256-4266.	4.8	2
865	Nb2CTx MXene boosting PEO polymer electrolyte for all-solid-state Li-S batteries: two birds with one stone strategy to enhance Li+ conductivity and polysulfide adsorptivity. Rare Metals, 2023, 42, 2562-2576.	7.1	2
866	Deep eutectic solvent-assisted phase separation for polyurea-based polymer electrolytes. Chemical Engineering Journal, 2023, 468, 143687.	12.7	8
867	Electrode/electrolyte interphases in high-temperature batteries: a review. Energy and Environmental Science, 2023, 16, 2825-2855.	30.8	7
868	Solventâ€free Ternary Polymer Electrolytes with High Ionic Conductivity for Stable Sodiumâ€based Batteries at Room Temperature. Batteries and Supercaps, 0, , .	4.7	0
869	Influence of the sintering temperature on LLZO-NCM cathode composites for solid-state batteries studied by transmission electron microscopy. Matter, 2023, 6, 2324-2339.	10.0	7
870	Cross-Linked Solid Polymer-Based Catholyte for Solid-State Lithium-Sulfur Batteries. Batteries, 2023, 9, 341.	4.5	0
871	Rapid Processing of Uniform, Thin, Robust, and Largeâ€Area Garnet Solid Electrolyte by Atmospheric Plasma Spraying. Advanced Energy Materials, 2023, 13, .	19.5	4
872	Synthesis and ionic conductivity of an argyrodite-type Li6SbS5I electrolyte. Solid State Ionics, 2023, 399, 116287.	2.7	0
873	Laponite-Supported Gel Polymer Electrolyte with Multiple Lithium-Ion Transport Channels for Stable Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2023, 15, 32385-32394.	8.0	1
874	Recent progress and strategic perspectives of inorganic solid electrolytes: fundamentals, modifications, and applications in sodium metal batteries. Chemical Society Reviews, 2023, 52, 4933-4995.	38.1	23
875	Simultaneous High Ionic Conductivity and Lithiumâ€lon Transference Number in Singleâ€lon Conductor Network Polymer Enabling Fastâ€Charging Solidâ€State Lithium Battery. Small, 2023, 19,	10.0	0

#	Article	IF	Citations
876	Ion States Impact Charge Transport and Dielectric Constant for Poly(ethylene oxide)-Based Sulfonylimide Lithium Ionomers. Macromolecules, 2023, 56, 5141-5151.	4.8	2
877	Hybrid electrolytes for solid-state lithium batteries: Challenges, progress, and prospects. Energy Storage Materials, 2023, 61, 102876.	18.0	7
878	Recent progress in nonflammable electrolytes and cell design for safe Li-ion batteries. Journal of Materials Chemistry A, 2023, 11, 15576-15599.	10.3	3
879	Building Better Batteries: Solid-State Batteries with Li-Rich Oxide Cathodes. Energy Material Advances, 2023, 4, .	11.0	8
880	Examining the Electrochemical Properties of Hybrid Aqueous/Ionic Liquid Solid Polymer Electrolytes through the Lens of Compositionâ€Function Relationships. Advanced Energy Materials, 2023, 13, .	19.5	1
881	NASICON-based all-solid-state Na–ion batteries: A perspective on manufacturing via tape-casting process. , 2023, 1, .		2
882	2D CdPS3-based versatile superionic conductors. Nature Communications, 2023, 14, .	12.8	4
883	Architectural design and electrochemical performance of MOFâ€based solidâ€state electrolytes for highâ€performance secondary batteries. , 2023, 2, 475-510.		6
884	Thin-film Li3InCl6 electrolyte prepared by solution casting method for all-solid-state batteries. Journal of Energy Storage, 2023, 72, 108244.	8.1	0
885	Rethinking the Electrode Multiscale Microstructures: A Review on Structuring Strategies toward Battery Manufacturing Genome. Advanced Energy Materials, 2023, 13, .	19.5	4
886	Solid State Zinc and Aluminum ion batteries: Challenges and Opportunities. ChemSusChem, 2023, 16, .	6.8	6
887	Effects of solvents on Li+Âdistribution and dynamics in PVDF/LiFSI solid polymer electrolytes: An all-atom molecular dynamics simulation study. Solid State Ionics, 2023, 399, 116304.	2.7	2
888	Realizing long-cycling all-solid-state Li-In TiS2 batteries using Li6+xMxAs1-xS5I (M=Si, Sn) sulfide solid electrolytes. Nature Communications, 2023, 14, .	12.8	19
889	Reactive boride as a multifunctional interface stabilizer for garnet-type solid electrolyte in all-solid-state lithium batteries. Nanoscale, 0, , .	5.6	Ο
890	An H ₂ Oâ€Initiated Crosslinking Strategy for Ultrafineâ€Nanoclustersâ€Reinforced Highâ€Toughness Polymerâ€Inâ€Plasticizer Solid Electrolyte. Advanced Materials, 2023, 35, .	21.0	6
891	Dimensional Strategies for Bridging the Research Gap between Labâ€Scale and Potentially Practical Allâ€Solidâ€State Batteries: The Role of Sulfide Solid Electrolyte Films. Advanced Energy Materials, 2023, 13, .	19.5	3
892	Elucidating Ion Transport Phenomena in Sulfide/Polymer Composite Electrolytes for Practical Solid-State Batteries. Nano-Micro Letters, 2023, 15, .	27.0	7
893	Molecular regulated polymer electrolytes for solid-state lithium metal batteries: Mechanisms and future prospects. ETransportation, 2023, 18, 100264.	14.8	6

#	Article	IF	CITATIONS
894	Exploring the impact of dopants on ionic conductivity in solidâ€state electrolytes: Unveiling insights using machine learning techniques. Energy Storage, 2024, 6, .	4.3	1
895	Separatorâ€Free In Situ Dualâ€Curing Solid Polymer Electrolytes with Enhanced Interfacial Contact for Achieving Ultrastable Lithiumâ€Metal Batteries. Advanced Energy Materials, 2023, 13, .	19.5	3
896	Polymeric Materials for Metal-Air Batteries. Green Energy and Technology, 2023, , 383-399.	0.6	0
897	Rationally Designed Solution-Processible Conductive Carbon Additive Coating for Sulfide-based All-Solid-State Batteries. ACS Applied Materials & amp; Interfaces, 2023, 15, 34931-34940.	8.0	3
899	Versatile Protein and Its Subunit Biomolecules for Advanced Rechargeable Batteries. Advanced Materials, 2023, 35, .	21.0	1
900	Effect of grain boundary resistance on the ionic conductivity of amorphous xLi2S-(100-x)Lil binary system. Frontiers in Chemistry, 0, 11, .	3.6	0
901	Polymers of intrinsic microporosity solid ion conductors for solidâ€state lithium batteries. Angewandte Chemie, 0, , .	2.0	0
902	Li-ion transport studies of NASICON-type LiZr2(PO4)3 solid electrolyte crystallizing in rhombohedral structure at room temperature. Surfaces and Interfaces, 2023, 41, 103212.	3.0	0
903	Rechargeable Solid‣tate Naâ€Metal Battery Operating at â^'20 °C. Advanced Science, 2023, 10, .	11.2	3
904	In‣ituâ€Generated Electronâ€Blocking LiH Enabling an Unprecedented Critical Current Density of Over 15ÂmA cm ^{â^'2} for Solid‣tate Hydride Electrolytes. Advanced Materials, 2023, 35, .	21.0	5
905	Multi-layered electrolytes for solid-state lithium batteries. , 2023, 1, 100042.		3
906	Structural Investigation of Li ₂ O–Lil Amorphous Solid Electrolytes. Journal of Physical Chemistry C, 2023, 127, 14687-14693.	3.1	3
907	LFP-based binder-free electrodes produced via fused filament fabrication. JPhys Energy, 2023, 5, 035010.	5.3	0
908	Post-synthetic Covalent Organic Framework to Improve the Performance of Solid-State Li ⁺ Electrolytes. ACS Applied Materials & Interfaces, 2023, 15, 34704-34710.	8.0	2
909	Revealing the Role of Active Fillers in Liâ€ion Conduction of Composite Solid Electrolytes. Small, 2023, 19, .	10.0	8
910	Thin Solid Polymer Electrolyte with Highâ€Strength and Thermalâ€Resistant via Incorporating Nanofibrous Polyimide Framework for Stable Lithium Batteries. Small, 0, , .	10.0	0
911	Solid Electrolytes Based on NASICON-Structured Phosphates for Lithium Metal Batteries. Batteries, 2023, 9, 407.	4.5	3
912	Anionâ€ŧethered Single Lithiumâ€ion Conducting Polyelectrolytes through UVâ€induced Free Radical Polymerization for Improved Morphological Stability of Lithium Metal Anodes. Angewandte Chemie, 2023, 135, .	2.0	2

#	Article	IF	CITATIONS
913	Anionâ€ŧethered Single Lithiumâ€ion Conducting Polyelectrolytes through UVâ€induced Free Radical Polymerization for Improved Morphological Stability of Lithium Metal Anodes. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
914	Dual-Salt-Containing Polymer Interlayer Stabilizes Solid-State Li-Metal Batteries with LiCoO ₂ Cathodes. ACS Sustainable Chemistry and Engineering, 2023, 11, 12378-12388.	6.7	0
915	Highly Conductive Poly(ethylene oxide)-Based Composite Polymer Electrolyte for Sodium Battery Applications. ACS Applied Energy Materials, 2023, 6, 8434-8442.	5.1	1
916	The Impact of Intergrain Phases on the Ionic Conductivity of the LAGP Solid Electrolyte Material Prepared by Spark Plasma Sintering. ACS Applied Materials & Interfaces, 2023, 15, 39186-39197.	8.0	0
917	lonic conductivity in complex hydrides for energy storage applications: A comprehensive review. Chemical Engineering Journal, 2023, 473, 145315.	12.7	3
918	Origin of rate limitations in solid-state polymer batteries from constrained segmental dynamics within the cathode. Cell Reports Physical Science, 2023, 4, 101538.	5.6	0
919	Advanced strategies for solid electrolyte interface design with MOF materials. , 2024, 3, 100154.		3
920	Closed-loop cathode recycling in solid-state batteries enabled by supramolecular electrolytes. Science Advances, 2023, 9, .	10.3	3
921	Conformal Li ₂ HfO ₃ /HfO ₂ Nanoparticle Coatings on Layered Ni-Rich Oxide Cathodes for Stabilizing Interfaces in All-Solid-State Batteries. Chemistry of Materials, 2023, 35, 6835-6844.	6.7	4
922	<i>p</i> â€Phenylenediamineâ€Bridged Binderâ€Electrolyteâ€Unified Supramolecules for Versatile Lithium Secondary Batteries. Advanced Materials, 0, , .	21.0	0
923	Recent progress, challenges, and perspectives in the development of solid-state electrolytes for sodium batteries. Journal of Power Sources, 2023, 581, 233518.	7.8	3
924	Sulfur Polymers as Flexible Interfacial Additives for Low Stackâ€Pressure Solidâ€State Lithiumâ€lon Batteries. Batteries and Supercaps, 0, , .	4.7	0
925	Enhanced ion-electron mixing interface for high energy solid-state lithium metal batteries. Journal of Colloid and Interface Science, 2023, 652, 1085-1091.	9.4	3
926	Crosslinked Hyperbranched Polyglycerol-Based Polymer Electrolytes for Lithium Metal Batteries. Batteries, 2023, 9, 431.	4.5	0
927	Two-dimensional MXenes for flexible energy storage devices. Energy and Environmental Science, 2023, 16, 4191-4250.	30.8	12
928	In-situ prelithiation of electrolyte-free silicon anode for sulfide all-solid-state batteries. ETransportation, 2023, 18, 100277.	14.8	3
929	Developing Singleâ€lon Conductive Polymer Electrolytes for Highâ€Energyâ€Density Solid State Batteries. Advanced Functional Materials, 2023, 33, .	14.9	6
930	Polymer-based electrolytes for solid-state lithium batteries with a wide operating temperature range. Materials Chemistry Frontiers, 0, , .	5.9	1

#	Article	IF	CITATIONS
931	A Review on the Features and Progress of Silicon Anodesâ€Based Solid‣tate Batteries. Advanced Energy Materials, 2023, 13, .	19.5	2
932	An argyrodite sulfide coated NCM cathode for improved interfacial contact in normal-pressure operational all-solid-state batteries. Journal of Materials Chemistry A, 2023, 11, 20549-20558.	10.3	0
933	Effect of Carrier Film Phase Conversion Time on Polyacrylate Polymer Electrolyte Properties in All-Solid-State LIBs. Batteries, 2023, 9, 471.	4.5	0
934	Semi-Spontaneous Post-Crosslinking Triblock Copolymer Electrolyte for Solid-State Lithium Battery. Batteries, 2023, 9, 465.	4.5	1
935	A mini review of current studies on metal-organic frameworks-incorporated composite solid polymer electrolytes in all-solid-state lithium batteries. Heliyon, 2023, 9, e19746.	3.2	0
936	Organic-inorganic composite-derived mesoporous SiO2 and Si/SiC/C nanotubes applied in high-performance quasi-solid lithium-ion batteries. Journal of the Taiwan Institute of Chemical Engineers, 2023, 151, 105114.	5.3	2
937	In Situ Construction of Zwitterionic Polymer Electrolytes with Synergistic Cation–Anion Regulation Functions for Lithium Metal Batteries. Advanced Functional Materials, 2024, 34, .	14.9	5
938	Electrolyte designs for safer lithium-ion and lithium-metal batteries. Journal of Materials Chemistry A, 0, , .	10.3	0
939	Regulating Lewis Acid–Base Interaction in Poly (ethylene oxide)â€Based Electrolyte to Enhance the Cycling Stability of Solidâ€State Lithium Metal Batteries. Small Structures, 2024, 5, .	12.0	2
940	A review on "Growth mechanisms and optimization strategies for the interface state of solidâ€state lithiumâ€ion batteriesâ€i International Journal of Applied Ceramic Technology, 2024, 21, 5-43.	2.1	0
941	Solid Electrolyte Interphase Architecture for a Stable Liâ€electrolyte Interface. Chemistry - an Asian Journal, 2023, 18, .	3.3	1
942	PubChemQC B3LYP/6-31G*//PM6 Data Set: The Electronic Structures of 86 Million Molecules Using B3LYP/6-31G* Calculations. Journal of Chemical Information and Modeling, 2023, 63, 5734-5754.	5.4	0
943	Regulating Steric Hindrance of Porous Organic Polymers in Composite Solidâ€6tate Electrolytes to Induce the Formation of LiFâ€Rich SEI in Liâ€lon Batteries. Angewandte Chemie - International Edition, 2023, 62, .	13.8	9
945	Solid-state lithium batteries-from fundamental research to industrial progress. Progress in Materials Science, 2023, 139, 101182.	32.8	9
946	Inorganic glass electrolytes with polymer-like viscoelasticity. Nature Energy, 2023, 8, 1221-1228.	39.5	9
947	Discovery of Superionic Solid-State Electrolyte for Li-Ion Batteries via Machine Learning. Journal of Physical Chemistry C, 2023, 127, 19335-19343.	3.1	2
948	Computational Design of Antiperovskite Solid Electrolytes. Journal of Physical Chemistry C, 2023, 127, 18256-18270.	3.1	2
949	Theoretical and experimental design in the study of sulfide-based solid-state battery and interfaces. Chinese Chemical Letters, 2024, 35, 109173.	9.0	0

#	Article	IF	CITATIONS
950	High-Density Anchoring toward Ultra-Thin Polymer Electrolytes with High Electrochemical Stability. ACS Sustainable Chemistry and Engineering, 2023, 11, 11900-11911.	6.7	1
951	Laserâ€Assisted Interfacial Engineering for Highâ€Performance Allâ€Solidâ€State Batteries. ChemElectroChem, 2023, 10, .	3.4	0
952	Practical Application of Allâ€Solidâ€State Lithium Batteries Based on Highâ€Voltage Cathodes: Challenges and Progress. Advanced Energy Materials, 2023, 13, .	19.5	8
953	Functional LiTaO ₃ filler with tandem conductivity and ferroelectricity for PVDF-based composite solid-state electrolyte. , 2023, 1, 9370004.		5
954	Synchrotron-Based X-ray Photoelectron Microscopy of LMO/LAGP/Cu Thin-Film Solid-State Lithium Metal Batteries. Batteries, 2023, 9, 506.	4.5	0
955	Modulating electron distributions by integrating ligands with metal molecules in THF. Journal of Molecular Liquids, 2023, 391, 123290.	4.9	0
956	Poly-1,3-dioxolane anchoring graphitic carbon nitride to achieve high-energy–density solid-state Li metal batteries. Journal of Colloid and Interface Science, 2023, 652, 490-499.	9.4	0
957	Growth strategies of Li7La3Zr2O12 electrolytes for Li-ion thin film battery. Chemical Engineering Journal Advances, 2023, 16, 100532.	5.2	1
958	Gelatin network reinforced poly (vinylene carbonate-acrylonitrile) based composite solid electrolyte for all-solid-state lithium metal batteries. Chemical Engineering Journal, 2023, 475, 146409.	12.7	1
959	Fluorine-doped Li3InCl6 to enhance ionic conductivity and air stability. Journal of Alloys and Compounds, 2023, 969, 172479.	5.5	0
960	Inorganicâ€Rich Interphase Induced by Boric Oxide Solid Acid toward Long Cyclic Solidâ€State Lithiumâ€Metal Batteries. Advanced Functional Materials, 2024, 34, .	14.9	0
961	Sequencing polymers to enable solid-state lithium batteries. Nature Materials, 2023, 22, 1515-1522.	27.5	5
962	Phase regulation enabling dense polymer-based composite electrolytes for solid-state lithium metal batteries. Nature Communications, 2023, 14, .	12.8	5
963	Printed Solid-State Batteries. Electrochemical Energy Reviews, 2023, 6, .	25.5	1
964	Design Principles for Grain Boundaries in Solidâ€State Lithiumâ€Ion Conductors. Advanced Energy Materials, 2023, 13, .	19.5	9
965	Manipulating Li2S2/Li2S mixed discharge products of all-solid-state lithium sulfur batteries for improved cycle life. Nature Communications, 2023, 14, .	12.8	3
966	Introduction of UV-cured interpenetrating polymer network in PEO-based all-solid-state Li-S battery. Sustainable Materials and Technologies, 2023, 38, e00712.	3.3	0
967	Regulating Steric Hindrance of Porous Organic Polymers in Composite Solidâ€State Electrolytes to Induce the Formation of LiFâ€Rich SEI in Liâ€Ion Batteries. Angewandte Chemie, 2023, 135, .	2.0	0

#		IE	CITATIONS
# 968	Unravelling redox phenomenon and electrochemical stability of Li1.6Al0.5Ge1.5P2.9Si0.1O12 solid electrolyte against Li metal and silicon anodes for advanced solid-state batteries. Materials Today	4.7	0
969	Cathode Interface Construction by Rapid Sintering in Solidâ€State Batteries. Small, 2024, 20, .	10.0	0
970	Covalent Organic Frameworks as Promising Electrode Materials for High-Valent Ion Rechargeable Batteries. ACS Applied Energy Materials, 0, , .	5.1	5
971	Recent Progress on Nanomodification Applied in Anodes of Rechargeable Li Metal Batteries. ACS Applied Energy Materials, 2023, 6, 10518-10541.	5.1	0
972	A Quasiâ€5olidâ€5tate Polyether Electrolyte for Lowâ€Temperature Sodium Metal Batteries. Advanced Functional Materials, 2023, 33, .	14.9	5
973	Polymers with Intrinsic Microporosity as Solid Ion Conductors for Solid‣tate Lithium Batteries. Angewandte Chemie - International Edition, 2023, 62, .	13.8	5
974	Self-curing solid-state electrolytes based on transamination bond exchange for reliable lithium batteries. Journal of Materials Chemistry A, 0, , .	10.3	0
975	Regulating Li deposition behavior at anodic interface induced by SbF3 electrolyte additive in all-solid-state Li metal batteries. Chemical Engineering Journal, 2023, 474, 145593.	12.7	2
976	Oxygen-induced thermal runaway mechanisms of Ah-level solid-state lithium metal pouch cells. ETransportation, 2023, 18, 100279.	14.8	9
977	Inhibiting the dissolution of the intermediate with conductive polymer coating layer to improve the stability of CuTCNQ cathode for K-ion batteries. Journal of Solid State Chemistry, 2023, 328, 124305.	2.9	0
978	Lithium-Ion Batteries under Low and High-Temperature Conditions. Annual Review of Heat Transfer, 2023, , .	1.0	0
979	All‣olid‣tate Battery Fabricated by 3D Aerosol Jet Printing. Advanced Engineering Materials, 2024, 26, .	3.5	1
980	Application of neutron imaging in observing various states of matter inside lithium batteries. National Science Review, 2023, 10, .	9.5	1
981	é",é‡'å±žèŸæž∤电解液界é¢çš"ç†è§£ä,Žæ"¹æ€§ç−ç•¥. Chinese Science Bulletin, 2023, , .	0.7	0
982	Inorganic Allâ€Solidâ€State Sodium Batteries: Electrolyte Designing and Interface Engineering. Advanced Materials, 2024, 36, .	21.0	1
983	Machine learning for beyond Li-ion batteries: Powering the research. Journal of Energy Storage, 2023, 73, 109057.	8.1	6
984	Solid-state lithium-ion battery: The key components enhance the performance and efficiency of anode, cathode, and solid electrolytes. Journal of Alloys and Compounds, 2023, 969, 172318.	5.5	4
985	Control of Lithium Salt Partitioning, Coordination, and Solvation in Vitrimer Electrolytes. Chemistry of Materials, 2023, 35, 8039-8049.	6.7	0

#	Article	IF	CITATIONS
986	Enhanced electrochemical properties of Li2MgCl4 by Zn substitution for all-solid-state batteries. Journal of Solid State Chemistry, 2023, 328, 124361.	2.9	0
987	Topology driven and soft phonon mode enabled Na-ion diffusion in quaternary chalcogenides, Na ₃ ZnGaX ₄ (X = S, and Se). Journal of Materials Chemistry A, 2023, 11, 23940-23949.	10.3	1
988	Going against the Grain: Atomistic Modeling of Grain Boundaries in Solid Electrolytes for Solid-State Batteries. ACS Materials Au, 0, , .	6.0	2
989	Smectic solid electrolytes containing lamellar conducting channels for solvent-free lithium-ion batteries with a thermal switch on/off performance. Chemical Engineering Journal, 2023, 475, 146418.	12.7	1
990	Unraveling the Enhancement of Confined Water on the Liâ€lon Transport of Solid Electrolytes. Advanced Functional Materials, 2024, 34, .	14.9	0
991	Broadening solid ionic conductor selection for sustainable and earth-abundant solid-state lithium metal batteries. Energy and Environmental Science, 2023, 16, 5871-5880.	30.8	1
992	The effect of volume change and stack pressure on solidâ€state battery cathodes. SusMat, 2023, 3, 721-728.	14.9	4
993	Boosted Li+ migration in LiPON electrolyte via introducing Ti-based bridge for solid-state thin film batteries. Journal of Power Sources, 2023, 587, 233698.	7.8	0
994	Aggregation-induced emission and reversible mechanoresponsive behavior of boryl substituted phenothiazine. New Journal of Chemistry, 0, , .	2.8	0
995	Exploring Li-CO2 batteries with electrospun PAN-derived carbon nanofibers and Li1.4Al0.4Ti1.6(PO4)3 solid-state electrolyte. Journal of Alloys and Compounds, 2024, 970, 172559.	5.5	1
996	Revealing Underestimated Performance in the Bismuth Ferrite (BiFeO ₃) Anode for High-Capacity and Long-Cycling Lithium-Ion Batteries. ACS Applied Energy Materials, 2023, 6, 10853-10861.	5.1	1
997	A Dynamically Stable Mixed Conducting Interphase for Allâ€Solidâ€State Lithium Metal Batteries. Advanced Materials, 2024, 36, .	21.0	5
998	Safety of lithium battery materials chemistry. Journal of Materials Chemistry A, 2023, 11, 25236-25246.	10.3	1
999	Two-dimensional layered materials for modifying solid-state electrolytes in lithium batteries via interface engineering. Materials and Design, 2023, 235, 112425.	7.0	0
1000	Cathodic interface in sulfide-based all-solid-state lithium batteries. Energy Storage Materials, 2023, 63, 103034.	18.0	0
1001	Evolution mechanism and response strategy of interface mechanics in all solid-state lithium metal batteries. Journal of Energy Storage, 2023, 74, 109483.	8.1	0
1002	Decoding Internal Stressâ€Induced Microâ€Short Circuit Events in Sulfideâ€Based Allâ€Solidâ€State Liâ€Metal Batteries via Operando Pressure Measurements. Advanced Energy Materials, 2023, 13, .	19.5	1
1003	Lithium metal anode: Past, present, and future. , 0, , .		0

		CITATION REPORT	Г	
#	Article	IF	(CITATIONS
1004	Computational and data-driven modelling of solid polymer electrolytes. , 2023, 2, 1660-1682.		(0
1005	A meltblown cloth reinforced partially fluorinated solid polymer electrolyte for ultrastable lithiun metal batteries. Nano Energy, 2024, 119, 109075.	16.0	0 1	1
1006	Layered sodium titanate with a matched lattice: a single ion conductor in a solid-state sodium m battery. Chemical Science, 2023, 14, 13812-13824.	etal 7.4	(0
1007	Defects go green: using defects in nanomaterials for renewable energy and environmental sustainability. Frontiers in Nanotechnology, 0, 5, .	4.8	(0
1008	Design principles for sodium superionic conductors. Nature Communications, 2023, 14, .	12.8	8 (0
1009	How the PEG terminals affect the electrochemical properties of polymer electrolytes in lithium n batteries. Energy Storage Materials, 2023, 63, 103066.	ietal 18.	0 1	1
1010	Enhancing interfacial Li+ transport and dielectric properties in poly(ethylene oxide)-based all-soli electrolytes via inactive g-C3N4 nanosheets filler incorporation. Journal of Materials Science and Technology, 2024, 183, 184-192.	d 10.'	7 (0
1011	2D flake-like garnet electrolytes for solid-state lithium metal batteries. Chemical Engineering Jou 2024, 479, 147244.	rnal, 12. ⁻	7 1	1
1012	Zwitterionic metal covalent organic frameworks constructed from lithium salts to reinforce poly(ethylene oxide)/poly(propylene carbonate) composite polymer electrolytes. Materials Adva 2023, 4, 6589-6598.	nces, 5.4	(0
1013	One-Dimensional Oxide Nanostructures Possessing Reactive Surface Defects Enabled a Lithium- Region and High-Voltage Stability for All-Solid-State Composite Electrolytes. ACS Nano, 2023, 1 22872-22884.	Rich 7, 14.0	6 (0
1014	Exploring More Functions in Binders for Lithium Batteries. Electrochemical Energy Reviews, 2023	3, 6, . 25.	5 5	3
1015	Influence of Functional Groups on Li-Ion Transport in Dual-Ion vs Single-Ion Conducting Comb-Branched Polymer Electrolytes. Macromolecules, 2023, 56, 9031-9041.	4.8		0
1016	Emerging Solutions to Enable the Efficient Use of Sodium Metal Anodes: Progress and Perspecti Advanced Functional Materials, 2024, 34, .	ves. 14.9	9 1	1
1017	Microstructural engineering for Ta-doped Li-garnet solid electrolyte toward enhancing performa Energy Storage Materials, 2024, 65, 103101.	1ce. 18.4	0 (0
1018	Achieving a high loading of cathode in PVDF-based solid-state battery. Energy and Environmenta Science, 0, , .	30.	8 1	1
1019	The promise of high-entropy materials for high-performance rechargeable Li-ion and Na-ion batte Joule, 2023, 7, 2732-2748.	ries. 24.	0 4	4
1020	Recent Progress on the Air‣table Battery Materials for Solid‣tate Lithium Metal Batteries. A Science, 2024, 11, .	dvanced 11.2	2 (0
1021	Lithium-Ion Battery Thermal Event and Protection: A Review. SAE International Journal of Electrif Vehicles, 0, 13, .	ed		0

#	Article	IF	CITATIONS
1022	Fluorination in advanced battery design. Nature Reviews Materials, 2024, 9, 119-133.	48.7	2
1023	An Ultrahigh Modulus Gel Electrolytes Reforming the Growing Pattern of Li Dendrites for Interfacially Stable Lithiumâ€Metal Batteries. Advanced Materials, 2024, 36, .	21.0	0
1024	A Tailored Interface Design for Anodeâ€Free Solidâ€State Batteries. Advanced Materials, 2024, 36, .	21.0	0
1025	Discovery of high entropy garnet solid-state electrolytes via ultrafast synthesis. Energy Storage Materials, 2023, 63, 103053.	18.0	0
1026	Toward Practical Multivalent Ion Batteries with Quinone-Based Organic Cathodes. ACS Applied Materials & Interfaces, 0, , .	8.0	0
1027	A lithium–tin fluoride anode enabled by ionic/electronic conductive paths for garnet-based solid-state lithium metal batteries. Rare Metals, 0, , .	7.1	0
1028	Integration of a Flexible, Stretchable, Environment-Benign, and Highly Conductive PVA/H ₃ PO ₄ Hydrogel as a Quasi Solid-State Electrolyte in Reduced Graphene Oxide Supercapacitors. ACS Applied Polymer Materials, 2023, 5, 9825-9835.	4.4	0
1029	Steps towards the ideal CV and GCD results with biodegradable polymer electrolytes: Plasticized MC based green electrolyte for EDLC application. Journal of Energy Storage, 2024, 76, 109730.	8.1	1
1030	Precise Tailoring of Lithiumâ€lon Transport for Ultralongâ€Cycling Dendriteâ€Free Allâ€Solidâ€State Lithium Metal Batteries. Advanced Materials, 2024, 36, .	21.0	0
1031	Nanosilica-filled flame-retardant copolyester electrospun composite separators for high-performance safe lithium-ion batteries. Materials Today Energy, 2024, 39, 101462.	4.7	0
1032	Toward high-performance ionic liquid-based quasi-solid-state electrolytes: Tunable electrochemical properties by introducing suitable diluents. Journal of Energy Storage, 2024, 77, 109909.	8.1	0
1033	Molecular-level identification of organic species of ether-based solid-electrolyte interphase in sodium-ion batteries. Nano Energy, 2024, 120, 109163.	16.0	0
1037	Amorphous Chloride Solid Electrolytes with High Li-Ion Conductivity for Stable Cycling of All-Solid-State High-Nickel Cathodes. Journal of the American Chemical Society, 0, , .	13.7	1
1038	Inducing spherical Li deposition via an indium layer at the interface between solid electrolyte and Li metal. Cell Reports Physical Science, 2023, 4, 101729.	5.6	Ο
1039	Dynamic Monkey Bar Mechanism of Superionic Liâ€ion Transport in LiTaCl ₆ . Angewandte Chemie, 0, , .	2.0	0
1040	Polyoxometalate Li ₃ PW ₁₂ O ₄₀ and Li ₃ PMo ₁₂ O ₄₀ Electrolytes for Highâ€energy Allâ€solidâ€state Lithium Batteries. Angewandte Chemie - International Edition, 2024, 63, .	13.8	1
1041	Polyoxometalate Li ₃ PW ₁₂ O ₄₀ and Li ₃ PMo ₁₂ O ₄₀ Electrolytes for Highâ€energy Allâ€solidâ€state Lithium Batteries. Angewandte Chemie, 2024, 136, .	2.0	0
1042	Dynamic Monkey Bar Mechanism of Superionic Liâ€ion Transport in LiTaCl ₆ . Angewandte Chemie - International Edition, 0, , .	13.8	0

#	Article	IF	CITATIONS
1043	Solid-state, liquid-free ion-conducting elastomers: rising-star platforms for flexible intelligent devices. Materials Horizons, 2024, 11, 1152-1176.	12.2	0
1044	Direct ink writing of polyimide aerogels for battery thermal mitigation. , 0, , .		0
1045	Phenylboronic Acid Functionalized Calix[4]pyrroleâ€Based Solidâ€State Supramolecular Electrolyte. Advanced Materials, 2024, 36, .	21.0	0
1046	Characterizing the critical challenges of Li-metal solid-state batteries: From micrometer to centimeter. MRS Bulletin, 0, , .	3.5	2
1047	Microstructure-controlled Electrodeposition of Mechanically Reliable Double-layered Thin Foils for Secondary Batteries. Metals and Materials International, 0, , .	3.4	0
1048	Safer <scp>solidâ€state</scp> lithium metal batteries: Mechanisms and strategies. InformaÄnÃ-MateriÃįly, 2024, 6, .	17.3	1
1049	The developments, challenges, and prospects of solid-state Li-Se batteries. Energy Storage Materials, 2024, 65, 103138.	18.0	1
1051	An Ultrathin Composite Polymer Electrolyte Dualâ€Reinforced by a Polymer of Intrinsic Microporosity (PIMâ€1) and Poly(tetrafluoroethylene) (PTFE) Porous Membrane. Small, 0, , .	10.0	0
1052	Electrodeposition Stability Landscape for Solid $\hat{a} \in$ "Solid Interfaces. Advanced Science, 2024, 11, .	11.2	1
1053	Gel Polymer Electrolytes for Lithium-Ion Batteries Enabled by Photo Crosslinked Polymer Network. Gels, 2023, 9, 975.	4.5	0
1055	<i>In situ</i> interface engineering of highly nitrogen-rich triazine-based covalent organic frameworks for an ultra-stable, dendrite-free lithium-metal anode. Energy and Environmental Science, 2024, 17, 1117-1131.	30.8	0
1056	Effect of Ti3AlC2 MAX phase on electrochemical performance of thermo-responsive copolymer electrolyte for solid state zinc-ion battery. Materials Science for Energy Technologies, 2024, 7, 237-248.	1.8	Ο
1057	Completely Amorphous Poly(ethylene oxide)-Based Electrolyte Enables High Ionic Conductivity for Room-Temperature All-Solid-State Lithium Metal Batteries. ACS Applied Energy Materials, 2023, 6, 12343-12352.	5.1	0
1058	Enhancing Fast-Charge Capabilities in Solid-State Lithium Batteries through the Integration of High Li _{0.5} La _{0.5} TiO ₃ (LLTO) Content in the Lithium-Metal Anode. ACS Applied Materials & Interfaces, 0, , .	8.0	0
1059	Dielectric Fillerâ€Induced Hybrid Interphase Enabling Robust Solidâ€State Li Metal Batteries at High Areal Capacity. Advanced Materials, 0, , .	21.0	0
1060	Photoâ€Thermal Mediated Liâ€ion Transport for Solidâ€State Lithium Metal Batteries. Small, 0, , .	10.0	0
1061	Tuning phase structures of <i>in situ</i> polymerized elastomeric electrolytes <i>via</i> monomer structure engineering for achieving high stability in solid-state lithium metal batteries. Journal of Materials Chemistry A, 2024, 12, 3460-3469.	10.3	0
1062	Artificial Interlayer and Special Electrode Structure Design in a Solid-State Battery to Homogenize Li-Ion Transport. ACS Applied Energy Materials, 0, , .	5.1	0

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1063	Quasiâ€Solidâ€State Allâ€V ₂ O ₅ Battery. Small, 0, , .		10.0	0
1064	Solid-state composite electrolytes: turning the natural moat into a thoroughfare. Mate Chemistry Frontiers, 2024, 8, 1250-1281.	rials	5.9	0
1065	Improvement of the Li-ion conductivity and air stability of the Ta-doped Li ₇ La ₃ Zr ₂ O ₁₂ electrolyte <i>via< its application in Li–S batteries. Journal of Materials Chemistry A, 2024, 12, 3601-36</i>	/i> Ga co-doping and 15.	10.3	1
1066	Revealing the influence of in-situ formed LiCl on garnet/Li interface for dendrite-free sc batteries. Journal of Energy Chemistry, 2024, 92, 394-403.	lid-state	12.9	Ο
1067	Ionogels: Preparation, Properties and Applications. Advanced Functional Materials, 202	24, 34, .	14.9	2
1068	Assessment of Critical Stack Pressure and Temperature in Liâ€Garnet Batteries. Advan Interfaces, 2024, 11, .	ced Materials	3.7	Ο
1069	Molecular engineering of poly(ionic liquid)-based random copolymer electrolytes for er performance of solid-state lithium batteries. Chemical Engineering Journal, 2024, 481,	1hanced 148602.	12.7	0
1070	Fluorineâ€Containing Phaseâ€Separated Polymer Electrolytes Enabling Highâ€Energy Metal Batteries. Advanced Functional Materials, 2024, 34, .	Solidâ€ S tate Lithium	14.9	1
1071	Interfacial self-healing polymer electrolytes for long-cycle solid-state lithium-sulfur batt Nature Communications, 2024, 15, .	eries.	12.8	3
1072	Melt-casted Li1.5Al0.3Mg0.1Ge1.6(PO4)3 glass ceramic electrolytes: A comparative st different oxide doping. Heliyon, 2024, 10, e24493.	udy on the effect of	3.2	Ο
1073	Adapting Crystal Structure and Grain Boundaries through Sm ³⁺ Doping i Na ₃ Zr ₂ Si ₂ PO ₄ for Boosting Appli Solid-State Batteries. ACS Applied Materials & Interfaces, 2024, 16, 2877-2887.	n Icability in Sodium	8.0	0
1074	Porosity characterisation of solid-state battery electrolyte with terahertz time-domain Journal of Power Sources, 2024, 595, 234050.	spectroscopy.	7.8	1
1075	Advancements and Challenges in Solid-State Battery Technology: An In-Depth Review e Electrolytes and Anode Innovations. Batteries, 2024, 10, 29.	of Solid	4.5	0
1076	Electrolyte and interface engineering for solid-state sodium batteries. Energy Storage I 65, 103181.	Materials, 2024,	18.0	0
1077	Alternatives to fluorinated binders: recyclable copolyester/carbonate electrolytes for his solid composite cathodes. Chemical Science, 2024, 15, 2371-2379.	igh-capacity	7.4	0
1078	Mechanically reinforced Ni-rich cathodes for High-Power and Long-Life All-Solid-State b Chemical Engineering Science, 2024, 288, 119775.	atteries.	3.8	0
1079	Interface Engineering on Constructing Physical and Chemical Stable <scp>Solidâ€Stat Electrolyte Toward Practical Lithium Batteries. Energy and Environmental Materials, 0,</scp>	e	12.8	1
1080	A data-mining approach to understanding the impact of multi-doping on the ionic tran mechanism of solid electrolytes materials: the case of dual-doped Ga _{0.15} /Sc _{<i>y</i>} Li ₇ La ₃ Zr ₂ O ₁₂ . Journal of Materia	sport ls Chemistry A, 2024,	10.3	1

#	Article	IF	CITATIONS
1081	Non-flammable electrolyte for large-scale Ni-rich Li-ion batteries: Reducing thermal runaway risks. Journal of Power Sources, 2024, 594, 234021.	7.8	0
1082	Deciphering the Origin of Interfaceâ€Induced High Li and Na Ion Conductivity in Nanocomposite Solid Electrolytes Using Xâ€Ray Raman Spectroscopy. Advanced Energy Materials, 2024, 14, .	19.5	0
1083	Li8P2S9 solid electrolyte with high ionic conductivity and air stability by Bi2Se3 co-doping. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2024, 301, 117105.	3.5	0
1084	Stabilization the interface of NASICON-type solid electrolyte and Li metal by Al interlayer. Electrochimica Acta, 2024, 477, 143791.	5.2	1
1085	Unconventional PEO-PPC quasi-solid state blend polymer electrolyte for high efficiency solid-state Li-metal batteries. Journal of Energy Storage, 2024, 81, 110456.	8.1	0
1086	Impact of impurities on the thermal properties of a Li ₂ S–SiS ₂ –LiPO ₃ glass. International Journal of Applied Glass Science, 0, , .	2.0	0
1087	Binary anion and cation co-doping enhance sulfide solid electrolyte performance for all-solid-state lithium batteries. , 0, 4, .		0
1088	Progress in the application of polymer fibers in solid electrolytes for lithium metal batteries. Journal of Energy Chemistry, 2024, 92, 26-42.	12.9	0
1089	<i>In Situ</i> Spectroscopic Elucidation of the Electrochemical Potential Drop at Polyelectrolytes/Au Interfaces. Journal of Physical Chemistry Letters, 2024, 15, 701-706.	4.6	0
1090	Coaxially MXene-confined solid-state electrolyte for flexible high-rate lithium metal battery. Nano Energy, 2024, 122, 109312.	16.0	0
1091	Multilayer Core–Sheath Wires with Radially Aligned N-Doped Carbon Nanohole Arrays for Boosting Energy Storage in Zinc-Ion Hybrid Supercapacitors. ACS Applied Materials & Interfaces, 2024, 16, 4793-4802.	8.0	3
1092	Cubic Iodide Li _x YI _{3+x} Superionic Conductors through Defect Manipulation for Allâ€Solidâ€State Li Batteries. Angewandte Chemie, 2024, 136, .	2.0	0
1093	Cubic Iodide Li _x YI _{3+x} Superionic Conductors through Defect Manipulation for Allâ€Solidâ€State Li Batteries. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
1094	Inorganic Sodium Solid Electrolytes: Structure Design, Interface Engineering and Application. Advanced Materials, 0, , .	21.0	0
1095	Pendulum-swing coordination boosting "liquid-like―Li-ion conduction within asymmetric lamellar fillers for solid polymer electrolytes. Chemical Engineering Journal, 2024, 482, 148995.	12.7	0
1096	TiO ₂ Nanoparticles Assisted LiNbO ₃ -Coated LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode for Lithium-Ion Batteries. ACS Applied Nano Materials, 2024, 7, 2753-2763.	5.0	0
1097	Improving the ionic conductivity of polymer electrolytes induced by ceramic nanowire fillers with abundant lithium vacancies. Physical Chemistry Chemical Physics, 2024, 26, 6316-6324.	2.8	0
1098	Enhanced Air Stability and Li Metal Compatibility of Liâ€Argyrodite Electrolytes Triggered by In ₂ O ₃ Coâ€Doping for Allâ€Solidâ€State Li Metal Batteries. Advanced Functional Materials, 2024, 34, .	14.9	0

			_
#	Article	IF	CITATIONS
1099	Solid Electrolyte Bimodal Grain Structures for Improved Cycling Performance. Advanced Materials, 2024, 36, .	21.0	0
1100	Advanced Electrochemical Energy Sources for Electric and Hybrid Vehicles. Green Energy and Technology, 2024, , 195-218.	0.6	Ο
1101	Challenges and Solutions of Solidä€State Electrolyte Film for Largeä€Scale Applications. Advanced Energy Materials, 2024, 14, .	19.5	0
	Dondrite Crowth?="Microstructure?="Stress?="Interrelations in Cornet Solid?=State Electrolyte		
1102	Advanced Energy Materials, 2024, 14, .	19.5	1
1103	Lithium dendrites in allâ€solidâ€state batteries: From formation to suppression. , 2024, 3, .		0
	Enhanced lithium dendrite suppression ability through SiO2 substitution in superionic halogen-rich		
1104	argyrodites and their application in all-solid-state lithium batteries. Journal of Industrial and Engineering Chemistry, 2024, , .	5.8	Ο
1105	Amorphous Oxyhalide Matters for Achieving Lithium Superionic Conduction. Journal of the American	10 5	_
1105	Chemical Society, 2024, 146, 2977-2985.	13.7	1
1106	Highly Stable Organic Molecular Porous Solid Electrolyte with Oneâ€Đimensional Ion Migration	91.0	0
1100	Channel for Solidâ€State Lithiumâ^'Oxygen Battery. Advanced Materials, 0, , .	21.0	0
1107	Recent progress on metal–organic framework/polymer composite electrolytes for solid-state lithium metal batteries: ion transport regulation and interface engineering. Energy and Environmental	30.8	0
1107	Science, 2024, 17, 1854-1884.	30.0	0
1108	Recent advances in all-solid-state batteries for commercialization. Materials Chemistry Frontiers,	5.9	0
1100	2024, 8, 1861-1887.		Ŭ
1109	Building Stable Solid tate Potassium Metal Batteries. Advanced Materials, 0, , .	21.0	3
1110	Formatted PVDF in lamellar composite solid electrolyte for solid-state lithium metal battery. Nano Research, O	10.4	Ο
1111	Microscale mismatches of electrically conductive and mechanically resilient regimes in Li-variant sulfide conductors. Materials Today Energy, 2024, 40, 101517.	4.7	0
1112	Spray-Printed Flexible Li ₂ S Cathode with Inorganic Ion-Conductive Binder Nano-Li ₃ PS ₄ , ACS Applied Materials &: Interfaces, 2024, 16, 7182-7188.	8.0	Ο
1113	Unlocking Li superionic conductivity in face-centred cubic oxides via face-sharing configurations. Nature Materials, 2024, 23, 535-542.	27.5	0
1114	Ultra-wettable liquid metal interface for highly durable solid-state lithium batteries. Matter, 2024, 7, 934-947.	10.0	1
1115	Mechanochemical Synthesis of Solid-State Electrolytes. Inorganics, 2024, 12, 54.	2.7	0
	Optimization strategies for how interfaces of 1170 based colid state lithium metal betteries. Metariale		
1116	Chemistry Frontiers, 2024, 8, 2109-2134.	5.9	0

#	Article	IF	CITATIONS
1117	Enabling All-Solid-State Lithium–Carbon Dioxide Battery Operation in a Wide Temperature Range. ACS Nano, 2024, 18, 5132-5140.	14.6	0
1118	Self-assembled hydrated copper coordination compounds as ionic conductors for room temperature solid-state batteries. Nature Communications, 2024, 15, .	12.8	0
1119	Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid. ACS Applied Energy Materials, 2024, 7, 1527-1538.	5.1	1
1121	Nanoscale Visualization of Lithium Plating/Stripping Tuned by Onâ€site Formed Solid Electrolyte Interphase in Allâ€Solidâ€State Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
1122	Nanoscale Visualization of Lithium Plating/Stripping Tuned by Onâ€site Formed Solid Electrolyte Interphase in Allâ€Solidâ€State Lithiumâ€Metal Batteries. Angewandte Chemie, 2024, 136, .	2.0	0
1123	Non-Electroconductive Polymer Coating on Graphite Mitigating Electrochemical Degradation of PTFE for a Dry-Processed Lithium-Ion Battery Anode. ACS Applied Materials & amp; Interfaces, 2024, 16, 8930-8938.	8.0	0
1124	Ion-dipole interactions assist small molecular additives to regulate Li+ coordination of poly(ethylene) oxide-based polymer electrolyte. Electrochimica Acta, 2024, 481, 143949.	5.2	0
1125	Exploring the temperature-dependent phase transitions of the solid electrolytes copper and silver tetraiodomercurates (Cu2, Ag2) Hgl4: a study of thermal and electrical conductivities. Applied Physics A: Materials Science and Processing, 2024, 130, .	2.3	0
1126	Ion-transporting channel-embedded MOF-in-COF structures as composite quasi-solid electrolytes with highly enhanced electrochemical properties. Journal of Materials Chemistry A, 2024, 12, 7875-7885.	10.3	0
1127	Machine Learningâ€Assisted Property Prediction of Solid‣tate Electrolyte. Advanced Energy Materials, 0, , .	19.5	0
1128	Liquid metal as an efficient protective layer for lithium metal anodes in allâ€solidâ€state batteries. , 0, , .		0
1129	Interfacial engineering for highâ€performance garnetâ€based solidâ€state lithium batteries. SusMat, 2024, 4, 72-105.	14.9	0
1130	Bottom Deposition Enables Stable Allâ€Solidâ€State Batteries with Ultrathin Lithium Metal Anode. Small, 0, , .	10.0	0
1131	Gravity field induced composite solid electrolytes enabling enhanced Li+ transport kinetics of lithium metal battery. Chemical Engineering Journal, 2024, 484, 149781.	12.7	0
1132	Preferential Lithium Plating in the Interfacial Void Region in All-Solid-State Batteries via Pressure Gradient-Driven Lithium-Ion Flux. ACS Energy Letters, 2024, 9, 1035-1042.	17.4	0
1133	Protective shielding films for atomic-level evaluation of lithium lanthanum zirconium oxide at room temperature. Cell Reports Physical Science, 2024, 5, 101839.	5.6	0
1134	Multistage channel PVDF-HFP pregnant ZIF-8@SiO2 quasi-solid electrolyte for lithium-metal batteries. Journal of Power Sources, 2024, 599, 234167.	7.8	0
1135	Surface-functionalized Li1.3Al0.3Ti1.7(PO4)3 with synergetic silane coupling agent and ionic liquid modification for PEO-based all-solid-state lithium metal batteries. Journal of Power Sources, 2024, 599, 234206.	7.8	0

		CITATION REPORT		
#	Article		IF	CITATIONS
1136	lonic Conductive Polymer Stabilized Cathode–Electrolyte Interface for Quasi-Solid-Stat Battery. ACS Energy Letters, 2024, 9, 1082-1089.	e Dual-Ion	17.4	0
1137	Untapped potential and prospects for non-lithium closed static "electrode-free―elec energy storage architectures. Chemical Engineering Journal, 2024, 485, 149919.	trochemical	12.7	0
1138	Unraveling the evolution of Cathode–Solid electrolyte interface using operando X-ray Photoelectron spectroscopy. , 2024, 3, 100184.			0
1139	Ionogel hybrid polymer electrolytes encompassing room-temperature ionic liquids for 4V- Li-metal batteries operating at ambient temperature. Green Chemistry Letters and Reviev	class vs, 2024, 17, .	4.7	0
1140	Elucidating the effects ofÂâ~'OH content on phase transition and Li-ion transport of anti- solid electrolytes. Electrochemistry Communications, 2024, 161, 107684.	perovskite	4.7	0
1141	A Practical Nonflammable Na ₄ B ₃₆ H ₃₄ -Based Hyc Electrolyte for High-Voltage All-Solid-State Sodium Batteries. ACS Energy Letters, 2024, 9	roborate 9, 1176-1183.	17.4	0
1142	Interface issues and challenges for NASICON-based solid-state sodium-metal batteries. , 2	2024, 3, 100181.		0
1143	Electrochemical coupling in subnanometer pores/channels for rechargeable batteries. Ch Society Reviews, 2024, 53, 3829-3895.	emical	38.1	0
1144	Aqueous and Non-aqueous Electrolytes for Na-ion Batteries. , 2024, , 39-67.			0
1145	Na-ion Solid Electrolytes for Solid-state Batteries. , 2024, , 172-199.			0
1146	Thermal, structural, and conductivity properties of As14Sb26S(60â^'x)–(AgI)x chalcoge Journal of Applied Physics, 2024, 135, .	enide glasses.	2.5	0
1147	Highly liquid retentive, ordered ion transport quasi-solid polymer electrolytes for lithium r batteries. Chemical Engineering Journal, 2024, 486, 150189.	netal	12.7	0
1148	MXenes to MBenes: Latest development and opportunities for energy storage devices. N 2024, , .	laterials Today,	14.2	0
1149	Thermal transport of glasses via machine learning driven simulations. Frontiers in Materia	ls, 0, 11, .	2.4	0
1150	Self-sufficient metal–air batteries for autonomous systems. , 2024, 1, 194-197.			0
1151	First-Principles Prediction of Reaction-Induced Structural Evolution at the Interface betwee Metal and Sulfide Electrolytes. Journal of Physical Chemistry C, 2024, 128, 4440-4447.	en Lithium	3.1	0
1152	Oxygen Transport through Amorphous Cathode Coatings in Solid-State Batteries. Chemi Materials, 2024, 36, 2642-2651.	stry of	6.7	0

1153	Recycling of solid-state batteries. Nature Energy, 2024, 9, 373-385.	39.5	0
------	--	------	---

#	Article	IF	CITATIONS
1154	Functionalized polyoxometalates enable fast ion transport in solid-state batteries at room temperature. Chemical Communications, 2024, 60, 4198-4201.	4.1	0
1155	Solid-state batteries encounter challenges regarding the interface involving lithium metal. Nano Energy, 2024, 124, 109502.	16.0	0
1156	Interfacial self-healing polymer electrolytes for Long-Cycle silicon anodes in High-Performance solid-state lithium batteries. Journal of Colloid and Interface Science, 2024, 665, 299-312.	9.4	0
1157	Nanocomposite design for solid-state lithium metal batteries: Progress, challenge, and prospects. , 2024, 1, 120-143.		0
1158	An entanglement association polymer electrolyte for Li-metal batteries. Nature Communications, 2024, 15, .	12.8	0
1159	Unlocking the concentration polarization for Solid-State lithium metal batteries. Chemical Engineering Journal, 2024, 487, 150646.	12.7	0
1160	Variation of electrochemical performance of Li2ZrCl6 halide solid electrolyte with Mn substitution for all-solid-state batteries. Journal of Power Sources, 2024, 602, 234343.	7.8	0
1161	<i>In situ</i> construction of an ultra-thin and flexible polymer electrolyte for stable all-solid-state lithium-metal batteries. Journal of Materials Chemistry A, 2024, 12, 9469-9477.	10.3	0
1162	Built-in garnet-rich composite solid electrolyte towards fast ion transport and dendrite-free for high-energy lithium batteries. Composites Communications, 2024, 47, 101871.	6.3	0
1163	Unravelling the safety improving and failure mechanisms of a 56.5 Ah high-energy–density Li-ion cell containing solid-state electrolyte. Chemical Engineering Journal, 2024, 487, 150458.	12.7	0
1164	Correlation between physical properties and the electrochemical behavior in inorganic solid-state electrolytes for lithium and sodium batteries: A comprehensive review. Journal of Energy Storage, 2024, 86, 111254.	8.1	0
1165	Nonâ€Resonant Structure Induces Nâ€Rich Solid Electrolyte Interface toward Ultraâ€Stable Solidâ€State Lithiumâ€Metal Batteries. Advanced Functional Materials, 0, ,	14.9	0
1167	Deciphering the critical role of interstitial volume in glassy sulfide superionic conductors. Nature Communications, 2024, 15, .	12.8	0