Fire-extinguishing organic electrolytes for safe batterie

Nature Energy 3, 22-29 DOI: 10.1038/s41560-017-0033-8

Citation Report

#	Article	IF	CITATIONS
2	Multifunctional Cross-Linked Polymeric Membranes for Safe, High-Performance Lithium Batteries. Chemistry of Materials, 2018, 30, 2058-2066.	3.2	49
3	A Nonaqueous Potassiumâ€Based Battery–Supercapacitor Hybrid Device. Advanced Materials, 2018, 30, e1800804.	11.1	345
4	Solvation-controlled lithium-ion complexes in a nonflammable solvent containing ethylene carbonate: structural and electrochemical aspects. Physical Chemistry Chemical Physics, 2018, 20, 6480-6486.	1.3	18
5	A smart, anti-piercing and eliminating-dendrite lithium metal battery. Nano Energy, 2018, 49, 403-410.	8.2	57
6	Ionic Liquids and Organic Ionic Plastic Crystals: Advanced Electrolytes for Safer High Performance Sodium Energy Storage Technologies. Advanced Energy Materials, 2018, 8, 1703491.	10.2	109
7	Solvation-controlled ester-based concentrated electrolyte solutions for high-voltage lithium-ion batteries. Current Opinion in Electrochemistry, 2018, 9, 49-55.	2.5	17
8	Enriching Battery Chemistry. Joule, 2018, 2, 371-372.	11.7	6
9	A Study of the Transport Properties of Ethylene Carbonate-Free Li Electrolytes. Journal of the Electrochemical Society, 2018, 165, A705-A716.	1.3	80
10	Solvation Structure Analysis of Lithium Ion in Concentrated Lithium Salt Solutions Using Raman Spectroscopy. Bunseki Kagaku, 2018, 67, 727-732.	0.1	1
11	An Intrinsic Flameâ€Retardant Organic Electrolyte for Safe Lithiumâ€Sulfur Batteries. Angewandte Chemie, 2019, 131, 801-805.	1.6	23
12	A Bifunctional Fluorophosphate Electrolyte for Safer Sodium-Ion Batteries. IScience, 2018, 10, 114-122.	1.9	43
13	A Nonflammable and Thermotolerant Separator Suppresses Polysulfide Dissolution for Safe and Longâ€Cycle Lithiumâ€5ulfur Batteries. Advanced Energy Materials, 2018, 8, 1802441.	10.2	133
14	Realizing the Ultimate Thermal Stability of a Lithium-Ion Battery Using Two Zero-Strain Insertion Materials. ACS Applied Energy Materials, 0, , .	2.5	2
15	A Nonflammable Na ⁺ â€Based Dual arbon Battery with Low ost, High Voltage, and Long Cycle Life. Advanced Energy Materials, 2018, 8, 1802176.	10.2	90
16	High Capacity and Cycle-Stable Hard Carbon Anode for Nonflammable Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 38141-38150.	4.0	51
17	Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries. Journal of Materials Chemistry A, 2018, 6, 20564-20620.	5.2	295
18	Li-Ion Battery Fire Hazards and Safety Strategies. Energies, 2018, 11, 2191.	1.6	207
19	Li ⁺ intercalated V ₂ O ₅ Â <i>n</i> H ₂ O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy and Environmental Science, 2018, 11, 3157-3162	15.6	785

	CITATION RE		
#	Article	IF	CITATIONS
20	High-Efficiency Lithium Metal Batteries with Fire-Retardant Electrolytes. Joule, 2018, 2, 1548-1558.	11.7	436
21	Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nature Energy, 2018, 3, 674-681.	19.8	557
22	Ultrastable Potassium Storage Performance Realized by Highly Effective Solid Electrolyte Interphase Layer. Small, 2018, 14, e1801806.	5.2	175
23	Lithium-Salt-Rich PEO/Li _{0.3} La _{0.557} TiO ₃ Interpenetrating Composite Electrolyte with Three-Dimensional Ceramic Nano-Backbone for All-Solid-State Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 24791-24798.	4.0	230
24	Materials for lithium-ion battery safety. Science Advances, 2018, 4, eaas9820.	4.7	958
25	All-solid-state planar integrated lithium ion micro-batteries with extraordinary flexibility and high-temperature performance. Nano Energy, 2018, 51, 613-620.	8.2	88
26	Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nature Nanotechnology, 2018, 13, 715-722.	15.6	964
27	Glyme–Sodium Bis(fluorosulfonyl)amide Complex Electrolytes for Sodium Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 16589-16599.	1.5	34
28	A Ceramicâ€PVDF Composite Membrane with Modified Interfaces as an Ionâ€Conducting Electrolyte for Solidâ€State Lithiumâ€Ion Batteries Operating at Room Temperature. ChemElectroChem, 2018, 5, 2873-2881.	1.7	69
29	Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nature Energy, 2018, 3, 783-791.	19.8	421
30	Aqueous Flow Batteries: Research and Development. Chemistry - A European Journal, 2019, 25, 1649-1664.	1.7	79
31	Design of S-Substituted Fluorinated Aryl Sulfonamide-Tagged (S-FAST) Anions To Enable New Solvate Ionic Liquids for Battery Applications. Chemistry of Materials, 2019, 31, 7558-7564.	3.2	11
32	First-Principles Calculation Study on Solid Electrolyte Interphase (SEI) in Lithium Ion Battery. Journal of Computer Chemistry Japan, 2019, 18, 18-28.	0.0	2
33	Highly Reversible Lithium-Metal Anode and Lithium–Sulfur Batteries Enabled by an Intrinsic Safe Electrolyte. ACS Applied Materials & Interfaces, 2019, 11, 33419-33427.	4.0	38
34	4.5â€V Highâ€Voltage Rechargeable Batteries Enabled by the Reduction of Polarization on the Lithium Metal Anode. Angewandte Chemie - International Edition, 2019, 58, 15235-15238.	7.2	47
35	4.5â€V Highâ€Voltage Rechargeable Batteries Enabled by the Reduction of Polarization on the Lithium Metal Anode. Angewandte Chemie, 2019, 131, 15379-15382.	1.6	7
36	Using Triethyl Phosphate to Increase the Solubility of LiNO ₃ in Carbonate Electrolytes for Improving the Performance of the Lithium Metal Anode. Journal of the Electrochemical Society, 2019, 166, A2523-A2527.	1.3	60
37	Recent research progresses in ether―and esterâ€based electrolytes for sodiumâ€ion batteries. InformaÄnÃ- Materiály, 2019, 1, 376-389.	8.5	183

# 38	ARTICLE Polypropylene Carbonate-Based Adaptive Buffer Layer for Stable Interfaces of Solid Polymer Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 27906-27912.	IF 4.0	CITATIONS
39	Highâ€Performance Silicon Anodes Enabled By Nonflammable Localized Highâ€Concentration Electrolytes. Advanced Energy Materials, 2019, 9, 1900784.	10.2	175
40	Enabling non-flammable Li-metal batteries <i>via</i> electrolyte functionalization and interface engineering. Journal of Materials Chemistry A, 2019, 7, 17995-18002.	5.2	46
41	High-Safety Symmetric Sodium-Ion Batteries Based on Nonflammable Phosphate Electrolyte and Double Na ₃ V ₂ (PO ₄) ₃ Electrodes. ACS Applied Materials & Interfaces, 2019, 11, 27833-27838.	4.0	40
42	Safety Issues in Lithium Ion Batteries: Materials and Cell Design. Frontiers in Energy Research, 2019, 7, .	1.2	145
43	A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries. Journal of Power Sources, 2019, 436, 226879.	4.0	206
44	A safe and non-flammable sodium metal battery based on an ionic liquid electrolyte. Nature Communications, 2019, 10, 3302.	5.8	173
45	Dual Insurance Design Achieves Long-Life Cycling of Li-Metal Batteries under a Wide Temperature Range. ACS Applied Energy Materials, 2019, 2, 5292-5299.	2.5	7
46	Cathode interfacial engineering to enhance cycling stability of rechargeable lithium-ion batteries. Journal of Solid State Chemistry, 2019, 277, 531-537.	1.4	4
47	An Efficient Separator with Low Liâ€lon Diffusion Energy Barrier Resolving Feeble Conductivity for Practical Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1901800.	10.2	61
48	A Coaxialâ€Interweaved Hybrid Lithium Metal Anode for Longâ€Lifespan Lithium Metal Batteries. Advanced Energy Materials, 2019, 9, 1901932.	10.2	73
49	Negative Redox Potential Shift in Fire-Retardant Electrolytes and Consequences for High-Energy Hybrid Batteries. ACS Applied Energy Materials, 2019, 2, 7879-7885.	2.5	14
50	New Insight on the Role of Electrolyte Additives in Rechargeable Lithium Ion Batteries. ACS Energy Letters, 2019, 4, 2613-2622.	8.8	160
52	Electrochemically Stable Sodium Metalâ€Tellurium/Carbon Nanorods Batteries. Advanced Energy Materials, 2019, 9, 1903046.	10.2	33
53	A paradigm of storage batteries. Energy and Environmental Science, 2019, 12, 3203-3224.	15.6	154
54	Nonflammable Electrolytes for Lithium Ion Batteries Enabled by Ultraconformal Passivation Interphases. ACS Energy Letters, 2019, 4, 2529-2534.	8.8	112
55	Optimized Nonflammable Concentrated Electrolytes by Introducing a Low-Dielectric Diluent. ACS Applied Materials & Interfaces, 2019, 11, 35770-35776.	4.0	64
56	Microscopic Origin of the Solid Electrolyte Interphase Formation in Fire-Extinguishing Electrolyte: Formation of Pure Inorganic Layer in High Salt Concentration. Journal of Physical Chemistry Letters, 2019, 10, 5949-5955.	2.1	15

#	Article	IF	CITATIONS
57	Ultrahigh apacity and Fireâ€Resistant LiFePO ₄ â€Based Composite Cathodes for Advanced Lithiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1802930.	10.2	114
58	An ionic liquid gel with ultralow concentrations of tetra-arm polymers: Gelation kinetics and mechanical and ion-conducting properties. Polymer, 2019, 166, 38-43.	1.8	24
59	Combined Theoretical and Experimental Studies of Sodium Battery Materials. Chemical Record, 2019, 19, 792-798.	2.9	13
60	Polymer Electrolytes for High Energy Density Ternary Cathode Material-Based Lithium Batteries. Electrochemical Energy Reviews, 2019, 2, 128-148.	13.1	106
61	Sustainable cycling enabled by a high-concentration electrolyte for lithium-organic batteries. Chemical Communications, 2019, 55, 608-611.	2.2	26
62	<i>In situ</i> formed polymer gel electrolytes for lithium batteries with inherent thermal shutdown safety features. Journal of Materials Chemistry A, 2019, 7, 16984-16991.	5.2	46
63	Long-Term Stable Lithium Metal Anode in Highly Concentrated Sulfolane-Based Electrolytes with Ultrafine Porous Polyimide Separator. ACS Applied Materials & Interfaces, 2019, 11, 25833-25843.	4.0	72
64	Nonflammable Fluorinated Carbonate Electrolyte with High Salt-to-Solvent Ratios Enables Stable Silicon-Based Anode for Next-Generation Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 23229-23235.	4.0	57
65	Comparative study on ternary spinel cathode Zn–Mn–O microspheres for aqueous rechargeable zinc-ion batteries. Journal of Alloys and Compounds, 2019, 800, 478-482.	2.8	23
66	Molecular-Scale Interfacial Model for Predicting Electrode Performance in Rechargeable Batteries. ACS Energy Letters, 2019, 4, 1584-1593.	8.8	117
67	Non-flammable electrolyte for dendrite-free sodium-sulfur battery. Energy Storage Materials, 2019, 23, 8-16.	9.5	92
68	Graphite Anode for a Potassiumâ€lon Battery with Unprecedented Performance. Angewandte Chemie, 2019, 131, 10610-10615.	1.6	100
69	Graphite Anode for a Potassiumâ€ion Battery with Unprecedented Performance. Angewandte Chemie - International Edition, 2019, 58, 10500-10505.	7.2	504
70	Safety-Enhanced Polymer Electrolytes for Sodium Batteries: Recent Progress and Perspectives. ACS Applied Materials & Interfaces, 2019, 11, 17109-17127.	4.0	100
71	In Situ Generated Fireproof Gel Polymer Electrolyte with Li _{6.4} Ga _{0.2} La ₃ Zr ₂ O ₁₂ As Initiator and Ion onductive Filler. Advanced Energy Materials, 2019, 9, 1900611.	10.2	185
72	A Roomâ€Temperature Molten Hydrate Electrolyte for Rechargeable Zinc–Air Batteries. Advanced Energy Materials, 2019, 9, 1900196.	10.2	128
73	Stable cross-linked gel terpolymer electrolyte containing methyl phosphonate for sodium ion batteries. Journal of Membrane Science, 2019, 583, 163-170.	4.1	27
74	Comparable investigation of tervalent and pentavalent phosphorus based flame retardants on improving the safety and capacity of lithium-ion batteries. Journal of Power Sources, 2019, 420, 143-151.	4.0	39

	Сітаті	ION REPORT	
# 75	ARTICLE Key Issues Hindering a Practical Lithium-Metal Anode. Trends in Chemistry, 2019, 1, 152-158.	IF 4.4	CITATIONS 328
76	Heteroatom Si Substituent Imidazolium-Based Ionic Liquid Electrolyte Boosts the Performance of Dendrite-Free Lithium Batteries. ACS Applied Materials & Interfaces, 2019, 11, 12154-12160.	4.0	30
77	Toward a low-cost high-voltage sodium aqueous rechargeable battery. Materials Today, 2019, 29, 26-36.	8.3	156
78	Recent progress on lithium-ion batteries with high electrochemical performance. Science China Chemistry, 2019, 62, 533-548.	4.2	136
79	Fire-Retardant Phosphate-Based Electrolytes for High-Performance Lithium Metal Batteries. ACS Applied Energy Materials, 2019, 2, 2708-2716.	2.5	64
80	Electrolytes and Electrolyte/Electrode Interfaces in Sodiumâ€lon Batteries: From Scientific Research to Practical Application. Advanced Materials, 2019, 31, e1808393.	11.1	264
81	Flame-retardant quasi-solid polymer electrolyte enabling sodium metal batteries with highly safe characteristic and superior cycling stability. Nano Research, 2019, 12, 2230-2237.	5.8	47
82	A shear thickening fluid based impact resistant electrolyte for safe Li-ion batteries. Journal of Power Sources, 2019, 423, 297-304.	4.0	34
83	A sodium perchlorate-based hybrid electrolyte with high salt-to-water molar ratio for safe 2.5â€V carbon-based supercapacitor. Energy Storage Materials, 2019, 23, 603-609.	9.5	102
84	Advances and issues in developing salt-concentrated battery electrolytes. Nature Energy, 2019, 4, 269-280.	19.8	1,026
85	Electrolytes for Dualâ€Carbon Batteries. ChemElectroChem, 2019, 6, 2615-2629.	1.7	59
86	Role of Solvent Size in Ordered Ionic Structure Formation in Concentrated Electrolytes for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2019, 123, 8699-8708.	1.5	22
87	Reversible Sodium Metal Electrodes: Is Fluorine an Essential Interphasial Component?. Angewandte Chemie, 2019, 131, 8108-8112.	1.6	14
88	Non-Flammable Phosphate Electrolyte with High Salt-to-Solvent Ratios for Safe Potassium-Ion Battery. Journal of the Electrochemical Society, 2019, 166, A1217-A1222.	1.3	48
89	Nitridingâ€Interfaceâ€Regulated Lithium Plating Enables Flameâ€Retardant Electrolytes for Highâ€Voltag Lithium Metal Batteries. Angewandte Chemie, 2019, 131, 7884-7889.	e 1.6	47
90	Nitridingâ€Interfaceâ€Regulated Lithium Plating Enables Flameâ€Retardant Electrolytes for Highâ€Voltag Lithium Metal Batteries. Angewandte Chemie - International Edition, 2019, 58, 7802-7807.	e 7.2	161
91	Safety optimization enabled by tris(2,2,2-trifluoroethyl)phosphite additive for advanced pouch lithium ion batteries. Solid State Ionics, 2019, 337, 7-11.	1.3	6
92	Reversible Sodium Metal Electrodes: Is Fluorine an Essential Interphasial Component?. Angewandte Chemie - International Edition, 2019, 58, 8024-8028.	7.2	76

		CITATION RE	PORT	
#	Article		IF	CITATIONS
93	Highâ€Safety Nonaqueous Electrolytes and Interphases for Sodiumâ€Ion Batteries. Small, 2019, 15	, e1805479.	5.2	65
94	Study on the fire risk associated with a failure of largeâ€scale commercial LiFePO ₄ /gra and LiNi _x Co _y Mn _{1â€xâ€y} O ₂ /graphite batteries Science and Engineering, 2019, 7, 411-419.		1.9	21
95	Recent Advances in Non-Flammable Electrolytes for Safer Lithium-Ion Batteries. Batteries, 2019, 5, 2	19.	2.1	101
96	Highâ€Energy Rechargeable Metallic Lithium Battery at â^'70 °C Enabled by a Cosolvent Elect Angewandte Chemie, 2019, 131, 5679-5683.	rolyte.	1.6	52
97	Highâ€Energy Rechargeable Metallic Lithium Battery at â^'70 °C Enabled by a Cosolvent Elect Angewandte Chemie - International Edition, 2019, 58, 5623-5627.	rolyte.	7.2	217
98	Trimethyl Phosphate for Nonflammable Carbonateâ€Based Electrolytes for Safer Roomâ€Temperati Sodiumâ€Sulfur Batteries. ChemElectroChem, 2019, 6, 1229-1234.	ure	1.7	23
99	Improved Electrode Performance of Lithium-Excess Molybdenum Oxyfluoride: Titanium Substitutior with Concentrated Electrolyte. ACS Applied Energy Materials, 2019, 2, 1629-1633.	I	2.5	34
100	Dual Interphase Layers In Situ Formed on a Manganese-Based Oxide Cathode Enable Stable Potassi Storage. CheM, 2019, 5, 3220-3231.	um	5.8	79
101	Interfacial Dissociation of Contact-Ion-Pair on MXene Electrodes in Concentrated Aqueous Electrolytes. Journal of the Electrochemical Society, 2019, 166, A3739-A3744.		1.3	20
102	Suppression of Polysulfide Dissolution and Shuttling with Glutamate Electrolyte for Lithium Sulfur Batteries. ACS Nano, 2019, 13, 14172-14181.		7.3	64
103	Dilution Effects of Highly Concentrated Dimethyl Carbonate-Based Electrolytes with a Hydrofluoroether on Charge/Discharge Properties of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Positive Electrode. Journ the Electrochemical Society, 2019, 166, A4005-A4013.	nal of	1.3	10
104	Well-aligned BaTiO ₃ nanofibers via solution blow spinning and their application in lithium composite solid-state electrolyte. Materials Express, 2019, 9, 993-1000.		0.2	10
105	All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nature Energy 2019, 4, 882-890.	I,	19.8	557
106	Anion effects on the solvation structure and properties of imide lithium salt-based electrolytes. RSC Advances, 2019, 9, 41837-41846.		1.7	31
107	An <i>in situ</i> electrochemical oxidation strategy for formation of nanogrid-shaped V ₃ O ₇ ·H ₂ O with enhanced zinc storage properties. Journal Materials Chemistry A, 2019, 7, 25262-25267.	of	5.2	61
108	Anion Coordination Characteristics of Ion-pair Complexes in Highly Concentrated Aqueous Lithium Bis(trifluoromethane- sulfonyl)amide Electrolytes. Analytical Sciences, 2019, 35, 289-294.		0.8	15
109	An Intrinsic Flameâ€Retardant Organic Electrolyte for Safe Lithiumâ€Sulfur Batteries. Angewandte - International Edition, 2019, 58, 791-795.	Chemie	7.2	152
110	Cyclic carbonate for highly stable cycling of high voltage lithium metal batteries. Energy Storage Materials, 2019, 17, 284-292.		9.5	115

#	Article	IF	CITATIONS
111	Stable Li Metal Anode with "Ion–Solvent-Coordinated―Nonflammable Electrolyte for Safe Li Metal Batteries. ACS Energy Letters, 2019, 4, 483-488.	8.8	148
112	Improved Cycle Performance of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Positive Electrode Material in Highly Concentrated LiBF ₄ /DMC. Journal of the Electrochemical Society, 2019, 166, A82-A88.	1.3	40
113	Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy, 2019, 55, 93-114.	8.2	533
114	In Situ Armoring: A Robust, High-Wettability, and Fire-Resistant Hybrid Separator for Advanced and Safe Batteries. ACS Applied Materials & Interfaces, 2019, 11, 2978-2988.	4.0	71
115	Liquid Structures and Transport Properties of Lithium Bis(fluorosulfonyl)amide/Glyme Solvate Ionic Liquids for Lithium Batteries. Australian Journal of Chemistry, 2019, 72, 70.	0.5	21
116	Moderately concentrated electrolyte improves solid–electrolyte interphase and sodium storage performance of hard carbon. Energy Storage Materials, 2019, 16, 146-154.	9.5	73
117	Heatâ€Resistant Trilayer Separators for Highâ€Performance Lithiumâ€Ion Batteries. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900504.	1.2	6
118	Solid electrolyte interphase manipulation towards highly stable hard carbon anodes for sodium ion batteries. Energy Storage Materials, 2020, 25, 324-333.	9.5	92
119	Reinforcing concentrated phosphate electrolytes with in-situ polymerized skeletons for robust quasi-solid lithium metal batteries. Energy Storage Materials, 2020, 25, 305-312.	9.5	45
120	A Game Changer: Functional Nano/Micromaterials for Smart Rechargeable Batteries. Advanced Functional Materials, 2020, 30, 1902499.	7.8	41
121	A novel polyphosphonate flame-retardant additive towards safety-reinforced all-solid-state polymer electrolyte. Materials Chemistry and Physics, 2020, 239, 122014.	2.0	35
122	An Overview of Fiberâ€Shaped Batteries with a Focus on Multifunctionality, Scalability, and Technical Difficulties. Advanced Materials, 2020, 32, e1902151.	11.1	207
123	Rational design on separators and liquid electrolytes for safer lithium-ion batteries. Journal of Energy Chemistry, 2020, 43, 58-70.	7.1	170
124	Paraffin wax protecting 3D non-dendritic lithium for backside-plated lithium metal anode. Energy Storage Materials, 2020, 24, 153-159.	9.5	20
125	Prospect of Sulfurized Pyrolyzed Poly(acrylonitrile) (S@pPAN) Cathode Materials for Rechargeable Lithium Batteries. Angewandte Chemie - International Edition, 2020, 59, 7306-7318.	7.2	113
126	Prospect of Sulfurized Pyrolyzed Poly(acrylonitrile) (S@pPAN) Cathode Materials for Rechargeable Lithium Batteries. Angewandte Chemie, 2020, 132, 7374-7386.	1.6	30
127	Non-flammable organic electrolyte for sodium-ion batteries. Electrochemistry Communications, 2020, 110, 106635.	2.3	44
128	A Temperatureâ€Responsive Electrolyte Endowing Superior Safety Characteristic of Lithium Metal Batteries. Advanced Energy Materials, 2020, 10, 1903441.	10.2	95

#	Article	IF	CITATIONS
129	An Intrinsically Nonâ€flammable Electrolyte for Highâ€Performance Potassium Batteries. Angewandte Chemie - International Edition, 2020, 59, 3638-3644.	7.2	211
130	Improving Electrochemical Stability and Lowâ€Temperature Performance with Water/Acetonitrile Hybrid Electrolytes. Advanced Energy Materials, 2020, 10, 1902654.	10.2	144
131	Concentrated Battery Electrolytes: Developing New Functions by Manipulating the Coordination States. Bulletin of the Chemical Society of Japan, 2020, 93, 109-118.	2.0	29
132	A Nonflammable Electrolyte Combining Phosphate and Fluorinated Ether for Li4Ti5O12/LiNi0.5Mn1.5O4 Cells. Fire Technology, 2020, 56, 2349-2364.	1.5	4
133	Emerging interfacial chemistry of graphite anodes in lithium-ion batteries. Chemical Communications, 2020, 56, 14570-14584.	2.2	79
134	Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries. Nature Energy, 2020, 5, 786-793.	19.8	168
135	Safe Li-ion batteries enabled by completely inorganic electrode-coated silicalite separators. Sustainable Energy and Fuels, 2020, 4, 5783-5794.	2.5	8
136	Anion Intercalation into a Graphite Electrode from Trimethyl Phosphate. ACS Applied Materials & Interfaces, 2020, 12, 47647-47654.	4.0	21
137	Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nature Communications, 2020, 11, 5100.	5.8	133
138	Multifunctional Properties of Al ₂ O ₃ /Polyacrylonitrile Composite Coating on Cu to Suppress Dendritic Growth in Anode-Free Li-Metal Battery. ACS Applied Energy Materials, 2020, 3, 7666-7679.	2.5	41
139	Effects of Zn ²⁺ and H ⁺ Association with Naphthalene Diimide Electrodes for Aqueous Zn-Ion Batteries. Chemistry of Materials, 2020, 32, 6990-6997.	3.2	80
140	Hyperbranched PCL/PS Copolymer-Based Solid Polymer Electrolytes Enable Long Cycle Life of Lithium Metal Batteries. Journal of the Electrochemical Society, 2020, 167, 110532.	1.3	21
141	Effects of Lithium Bis(fluorosulfonyl)imide Concentration on Performances of Lithium-ion Batteries Containing Sulfolane-based Electrolytes. Journal of the Electrochemical Society, 2020, 167, 110553.	1.3	10
142	Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chemical Society Reviews, 2020, 49, 5407-5445.	18.7	264
143	Adhesive Sulfide Solid Electrolyte Interface for Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2020, 12, 54876-54883.	4.0	30
144	The Mystery of Electrolyte Concentration: From Superhigh to Ultralow. ACS Energy Letters, 2020, 5, 3633-3636.	8.8	96
145	Advanced energy materials for flexible batteries in energy storage: A review. SmartMat, 2020, 1, .	6.4	186
146	Nonflammable organic electrolytes for high-safety lithium-ion batteries. Energy Storage Materials, 2020, 32, 425-447.	9.5	127

#	Article	IF	CITATIONS
147	Model-Based Design of Graphite-Compatible Electrolytes in Potassium-Ion Batteries. ACS Energy Letters, 2020, 5, 2651-2661.	8.8	88
148	Electrode material–ionic liquid coupling for electrochemical energy storage. Nature Reviews Materials, 2020, 5, 787-808.	23.3	210
149	An Energyâ€Dense Solventâ€Free Dualâ€Ion Battery. Advanced Functional Materials, 2020, 30, 2003557.	7.8	18
150	Ion-Solvent Chemistry-Inspired Cation-Additive Strategy to Stabilize Electrolytes for Sodium-Metal Batteries. CheM, 2020, 6, 2242-2256.	5.8	116
151	Advances in materials for allâ€climate sodiumâ€ion batteries. EcoMat, 2020, 2, e12043.	6.8	32
152	An Ultrastable Nonaqueous Potassiumâ€ion Hybrid Capacitor. Advanced Functional Materials, 2020, 30, 2004247.	7.8	100
153	Novel flame retardant rigid spirocyclic biphosphate based copolymer gel electrolytes for sodium ion batteries with excellent high-temperature performance. Journal of Materials Chemistry A, 2020, 8, 22962-22968.	5.2	22
154	Resolving the Phase Instability of a Fluorinated Ether, Carbonate-Based Electrolyte for the Safe Operation of an Anode-Free Lithium Metal Battery. ACS Applied Energy Materials, 2020, 3, 10722-10733.	2.5	26
155	Layered TiS ₂ as a Promising Host Material for Aqueous Rechargeable Zn Ion Battery. Energy & Fuels, 2020, 34, 11590-11596.	2.5	26
156	Li-Metal Anode in Dilute Electrolyte LiFSI/TMP: Electrochemical Stability Using Ab Initio Molecular Dynamics. Journal of Physical Chemistry C, 2020, 124, 21919-21934.	1.5	19
157	Regulating the Performance of Lithium-Ion Battery Focus on the Electrode-Electrolyte Interface. Frontiers in Chemistry, 2020, 8, 821.	1.8	21
158	Solid electrolyte interphase (SEI) in potassium ion batteries. Energy and Environmental Science, 2020, 13, 4583-4608.	15.6	187
159	A review of safety strategies of a Li-ion battery. Journal of Power Sources, 2020, 478, 228649.	4.0	266
160	Achieving Safe and Dendrite-Suppressed Solid-State Li Batteries via a Novel Self-Extinguished Trimethyl Phosphate-Based Wetting Agent. Energy & Fuels, 2020, 34, 11547-11556.	2.5	19
161	Highly Reversible Sodium Ion Batteries Enabled by Stable Electrolyte-Electrode Interphases. ACS Energy Letters, 2020, 5, 3212-3220.	8.8	97
162	Polymer electrolytes for rechargeable lithium metal batteries. Sustainable Energy and Fuels, 2020, 4, 5469-5487.	2.5	41
163	High energy density anodes using hybrid Li intercalation and plating mechanisms on natural graphite. Energy and Environmental Science, 2020, 13, 3723-3731.	15.6	44
164	Additives Engineered Nonflammable Electrolyte for Safer Potassium Ion Batteries. Advanced Functional Materials, 2020, 30, 2001934.	7.8	77

#	Article	IF	CITATIONS
165	Anion Solvation Reconfiguration Enables Highâ€Voltage Carbonate Electrolytes for Stable Zn/Graphite Cells. Angewandte Chemie, 2020, 132, 21953-21961.	1.6	11
166	Anion Solvation Reconfiguration Enables Highâ€Voltage Carbonate Electrolytes for Stable Zn/Graphite Cells. Angewandte Chemie - International Edition, 2020, 59, 21769-21777.	7.2	58
167	Sodium Bis(oxalato)borate in Trimethyl Phosphate: A Fire-Extinguishing, Fluorine-Free, and Low-Cost Electrolyte for Full-Cell Sodium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 4974-4982.	2.5	34
168	A Nonflammable Electrolyte Enabled High Performance K _{0.5} MnO ₂ Cathode for Low-Cost Potassium-Ion Batteries. ACS Energy Letters, 2020, 5, 1916-1922.	8.8	61
169	Cycling a Lithium Metal Anode at 90 °C in a Liquid Electrolyte. Angewandte Chemie, 2020, 132, 15221-15225.	1.6	57
170	Cycling a Lithium Metal Anode at 90 °C in a Liquid Electrolyte. Angewandte Chemie - International Edition, 2020, 59, 15109-15113.	7.2	61
171	Initial investigation and evaluation of potassium metal as an anode for rechargeable potassium batteries. Journal of Materials Chemistry A, 2020, 8, 16718-16737.	5.2	44
172	Building an artificial solid electrolyte interphase on spinel lithium manganate for high performance aqueous lithium-ion batteries. Dalton Transactions, 2020, 49, 8136-8142.	1.6	18
173	A 4.8â€V Reversible Li ₂ CoPO ₄ F/Graphite Battery Enabled by Concentrated Electrolytes and Optimized Cell Design. Batteries and Supercaps, 2020, 3, 910-916.	2.4	20
174	Highly thermostable expanded polytetrafluoroethylene separator with mussel-inspired silica coating for advanced Li-ion batteries. Journal of Power Sources, 2020, 468, 228403.	4.0	10
175	Highly safe and cyclable Li-metal batteries with vinylethylene carbonate electrolyte. Nano Energy, 2020, 74, 104860.	8.2	64
176	Highly concentrated dual-anion electrolyte for non-flammable high-voltage Li-metal batteries. Energy Storage Materials, 2020, 30, 228-237.	9.5	61
177	Dense PVDF-type polymer-in-ceramic electrolytes for solid state lithium batteries. RSC Advances, 2020, 10, 22417-22421.	1.7	9
178	Structural study on Ti-ion complexes in concentrated aqueous electrolytes: Raman spectroscopy and high-energy X-ray total scattering. Journal of Molecular Liquids, 2020, 305, 112867.	2.3	2
179	Lithium-ion battery performance enhanced by the combination of Si thin flake anodes and binary ionic liquid systems. Materials Advances, 2020, 1, 625-631.	2.6	9
180	A Novel Li + onducting Polymer Membrane Gelled by Fluorineâ€Free Electrolyte Solutions for Liâ€lon Batteries. Batteries and Supercaps, 2020, 3, 1112-1119.	2.4	6
181	Lithium Difluorophosphateâ€Based Dualâ€5alt Low Concentration Electrolytes for Lithium Metal Batteries. Advanced Energy Materials, 2020, 10, 2001440.	10.2	121
182	Nonâ€Flammable Fluorinated Phosphorus(III)â€Based Electrolytes for Advanced Lithiumâ€Ion Battery Performance. ChemElectroChem, 2020, 7, 1499-1508.	1.7	13

#	Article	IF	CITATIONS
183	Development and challenge of advanced nonaqueous sodium ion batteries. EnergyChem, 2020, 2, 100031.	10.1	37
184	Constructing a Superâ€Saturated Electrolyte Front Surface for Stable Rechargeable Aqueous Zinc Batteries. Angewandte Chemie - International Edition, 2020, 59, 9377-9381.	7.2	551
185	Research Progress of Sulfur/Carbon Composite Cathode Materials and the Corresponding Safe Electrolytes for Advanced Li-S Batteries. Nano, 2020, 15, 2030002.	0.5	22
186	Constructing a Superâ€Saturated Electrolyte Front Surface for Stable Rechargeable Aqueous Zinc Batteries. Angewandte Chemie, 2020, 132, 9463-9467.	1.6	327
187	Advanced Liquid Electrolytes for Rechargeable Li Metal Batteries. Advanced Functional Materials, 2020, 30, 1910777.	7.8	201
188	Zwitterionic Sulfobetaine Hydrogel Electrolyte Building Separated Positive/Negative Ion Migration Channels for Aqueous Znâ€MnO ₂ Batteries with Superior Rate Capabilities. Advanced Energy Materials, 2020, 10, 2000035.	10.2	287
189	Flame-retardant gel polymer electrolyte and interface for quasi-solid-state sodium ion batteries. Chemical Engineering Journal, 2020, 401, 126065.	6.6	77
190	A robust flame retardant fluorinated polyimide nanofiber separator for high-temperature lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 14788-14798.	5.2	40
191	"Water in salt/ionic liquid―electrolyte for 2.8ÂV aqueous lithium-ion capacitor. Science Bulletin, 2020, 65, 1812-1822.	4.3	56
192	Perspective on Highâ€Energy Carbonâ€Based Supercapacitors. Energy and Environmental Materials, 2020, 3, 286-305.	7.3	124
193	Designing an intrinsically safe organic electrolyte for rechargeable batteries. Energy Storage Materials, 2020, 31, 382-400.	9.5	74
194	Photo-Rechargeable Zinc-Ion Capacitor Using 2D Graphitic Carbon Nitride. Nano Letters, 2020, 20, 5967-5974.	4.5	106
195	Effects of ester-based electrolyte composition and salt concentration on the Na-storage stability of hard carbon anodes. Journal of Power Sources, 2020, 471, 228455.	4.0	17
196	Understanding the Reactivity of a Thin Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ Solid‣tate Electrolyte toward Metallic Lithium Anode. Advanced Energy Materials, 2020, 10, 2001497.	10.2	49
197	Flame-retarding battery cathode materials based on reversible multi-electron redox chemistry of phenothiazine-based polymer. Journal of Energy Chemistry, 2020, 47, 256-262.	7.1	17
198	Enabling an intrinsically safe and highâ€energyâ€density 4.5 Vâ€class Liâ€ion battery with nonflammable electrolyte. InformaÄnÄ-Materiály, 2020, 2, 984-992.	8.5	81
199	Fundamentals and Challenges of Lithium Ion Batteries at Temperatures between â^'40 and 60 °C. Advanced Energy Materials, 2020, 10, 1904152.	10.2	200
200	A cyclic phosphate-based battery electrolyte for high voltage and safe operation. Nature Energy, 2020, 5, 291-298.	19.8	250

#	Article	IF	CITATIONS
201	Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries*. Chinese Physics B, 2020, 29, 048201.	0.7	26
202	Dilution Effects of Highly Concentrated LiBF ₄ /DMC with Fluorinated Esters on Charge/Dishcharge Properties of Ni-rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Positive Electrode. Journal of the Electrochemical Society. 2020. 167. 040508.	1.3	2
203	Encapsulation of MnS Nanocrystals into N, S-Co-doped Carbon as Anode Material for Full Cell Sodium-Ion Capacitors. Nano-Micro Letters, 2020, 12, 34.	14.4	42
204	Current Challenges and Routes Forward for Nonaqueous Lithium–Air Batteries. Chemical Reviews, 2020, 120, 6558-6625.	23.0	356
205	Review—Emerging Trends in the Design of Electrolytes for Lithium and Post-Lithium Batteries. Journal of the Electrochemical Society, 2020, 167, 050508.	1.3	89
206	Hollow nanotubular clay composited comb-like methoxy poly(ethylene glycol) acrylate polymer as solid polymer electrolyte for lithium metal batteries. Electrochimica Acta, 2020, 340, 135995.	2.6	39
207	The polymerization capability of alkenyl phosphates and application as gel copolymer electrolytes for lithium ion batteries with high flame-retardancy. Reactive and Functional Polymers, 2020, 149, 104535.	2.0	7
208	A Review on Materials for Flame Retarding and Improving the Thermal Stability of Lithium Ion Batteries. International Journal of Electrochemical Science, 2020, 15, 1391-1411.	0.5	20
209	Research Development on K-Ion Batteries. Chemical Reviews, 2020, 120, 6358-6466.	23.0	804
210	Safer Triethyl-Phosphate-Based Electrolyte Enables Nonflammable and High-Temperature Endurance for a Lithium Ion Battery. ACS Applied Energy Materials, 2020, 3, 1719-1729.	2.5	34
211	A Flexible Solid Electrolyte with Multilayer Structure for Sodium Metal Batteries. Advanced Energy Materials, 2020, 10, 1903966.	10.2	94
212	Nonaqueous electrolyte with dual-cations for high-voltage and long-life zinc batteries. Journal of Materials Chemistry A, 2020, 8, 3252-3261.	5.2	89
213	An Intrinsically Nonâ€flammable Electrolyte for Highâ€Performance Potassium Batteries. Angewandte Chemie, 2020, 132, 3667-3673.	1.6	16
214	Lithium-ion batteries fault diagnostic for electric vehicles using sample entropy analysis method. Journal of Energy Storage, 2020, 27, 101121.	3.9	73
215	A Perspective: the Technical Barriers of Zn Metal Batteries. Chemical Research in Chinese Universities, 2020, 36, 55-60.	1.3	16
216	Aqueous zinc ion batteries: focus on zinc metal anodes. Chemical Science, 2020, 11, 2028-2044.	3.7	440
217	Stable Cycling of High-Voltage Lithium-Metal Batteries Enabled by High-Concentration FEC-Based Electrolyte. ACS Applied Materials & amp; Interfaces, 2020, 12, 22901-22909.	4.0	48
218	Highly conductive and nonflammable composite polymer electrolytes for rechargeable quasi-solid-state Li-metal batteries. Journal of Power Sources, 2020, 464, 228182.	4.0	27

#	Article	IF	CITATIONS
219	Enabling electrochemical compatibility of non-flammable phosphate electrolytes for lithium-ion batteries by tuning their molar ratios of salt to solvent. Chemical Communications, 2020, 56, 6559-6562.	2.2	23
220	Electrolytes and Interphases in Sodiumâ€Based Rechargeable Batteries: Recent Advances and Perspectives. Advanced Energy Materials, 2020, 10, 2000093.	10.2	254
221	Boosting Potassium Storage Performance of the Cu ₂ S Anode <i>via</i> Morphology Engineering and Electrolyte Chemistry. ACS Nano, 2020, 14, 6024-6033.	7.3	156
222	Interactions and Transport in Highly Concentrated LiTFSIâ€based Electrolytes. ChemPhysChem, 2020, 21, 1166-1176.	1.0	25
223	Solvent-Free Method Prepared a Sandwich-like Nanofibrous Membrane-Reinforced Polymer Electrolyte for High-Performance All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 21586-21595.	4.0	46
224	Layered VSe ₂ : a promising host for fast zinc storage and its working mechanism. Journal of Materials Chemistry A, 2020, 8, 9313-9321.	5.2	72
225	Application of Concentrated Solution Theory to the Measurement of Salt Transference Numbers in Ion-Selective Membranes. Journal of the Electrochemical Society, 2020, 167, 020546.	1.3	4
226	Materials Design for High‣afety Sodiumâ€ion Battery. Advanced Energy Materials, 2021, 11, 2000974.	10.2	282
227	Electrochemistry: Retrospect and Prospects. Israel Journal of Chemistry, 2021, 61, 120-151.	1.0	2
228	Al4B2O9 nanorods-modified solid polymer electrolytes with decent integrated performance. Science China Materials, 2021, 64, 296-306.	3.5	8
229	Challenges of today for Na-based batteries of the future: From materials to cell metrics. Journal of Power Sources, 2021, 482, 228872.	4.0	169
230	Artificial interphases enable dendrite-free Li-metal anodes. Journal of Energy Chemistry, 2021, 58, 198-206.	7.1	48
231	Multi-redox phenazine/non-oxidized graphene/cellulose nanohybrids as ultrathick cathodes for high-energy organic batteries. Nano Research, 2021, 14, 1382-1389.	5.8	24
232	A Self odiophilic Carbon Host Promotes the Cyclability of Sodium Anode. Advanced Functional Materials, 2021, 31, 2007556.	7.8	30
233	Enhanced processability and electrochemical cyclability of metallic sodium at elevated temperature using sodium alloy composite. Energy Storage Materials, 2021, 35, 310-316.	9.5	26
234	Manipulating the Solvation Structure of Nonflammable Electrolyte and Interface to Enable Unprecedented Stability of Graphite Anodes beyond 2 Years for Safe Potassiumâ€lon Batteries. Advanced Materials, 2021, 33, e2006313.	11.1	155
235	Manipulating Electrode/Electrolyte Interphases of Sodium-Ion Batteries: Strategies and Perspectives. , 2021, 3, 18-41.		90
236	Nonâ€Flammable Liquid and Quasiâ€Solid Electrolytes toward Highlyâ€Safe Alkali Metalâ€Based Batteries. Advanced Functional Materials, 2021, 31, 2008644.	7.8	127

#	Article	IF	Citations
# 237	Concentrated Electrolytes for Lithium Metal Negative Electrodes. , 2021, , 37-45.	11	0
238	Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials. Energy and Environmental Science, 2021, 14, 3796-3839.	15.6	257
239	Solvate electrolytes for Li and Na batteries: structures, transport properties, and electrochemistry. Physical Chemistry Chemical Physics, 2021, 23, 21419-21436.	1.3	32
240	High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chemical Society Reviews, 2021, 50, 10486-10566.	18.7	391
241	Electrolytes and Interphases in Potassium Ion Batteries. Advanced Materials, 2021, 33, e2003741.	11.1	181
242	NiCo ₂ O ₄ /CNF Separator Modifiers for Trapping and Catalyzing Polysulfides for High-Performance Lithium–Sulfur Batteries with High Sulfur Loadings and Lean Electrolytes. ACS Sustainable Chemistry and Engineering, 2021, 9, 1804-1813.	3.2	31
243	Recent advanced skeletons in sodium metal anodes. Energy and Environmental Science, 0, , .	15.6	69
244	The Underlying Mechanism for Reduction Stability of Organic Electrolytes in Lithium Secondary Batteries. Chemical Science, 2021, 12, 9037-9041.	3.7	22
245	Fluorophosphate-Based Nonflammable Concentrated Electrolytes with a Designed Lithium-Ion-Ordered Structure: Relationship between the Bulk Electrolyte and Electrode Interface Structures. ACS Applied Materials & Interfaces, 2021, 13, 6201-6207.	4.0	16
246	Hard carbon for sodium storage: mechanism and optimization strategies toward commercialization. Energy and Environmental Science, 2021, 14, 2244-2262.	15.6	177
247	Designing positive electrodes with high energy density for lithium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 7407-7421.	5.2	34
248	Materials engineering for adsorption and catalysis in room-temperature Na–S batteries. Energy and Environmental Science, 2021, 14, 3757-3795.	15.6	62
249	Perspective on Highâ€Concentration Electrolytes for Lithium Metal Batteries. Small Structures, 2021, 2, 2000122.	6.9	81
250	Nonâ€Aqueous Electrolytes for Sodiumâ€lon Batteries: Challenges and Prospects Towards Commercialization. Batteries and Supercaps, 2021, 4, 881-896.	2.4	16
251	An Attempt to Formulate Nonâ€Carbonate Electrolytes for Sodiumâ€Ion Batteries. Batteries and Supercaps, 2021, 4, 791-814.	2.4	26
252	A Wide-Temperature-Range, Low-Cost, Fluorine-Free Battery Electrolyte Based On Sodium Bis(Oxalate)Borate. Chemistry of Materials, 2021, 33, 1130-1139.	3.2	24
253	Solid-State Electrolytes for Sodium Metal Batteries. Energy & Fuels, 2021, 35, 9063-9079.	2.5	60
254	High-Mass-Loading Electrodes for Advanced Secondary Batteries and Supercapacitors. Electrochemical Energy Reviews, 2021, 4, 382-446.	13.1	181

#	Article	IF	CITATIONS
255	In situ protection of a sulfur cathode and a lithium anode via adopting a fluorinated electrolyte for stable lithium-sulfur batteries. Science China Materials, 2021, 64, 2127-2138.	3.5	12
256	Light Rechargeable Lithium-Ion Batteries Using V ₂ O ₅ Cathodes. Nano Letters, 2021, 21, 3527-3532.	4.5	99
257	Inâ€Situ Intermolecular Interaction in Composite Polymer Electrolyte for Ultralong Life Quasiâ€Solidâ€State Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 12223-12230.	1.6	20
258	Thermal stability of modified lithium-ion battery electrolyte by flame retardant, tris (2,2,2-trifluoroethyl) phosphite. Journal of Thermal Analysis and Calorimetry, 0, , 1.	2.0	5
259	Inherently flame-retardant solid polymer electrolyte for safety-enhanced lithium metal battery. Chemical Engineering Journal, 2021, 410, 128415.	6.6	42
260	Advanced Lowâ€Flammable Electrolytes for Stable Operation of Highâ€Voltage Lithiumâ€Ion Batteries. Angewandte Chemie, 2021, 133, 13109-13116.	1.6	16
261	Advanced Lowâ€Flammable Electrolytes for Stable Operation of Highâ€Voltage Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 12999-13006.	7.2	70
262	In‣itu Intermolecular Interaction in Composite Polymer Electrolyte for Ultralong Life Quasi‣olid‣tate Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 12116-12123.	7.2	97
263	Rational Electrolyte Design to Form Inorganic–Polymeric Interphase on Silicon-Based Anodes. ACS Energy Letters, 2021, 6, 1811-1820.	8.8	39
264	Challenges and future perspectives on sodium and potassium ion batteries for grid-scale energy storage. Materials Today, 2021, 50, 400-417.	8.3	161
265	Fluorideâ€Rich Solidâ€Electrolyteâ€Interface Enabling Stable Sodium Metal Batteries in Highâ€Safe Electrolytes. Advanced Functional Materials, 2021, 31, 2103522.	7.8	66
266	How is the concentration determined for rapid lithium ion transfer in highly concentrated electrolyte solutions?. Electrochemical Science Advances, 0, , e2100058.	1.2	4
267	Formulating a Non-Flammable Highly Concentrated Dual-Salt Electrolyte for Wide Temperature High-Nickel Lithium Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 050511.	1.3	15
268	A Review on the Current Progress and Challenges of 2D Layered Transition Metal Dichalcogenides as Li/Naâ€ion Battery Anodes. ChemElectroChem, 2021, 8, 2358-2396.	1.7	25
269	Nonâ€Flammable and Highly Concentrated Carbonate Esterâ€Free Electrolyte Solutions for 5 Vâ€Class Positive Electrodes in Lithiumâ€lon Batteries. ChemSusChem, 2021, 14, 2445-2451.	3.6	9
270	Development of cathode-electrolyte-interphase for safer lithium batteries. Energy Storage Materials, 2021, 37, 77-86.	9.5	78
271	Reversible Copper Sulfide Conversion in Nonflammable Trimethyl Phosphate Electrolytes for Safe Sodiumâ€lon Batteries. Small Structures, 2021, 2, 2100035.	6.9	30
272	Improved stability of highly concentrated LiBF4/fluorinated ethyl acetate-based electrolyte solutions with a co-solvent for LiNi0.8Co0.1Mn0.1O2 positive electrodes in lithium ion batteries. Journal of Applied Electrochemistry, 2021, 51, 1535.	1.5	3

ARTICLE IF CITATIONS Enabling Lithium Metal Anode in Nonflammable Phosphate Electrolyte with Electrochemically Induced 273 7.2 36 Chemical Reactions. Angewandte Chemie - International Edition, 2021, 60, 19183-19190. Hydroxyapatite functionalization of solid polymer electrolytes for high-conductivity solid-state 274 2.5 lithium-ion batteries. Materials Today Energy, 2021, 20, 100694. Sustainable Lithiumâ€Metal Battery Achieved by a Safe Electrolyte Based on Recyclable and Lowâ€Cost 275 7.2 43 Molecular Sieve. Angewandte Chemie - International Edition, 2021, 60, 15572-15581. Enabling Lithium Metal Anode in Nonflammable Phosphate Electrolyte with Electrochemically Induced Chemical Reactions. Angewandte Chemie, 2021, 133, 19332-19339. Experimental study on thermal runaway of fully charged and overcharged lithium-ion batteries under 277 3.9 30 adiabatic and side-heating test. Journal of Energy Storage, 2021, 38, 102519. Forging Inspired Processing of Sodiumâ€Fluorinated Graphene Composite as Dendriteâ€Free Anode for Longâ€Life Na–CO₂ Cells. Energy and Environmental Materials, 2022, 5, 572-581. 278 7.3 Sustainable Lithiumâ€Metal Battery Achieved by a Safe Electrolyte Based on Recyclable and Lowâ€Cost 279 1.6 2 Molecular Sieve. Angewandte Chemie, 2021, 133, 15700-15709. Enabling stable sodium metal cycling by sodiophilic interphase in a polymer electrolyte system. 280 7.1 10 Journal of Energy Chemistry, 2021, 63, 305-311. Promoting operating voltage to 2.3 V by a superconcentrated aqueous electrolyte in carbon-based 281 4.8 6 supercapacitor. Chinese Chemical Letters, 2021, 32, 2217-2221. Extending insertion electrochemistry to soluble layered halides with superconcentrated 13.3 electrolytes. Nature Materials, 2021, 20, 1545-1550. Advanced Nonflammable Localized Highâ€Concentration Electrolyte For High Energy Density Lithium 283 7.324 Battery. Energy and Environmental Materials, 2022, 5, 1294-1302. Double Ionic–Electronic Transfer Interface Layers for Allâ€Solidâ€State Lithium Batteries. Angewandte 284 1.6 Chemie, 2021, 133, 18596-18601. Double Ionic–Electronic Transfer Interface Layers for Allâ€Solidâ€State Lithium Batteries. Angewandte 285 7.2 37 Chemie - International Edition, 2021, 60, 18448-18453. Rate Performance of LiCoO<sub>2</sub> Half-cells Using Highly Concentrated Lithium Bis(fluorosulfonyl)amide Electrolytes and Their Relevance to Transport Properties. Electrochemistry, 2021, 89, 389-394. Concentrated Electrolytes Widen the Operating Temperature Range of Lithiumâ€Ion Batteries. Advanced 287 5.6 54 Science, 2021, 8, e2101646. Unlocking the self-supported thermal runaway of high-energy lithium-ion batteries. Energy Storage Materials, 2021, 39, 395-402. 74 Thermally Stable and Nonflammable Electrolytes for Lithium Metal Batteries: Progress and 289 5.8 81 Perspectives. Small Science, 2021, 1, 2100058. Fracture predictions based on a coupled chemo-mechanical model with strain gradient plasticity 290 64 theory for film electrodes of Li-ion batteries. Engineering Fracture Mechanics, 2021, 253, 107866.

#	Article	IF	CITATIONS
291	Comparison of oxygen consumption calorimetry and thermochemistry theory on quantitative analysis of electrolyte combustion characteristics. Case Studies in Thermal Engineering, 2021, 26, 101085.	2.8	15
292	Frontiers in Theoretical Analysis of Solid Electrolyte Interphase Formation Mechanism. Advanced Materials, 2021, 33, e2100574.	11.1	65
293	Electrochemically-Matched and Nonflammable Janus Solid Electrolyte for Lithium–Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 39271-39281.	4.0	16
294	The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nature Reviews Materials, 2021, 6, 1036-1052.	23.3	201
295	In-situ encapsulating flame-retardant phosphate into robust polymer matrix for safe and stable quasi-solid-state lithium metal batteries. Energy Storage Materials, 2021, 39, 186-193.	9.5	98
296	Tailoring uniform and ordered grain boundaries in the solid electrolyte interphase for dendrite-free lithium metal batteries. Materials Today Energy, 2021, 22, 100858.	2.5	12
297	Development of high performing polymer electrolytes based on superconcentrated solutions. Journal of Power Sources, 2021, 506, 230220.	4.0	15
298	A Lignosulfonate Binder for Hard Carbon Anodes in Sodium-Ion Batteries: A Comparative Study. ACS Sustainable Chemistry and Engineering, 2021, 9, 12708-12717.	3.2	10
299	Thermal-responsive, super-strong, ultrathin firewalls for quenching thermal runaway in high-energy battery modules. Energy Storage Materials, 2021, 40, 329-336.	9.5	85
300	Thermalâ€Responsive and Fireâ€Resistant Materials for Highâ€Safety Lithiumâ€Ion Batteries. Small, 2021, 17, e2103679.	5.2	35
301	Safer lithium-ion battery anode based on Ti3C2Tz MXene with thermal safety mechanistic elucidation. Chemical Engineering Journal, 2021, 419, 129387.	6.6	21
302	An in-situ formed stable interface layer for high-performance sodium metal anode in a non-flammable electrolyte. Energy Storage Materials, 2021, 42, 145-153.	9.5	42
303	Understanding solid electrolyte interphases: Advanced characterization techniques and theoretical simulations. Nano Energy, 2021, 89, 106489.	8.2	43
304	Solid-state polymer electrolytes with polypropylene separator-reinforced sandwich structure for room-temperature lithium ion batteries. Journal of Membrane Science, 2021, 638, 119713.	4.1	24
305	A thermoresponsive composite separator loaded with paraffin@SiO2 microparticles for safe and stable lithium batteries. Journal of Energy Chemistry, 2021, 62, 423-430.	7.1	36
306	Nanohybrid engineering of the vertically confined marigold structure of rGO-VSe2 as an advanced cathode material for aqueous zinc-ion battery. Journal of Alloys and Compounds, 2021, 882, 160704.	2.8	17
307	Unraveling the role of ion-solvent chemistry in stabilizing small-molecule organic cathode for potassium-ion batteries. Energy Storage Materials, 2021, 43, 172-181.	9.5	18
308	Thermotolerant and fireproof gel polymer electrolyte toward high-performance and safe lithium-ion battery. Journal of Energy Chemistry, 2022, 65, 9-18.	7.1	47

#	Article	IF	CITATIONS
309	Lithium battery enhanced by the combination of in-situ generated poly(ionic liquid) systems and TiO2 nanoparticles. Journal of Membrane Science, 2022, 641, 119891.	4.1	13
310	Status and challenges facing representative anode materials for rechargeable lithium batteries. Journal of Energy Chemistry, 2022, 66, 260-294.	7.1	149
311	A new flame-retardant polymer electrolyte with enhanced Li-ion conductivity for safe lithium-sulfur batteries. Journal of Energy Chemistry, 2022, 65, 616-622.	7.1	26
312	Highly Concentrated NaN(SO ₂ F) ₂ /3-Methylsulfolane Electrolyte Solution Showing High Na-Ion Transference Number under Anion-Blocking Conditions. Electrochemistry, 2021, 89, 590-596.	0.6	3
313	Stable cycling via absolute intercalation in graphite-based lithium-ion battery incorporated by solidified ether-based polymer electrolyte. Materials Advances, 2021, 2, 3898-3905.	2.6	4
314	Fabrication of a microcapsule extinguishing agent with a core–shell structure for lithium-ion battery fire safety. Materials Advances, 0, , .	2.6	14
315	Principle in developing novel fluorinated sulfone electrolyte for high voltage lithium-ion batteries. Energy and Environmental Science, 2021, 14, 3029-3034.	15.6	44
316	Non-flammable liquid electrolytes for safe batteries. Materials Horizons, 2021, 8, 2913-2928.	6.4	58
317	Advanced Highâ€Performance Potassium–Chalcogen (S, Se, Te) Batteries. Small, 2021, 17, e2004369.	5.2	45
318	High-voltage and intrinsically safe supercapacitors based on a trimethyl phosphate electrolyte. Journal of Materials Chemistry A, 2021, 9, 20725-20736.	5.2	26
319	Understanding the interfacial reactions of LiCoO ₂ positive electrodes in aqueous lithium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 3657-3663.	3.2	11
320	A lithiophilic carbon scroll as a Li metal host with low tortuosity design and "Dead Li―self-cleaning capability. Journal of Materials Chemistry A, 2021, 9, 13332-13343.	5.2	15
321	Self-assembled cationic organic nanosheets: role of positional isomers in a guanidinium-core for efficient lithium-ion conduction. Chemical Science, 2021, 12, 13878-13887.	3.7	5
322	A Halogenâ€Free and Flameâ€Retardant Sodium Electrolyte Compatible with Hard Carbon Anodes. Advanced Materials Interfaces, 2021, 8, .	1.9	9
323	Aqueous Rechargeable Metalâ€Ion Batteries Working at Subzero Temperatures. Advanced Science, 2021, 8, 2002590.	5.6	89
324	Recent Advances in Stability of Carbonâ€Based Anodes for Potassiumâ€lon Batteries. Batteries and Supercaps, 2021, 4, 554-570.	2.4	25
325	Cocoon Silk-Derived, Hierarchically Porous Carbon as Anode for Highly Robust Potassium-Ion Hybrid Capacitors. Nano-Micro Letters, 2020, 12, 113.	14.4	74
326	Recent progress in aqueous based flexible energy storage devices. Energy Storage Materials, 2020, 30, 260-286.	9.5	87

#	Article	IF	CITATIONS
327	New Concepts in Electrolytes. Chemical Reviews, 2020, 120, 6783-6819.	23.0	554
328	Integration of Localized Electric-Field Redistribution and Interfacial Tin Nanocoating of Lithium Microparticles toward Long-Life Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 650-659.	4.0	24
329	Theoretically predicting the feasibility of highly-fluorinated ethers as promising diluents for non-flammable concentrated electrolytes. Scientific Reports, 2020, 10, 21966.	1.6	6
330	The Efficiency of Aqueous Vermiculite Dispersion Fire Extinguishing Agent on Suppressing Three Typical Power Batteries. Journal of Electrochemical Energy Conversion and Storage, 2021, 18, .	1.1	4
331	Electrochemical Evaluation of Lithium-Metal Anode in Highly Concentrated Ethylene Carbonate Based Electrolytes. Electrochemistry, 2020, 88, 540-547.	0.6	14
332	A Highâ€performance Lithium Metal Battery with a Multilayer Hybrid Electrolyte. Energy and Environmental Materials, 2023, 6, .	7.3	41
333	MXene for aqueous zinc-based energy storage devices. Functional Materials Letters, 2021, 14, .	0.7	15
334	Implanting a Fireâ€Extinguishing Alkyl in Sodium Metal Battery Electrolytes via a Functional Molecule. Advanced Functional Materials, 2022, 32, 2109378.	7.8	15
335	Charge transport modelling of Lithium-ion batteries. European Journal of Applied Mathematics, 2022, 33, 983-1031.	1.4	9
336	Zn Metal Anodes for Zn-Ion Batteries in Mild Aqueous Electrolytes: Challenges and Strategies. Nanomaterials, 2021, 11, 2746.	1.9	31
337	Fireâ€Retardant, Stableâ€Cycling and Highâ€Safety Sodium Ion Battery. Angewandte Chemie, 2021, 133, 27292-27300.	1.6	17
338	Fireâ€Retardant, Stableâ€Cycling and Highâ€Safety Sodium Ion Battery. Angewandte Chemie - International Edition, 2021, 60, 27086-27094.	7.2	63
339	3.ãfŠãf^ãfªã,¦ãfã,ä,ªãf³é›»æ±ãŠã,^ã³ã,«ãfªã,¦ãfã,ä,ªãf³é›»æ±ç"``有機電解液ã®ç"ç©¶å‹•å•. Den	ki Mag aku	2 0 19, 87, 20
340	Electrolyte-dependent formation of solid electrolyte interphase and ion intercalation revealed by in situ surface characterizations. Journal of Energy Chemistry, 2022, 67, 718-726.	7.1	20
341	High-Safety and Dendrite-Free Lithium Metal Batteries Enabled by Building a Stable Interface in a Nonflammable Medium-Concentration Phosphate Electrolyte. ACS Applied Materials & Interfaces, 2021, 13, 50869-50877.	4.0	25
342	Highâ€Voltage and Highâ€Safety Practical Lithium Batteries with Ethylene Carbonateâ€Free Electrolyte. Advanced Energy Materials, 2021, 11, 2102299.	10.2	59
343	Solvation-protection-enabled high-voltage electrolyte for lithium metal batteries. Nano Energy, 2022, 92, 106720.	8.2	34
344	Effects of Li ion-solvent interaction on ionic transport and electrochemical properties in highly concentrated cyclic carbonate electrolytes. Journal of Non-Crystalline Solids: X, 2021, 11-12, 100071.	0.5	5

#	Article	IF	CITATIONS
345	Designing Advanced Electrolytes for Lithium Secondary Batteries Based on the Coordination Number Rule. ACS Energy Letters, 2021, 6, 4282-4290.	8.8	60
346	Robust Trioptical-State Electrochromic Energy Storage Device Enabled by Reversible Metal Electrodeposition. ACS Energy Letters, 2021, 6, 4328-4335.	8.8	36
347	An optimized combination inspired by the wooden-barrel effect for Li-S pouch cells. Cell Reports Physical Science, 2021, 2, 100659.	2.8	3
348	In-situ Li+insertion induced lithiophilic expansion graphite for dendrite-free lithium metal anode. Electrochimica Acta, 2022, 403, 139646.	2.6	8
349	Surface coating of a LiNi _{<i>x</i>} Co _{<i>y</i>} Al _{1â^'<i>x</i>â^'<i>y</i>} O ₂ (<i>x</i> > 0.85) cathode with Li ₃ PO ₄ for applying a water-based hybrid polymer binder during Li-ion battery preparation. RSC Advances, 2021, 11, 37150-37161.	1.7	3
350	Sodium ion conducting flame-retardant gel polymer electrolyte for sodium batteries and electric double layer capacitors (EDLCs). Journal of Energy Storage, 2022, 46, 103899.	3.9	17
351	Boosting safety and performance of lithium-ion battery enabled by cooperation of thermotolerant fire-retardant composite membrane and nonflammable electrolyte. Chemical Engineering Journal, 2022, 432, 134394.	6.6	21
352	Solvation Structure of Li ⁺ in Concentrated Acetonitrile and <i>N</i> , <i>N</i> -Dimethylformamide Solutions Studied by Neutron Diffraction with ⁶ Li/ ⁷ Li Isotopic Substitution Methods. Journal of Physical Chemistry B, 2020, 124. 10456-10464.	1.2	9
353	Mitigating Thermal Runaway Propagation of NCM 811 Prismatic Batteries via Hollow Glass Microspheres Plates. SSRN Electronic Journal, 0, , .	0.4	0
354	Highly safe and stable lithium–metal batteries based on a quasi-solid-state electrolyte. Journal of Materials Chemistry A, 2022, 10, 651-663.	5.2	32
355	A fire-retarding electrolyte using triethyl phosphate as a solvent for sodium-ion batteries. Chemical Communications, 2022, 58, 533-536.	2.2	10
356	Asymmetric donor-acceptor molecule-regulated core-shell-solvation electrolyte for high-voltage aqueous batteries. Joule, 2022, 6, 399-417.	11.7	50
357	Chemical stability of sulfide solid-state electrolytes: stability toward humid air and compatibility with solvents and binders. Energy and Environmental Science, 2022, 15, 991-1033.	15.6	100
358	Electrode Alignment: Ignored but Important Design Parameter in Assembling Coin-Type Full Lithium-Ion Cells. Journal of the Electrochemical Society, 2022, 169, 023502.	1.3	12
359	Deep Eutectic Solvents as Nonflammable Electrolytes for Durable Sodiumâ€ion Batteries. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	12
360	Four Phosphoniumâ€based Ionic Liquids. Synthesis, Characterization and Electrochemical Performance as Electrolytes for Silicon Anodes. ChemistrySelect, 2022, 7, .	0.7	3
361	Process‣tructureâ€Formulation Interactions for Enhanced Sodium Ion Battery Development: A Review. ChemPhysChem, 2022, 23, .	1.0	4
362	A Self-Supporting Covalent Organic Framework Separator with Desolvation Effect for High Energy Density Lithium Metal Batteries. ACS Energy Letters, 2022, 7, 885-896.	8.8	76

#	Article	IF	CITATIONS
363	The charge density of intercalants inside layered birnessite manganese oxide nanosheets determining Zn-ion storage capability towards rechargeable Zn-ion batteries. Journal of Materials Chemistry A, 2022, 10, 5561-5568.	5.2	11
364	Multiscale Simulation of Solid Electrolyte Interface Formation in Fluorinated Diluted Electrolytes with Lithium Anodes. ACS Applied Materials & amp; Interfaces, 2022, 14, 7972-7979.	4.0	10
365	Toward a New Generation of Fireâ€6afe Energy Storage Devices: Recent Progress on Fireâ€Retardant Materials and Strategies for Energy Storage Devices. Small Methods, 2022, 6, e2101428.	4.6	12
366	Thermal-triggered fire-extinguishing separators by phase change materials for high-safety lithium-ion batteries. Energy Storage Materials, 2022, 47, 445-452.	9.5	41
367	Nonflammable Quasi-Solid Electrolyte for Energy-Dense and Long-Cycling Lithium Metal Batteries with High-Voltage Ni-Rich Layered Cathodes. SSRN Electronic Journal, 0, , .	0.4	0
368	New nonflammable tributyl phosphate based localized high concentration electrolytes for lithium metal batteries. Sustainable Energy and Fuels, 2022, 6, 2198-2206.	2.5	7
369	Kinetics of Interfacial Ion Transfer in Lithium-Ion Batteries: Mechanism Understanding and Improvement Strategies. ACS Applied Materials & Interfaces, 2022, 14, 22706-22718.	4.0	56
371	2D Materials for Allâ€Solidâ€State Lithium Batteries. Advanced Materials, 2022, 34, e2108079.	11.1	45
372	Unveiling the Cation Exchange Reaction between the NASICON Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ Solid Electrolyte and the pyr13TFSI Ionic Liquid. Journal of the American Chemical Society, 2022, 144, 3442-3448.	6.6	15
374	Mechanism of Ion Conduction and Dynamics in Tris(<i>N</i> , <i>N</i> -dimethylformamide) Perchloratosodium Solid Electrolytes. Journal of Physical Chemistry C, 2022, 126, 4744-4750.	1.5	3
375	Lithium Saltâ€Induced In Situ Polymerizations Enable Double Network Polymer Electrolytes. Macromolecular Rapid Communications, 2022, 43, e2100853.	2.0	1
376	Challenge and Strategies in Room Temperature Sodium–Sulfur Batteries: A Comparison with Lithium–Sulfur Batteries. Small, 2022, 18, e2107368.	5.2	32
377	Batteries for wearables. National Science Review, 2023, 10, .	4.6	4
378	Nonâ€Electrode Components for Rechargeable Aqueous Zinc Batteries: Electrolytes, Solidâ€Electrolyteâ€Interphase, Current Collectors, Binders, and Separators. Advanced Materials, 2022, 34, e2108206.	11.1	58
379	Comprehensive review on <scp>zincâ€ion</scp> battery anode: Challenges and strategies. InformaÄnÃ- Materiály, 2022, 4, .	8.5	121
380	Nitrile Electrolyte Strategy for 4.9 <scp>Vâ€Class Lithiumâ€Metal</scp> Batteries Operating in Flame. Energy and Environmental Materials, 2023, 6, .	7.3	10
381	Anion–Diluent Pairing for Stable High-Energy Li Metal Batteries. ACS Energy Letters, 2022, 7, 1338-1347.	8.8	108
382	Effect of Concentration and Temperature on the Structure and Ion Transport in Diglyme-Based Sodium-Ion Electrolyte. Journal of Physical Chemistry B, 2022, 126, 2119-2129.	1.2	5

#	Article	IF	CITATIONS
383	Design Strategies of Flame-Retardant Additives for Lithium Ion Electrolyte. Journal of Electrochemical Energy Conversion and Storage, 2022, 19, .	1.1	7
384	Safe and Energy-Dense Flexible Solid-State Lithium–Oxygen Battery with a Structured Three-Dimensional Polymer Electrolyte. ACS Sustainable Chemistry and Engineering, 2022, 10, 4894-4903.	3.2	4
385	Nonflammable quasi-solid electrolyte for energy-dense and long-cycling lithium metal batteries with high-voltage Ni-rich layered cathodes. Energy Storage Materials, 2022, 47, 542-550.	9.5	34
386	Polyzwitterionic double-network ionogel electrolytes for supercapacitors with cryogenic-effective stability. Chemical Engineering Journal, 2022, 438, 135607.	6.6	37
387	Understanding fluorine-free electrolytes via small-angle X-ray scattering. Journal of Energy Chemistry, 2022, 70, 340-346.	7.1	10
388	Non-flammable fluorobenzene-diluted highly concentrated electrolytes enable high-performance Li-metal and Li-ion batteries. Journal of Colloid and Interface Science, 2022, 619, 399-406.	5.0	12
389	Designing safer lithium-based batteries with nonflammable electrolytes: A review. EScience, 2021, 1, 163-177.	25.0	147
390	Toward an Inâ€Depth Fire Hazard and Resistance Diagnosis of Flame Retarded Liquid Electrolytes for Safer Lithiumâ€lon Batteries. Advanced Materials Technologies, 0, , 2101055.	3.0	0
391	Highâ€Polarity Fluoroalkyl Ether Electrolyte Enables Solvationâ€Free Li ⁺ Transfer for Highâ€Rate Lithium Metal Batteries. Advanced Science, 2022, 9, e2104699.	5.6	54
392	Tailoring the Solvation Sheath of Cations by Constructing Electrode Frontâ€Faces for Rechargeable Batteries. Advanced Materials, 2022, 34, e2201339.	11.1	66
393	Electrolyte chemistry for lithium metal batteries. Science China Chemistry, 2022, 65, 840-857.	4.2	25
394	Nonflammable, robust and flexible electrolytes enabled by phosphate coupled polymer–polymer for Li-metal batteries. Journal of Colloid and Interface Science, 2022, 621, 222-231.	5.0	11
395	Sodium-Ion Batteries: Chemistry of Biomass Derived Disordered Carbon in Carbonate and Ether-Based Electrolytes. SSRN Electronic Journal, 0, , .	0.4	0
396	Low-temperature and high-voltage planar micro-supercapacitors based on anti-freezing hybrid gel electrolyte. Journal of Energy Chemistry, 2022, 72, 195-202.	7.1	12
397	Dynamic Reversible Evolution of Solid Electrolyte Interface in Nonflammable Triethyl Phosphate Electrolyte Enabling Safe and Stable Potassiumâ€ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	32
398	Advances in electrode/electrolyte interphase for sodium-ion batteries from half cells to full cells. Cell Reports Physical Science, 2022, 3, 100868.	2.8	35
399	Anionâ€Reinforced Solvation for a Gradient Inorganicâ€Rich Interphase Enables Highâ€Rate and Stable Sodium Batteries. Angewandte Chemie, 2022, 134, .	1.6	12
400	Regulating Solvation Structure in Nonflammable Amideâ€Based Electrolytes for Long ycling and Safe Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, .	10.2	47

#	Article	IF	CITATIONS
401	Superconcentrated NaFSA–KFSA Aqueous Electrolytes for 2 V-Class Dual-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 23507-23517.	4.0	7
402	Anionâ€Reinforced Solvation for a Gradient Inorganicâ€Rich Interphase Enables Highâ€Rate and Stable Sodium Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	66
403	Perspectives on Improving the Safety and Sustainability of High Voltage Lithiumâ€lon Batteries Through the Electrolyte and Separator Region. Advanced Energy Materials, 2022, 12, .	10.2	64
404	Synergistically reinforced poly(ethylene oxide)-based composite electrolyte for high-temperature lithium metal batteries. Journal of Colloid and Interface Science, 2022, 622, 1029-1036.	5.0	7
405	Electrospun poly(ionic liquid) nanofiber separators with high lithium-ion transference number for safe ionic-liquid-based lithium batteries in wide temperature range. Materials Today Physics, 2022, 25, 100716.	2.9	2
406	Salt–solvent synchro-constructed robust electrolyte–electrode interphase for high-voltage lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 19903-19913.	5.2	10
407	Recent Developments in Electrolyte Materials for Rechargeable Batteries. Materials Horizons, 2022, , 369-415.	0.3	1
409	A nonflammable low-concentration electrolyte for lithium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 12575-12587.	5.2	10
410	Active material and interphase structures governing performance in sodium and potassium ion batteries. Chemical Science, 2022, 13, 6121-6158.	3.7	41
411	Design Rationale and Device Configuration of Lithiumâ€lon Capacitors. Advanced Energy Materials, 2022, 12, .	10.2	40
412	Interfacial engineering to achieve an energy density of over 200 Wh kgâ^'1 in sodium batteries. Nature Energy, 2022, 7, 511-519.	19.8	130
413	Electrolyte Solvation Structure Design for Sodium Ion Batteries. Advanced Science, 2022, 9, .	5.6	138
414	An Encapsulationâ€Based Sodium Storage via Znâ€Singleâ€Atom Implanted Carbon Nanotubes. Advanced Materials, 2022, 34, .	11.1	27
415	Enhanced interphasial stability of hard carbon for sodium-ion battery via film-forming electrolyte additive. Nano Research, 2023, 16, 3823-3831.	5.8	10
416	Fire-extinguishing, recyclable liquefied gas electrolytes for temperature-resilient lithium-metal batteries. Nature Energy, 2022, 7, 548-559.	19.8	60
417	Electrodeposited Layered Sodium Vanadyl Phosphate (Na _{<i>x</i>} VOPO ₄ · <i>n</i> H ₂ O) as Cathode Material for Aqueous Rechargeable Zinc Metal Batteries. Energy & Fuels, 2022, 36, 6520-6531.	2.5	3
418	Low-solvation electrolytes for high-voltage sodium-ion batteries. Nature Energy, 2022, 7, 718-725.	19.8	137
419	A Review of Battery Thermal Management Methods for Electric Vehicles. Journal of Electrochemical Energy Conversion and Storage, 2023, 20, .	1.1	1

#	Article	IF	CITATIONS
420	Stable Sodium-Based Batteries with Advanced Electrolytes and Layered-Oxide Cathodes. ACS Applied Materials & Interfaces, 2022, 14, 28865-28872.	4.0	11
421	Sodium-ion batteries: Chemistry of biomass derived disordered carbon in carbonate and ether-based electrolytes. Electrochimica Acta, 2022, 425, 140744.	2.6	23
422	Strong ion pairing at the origin of modified Li-cation solvation and improved performances of dual-salt electrolytes. Journal of Power Sources, 2022, 541, 231644.	4.0	5
423	LiNO3 and TMP enabled high voltage room-temperature solid-state lithium metal battery. Chemical Engineering Journal, 2022, 448, 137743.	6.6	12
424	Materials, electrodes and electrolytes advances for next-generation lithium-based anode-free batteries. Oxford Open Materials Science, 2022, 2, .	0.5	5
425	Wide-temperature range and high safety electrolytes for high-voltage Li-metal batteries. Nano Research, 2023, 16, 8260-8268.	5.8	12
426	A Low-Cost Liquid-Phase Method of Synthesizing High-Performance Li ₆ PS ₅ Cl Solid-Electrolyte. ACS Applied Materials & Interfaces, 2022, 14, 30824-30838.	4.0	11
427	Stable Highâ€Temperature Lithiumâ€Metal Batteries Enabled by Strong Multiple Ion–Dipole Interactions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	24
428	Stable Highâ€Temperature Lithiumâ€Metal Batteries Enabled by Strong Multiple Ion–Dipole Interactions Angewandte Chemie, 0, , .	1.6	0
429	Interface engineering by gelling sulfolane for durable and safe Li/LiCoO2 batteries in wide temperature range. Science China Materials, 2022, 65, 2967-2974.	3.5	2
430	Customized design of electrolytes for high-safety and high-energy-density lithium batteries. EnergyChem, 2022, 4, 100082.	10.1	4
431	Electrolytes for Multivalent Metalâ€lon Batteries: Current Status and Future Prospect. ChemSusChem, 2022, 15, .	3.6	7
432	Hitherto Unknown Solvent and Anion Pairs in Solvation Structures Reveal New Insights into Highâ€Performance Lithiumâ€ion Batteries. Advanced Science, 2022, 9, .	5.6	39
433	Controlled polymerization for lithium-ion batteries. Energy Storage Materials, 2022, 52, 598-636.	9.5	4
434	Nonâ€Flammable Ester Electrolyte with Boosted Stability Against Li for Highâ€Performance Li Metal Batteries. Angewandte Chemie, 2022, 134, .	1.6	8
435	(3-Aminopropyl)triethoxysilane as an Electrolyte Additive for Enhancing the Thermal Stability of Silicon Anode in Lithium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 11254-11262.	2.5	5
436	Stabilizing Interfacial Reactions for Stable Cycling of Highâ€Voltage Sodium Batteries. Advanced Functional Materials, 2022, 32, .	7.8	19
437	Improving Compatibility between Trimethyl Phosphate and Graphite Anodes by Preconstructing a Stable Solid Electrolyte Interphase Film. ACS Applied Energy Materials, 2022, 5, 11370-11378.	2.5	4

#	Article	IF	CITATIONS
438	Nonâ€Flammable Ester Electrolyte with Boosted Stability Against Li for Highâ€Performance Li Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	55
439	Challenges and Opportunities of Ionic Liquid Electrolytes for Rechargeable Batteries. Crystal Growth and Design, 2022, 22, 5770-5784.	1.4	10
440	Monitoring lithium metal plating/stripping in anode free//NMC811 battery by in-situ X-rays diffraction. Journal of Power Sources, 2022, 546, 231941.	4.0	8
441	Uniform and oriented zinc deposition induced by artificial Nb2O5 Layer for highly reversible Zn anode in aqueous zinc ion batteries. Energy Storage Materials, 2022, 52, 40-51.	9.5	56
442	Theoretical progresses in silicon anode substitutes for Lithium-ion batteries. Journal of Energy Storage, 2022, 55, 105352.	3.9	8
443	Unexpected pressure effects on sulfide-based polymer-in-ceramic solid electrolytes for all-solid-state batteries. Nano Energy, 2022, 102, 107679.	8.2	11
444	Self-adaptable gel polymer electrolytes enable high-performance and all-round safety lithium ion batteries. Energy Storage Materials, 2022, 53, 62-71.	9.5	23
445	Temperature-responsive solid-electrolyte-interphase enabling stable sodium metal batteries in a wide temperature range. Nano Energy, 2022, 103, 107746.	8.2	18
446	High ionic conductivity and ion conduction mechanism in ZIF-8 based quasi-solid-state electrolytes: a positron annihilation and broadband dielectric spectroscopy study. Physical Chemistry Chemical Physics, 2022, 24, 24999-25009.	1.3	4
447	Two-dimensional metallic VTe ₂ demonstrating fast ion diffusion for aqueous zinc-ion batteries. Sustainable Energy and Fuels, 2022, 6, 4626-4635.	2.5	6
448	Non-flammable, dilute, and hydrous organic electrolytes for reversible Zn batteries. Chemical Science, 2022, 13, 11320-11329.	3.7	43
449	A trade-off-free fluorosulfate-based flame-retardant electrolyte additive for high-energy lithium batteries. Journal of Materials Chemistry A, 2022, 10, 21933-21940.	5.2	4
450	Electrochemical Evaluation of Lithium Metal Batteries Using Separators with Different Pore Sizes. Electrochemistry, 2022, 90, 107005-107005.	0.6	4
451	A fluorinated SEI layer induced by a fire-retardant gel polymer electrolyte boosting lateral dendrite growth. Journal of Materials Chemistry A, 2022, 10, 21905-21911.	5.2	9
452	Highâ€Voltage and Fastâ€Charge Electrolytes for Lithiumâ€ion Batteries. Batteries and Supercaps, 2022, 5, .	2.4	2
453	Dipole–Dipole Interaction Induced Electrolyte Interfacial Model To Stabilize Antimony Anode for High-Safety Lithium-Ion Batteries. ACS Energy Letters, 2022, 7, 3545-3556.	8.8	54
454	NaAlCl ₄ : New Halide Solid Electrolyte for 3 V Stable Cost-Effective All-Solid-State Na-Ion Batteries. ACS Energy Letters, 2022, 7, 3293-3301.	8.8	23
455	Thermal Runaway of Nonflammable Localized Highâ€Concentration Electrolytes for Practical LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ Graphite‣iO Pouch Cells. Advanced Science, 2022, 9, .	5.6	15

#	Article	IF	Citations
456	High-Voltage and Intrinsically Safe Sodium Metal Batteries Enabled by Nonflammable Fluorinated Phosphate Electrolytes. ACS Applied Materials & amp; Interfaces, 2022, 14, 43387-43396.	4.0	7
457	Lithiumâ€Metal Batteries via Suppressing Li Dendrite Growth and Improving Coulombic Efficiency. Small Structures, 2022, 3, .	6.9	26
458	Tailored Organic Cathode Material with Multiâ€Active Site and Compatible Groups for Stable Quasiâ€Solidâ€State Lithiumâ€Organic Batteries. Advanced Functional Materials, 2022, 32, .	7.8	21
459	Controlling Intermolecular Interaction and Interphase Chemistry Enabled Sustainable Waterâ€tolerance LiMn ₂ O ₄ Li ₄ Ti ₅ O ₁₂ Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
460	Innermost Ion Association Configuration Is a Key Structural Descriptor of Ionic Liquids at Electrified Interfaces. Journal of Physical Chemistry Letters, 2022, 13, 9464-9472.	2.1	3
461	Controlling Intermolecular Interaction and Interphase Chemistry Enabled Sustainable Waterâ€tolerance LiMn2O4 Li4Ti5O12 Batteries. Angewandte Chemie, 0, , .	1.6	2
462	Key Advances of High-voltage Solid-state Lithium Metal Batteries Based on Poly(ethylene oxide) Polymer Electrolytes. Acta Chimica Sinica, 2022, 80, 1410.	0.5	2
463	Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes. Chemical Reviews, 2022, 122, 17155-17239.	23.0	67
464	Surface positive-charged modification of inorganic fillers to optimize lithium ion conductive pathways in composite polymer electrolytes for lithium-metal batteries. Journal of Colloid and Interface Science, 2023, 630, 634-644.	5.0	6
465	Nonflammable Localized High-Concentration Electrolytes with Long-Term Cycling Stability for High-Performance Li Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 48694-48704.	4.0	5
468	Review of the structure and performance of through-holed anodes and cathodes prepared with a picosecond pulsed laser for lithium-ion batteries. International Journal of Extreme Manufacturing, 2023, 5, 012001.	6.3	8
469	Reductive gas manipulation at early self-heating stage enables controllable battery thermal failure. Joule, 2022, 6, 2810-2820.	11.7	39
470	Progress and Prospects of Inorganic Solid‣tate Electrolyteâ€Based Allâ€Solidâ€State Pouch Cells. Advanced Materials, 2023, 35, .	11.1	30
471	Electrolyte design for stable electrode-electrolyte interphase to enable high-safety and high-voltage batteries. ETransportation, 2023, 15, 100216.	6.8	7
472	Unveiling the structure, chemistry, and formation mechanism of an in-situ phosphazene flame retardant-derived interphase layer in LiFePO4 cathode. Chemical Engineering Journal, 2023, 455, 140678.	6.6	8
473	Electrode/electrolyte additives for practical sodium-ion batteries: a mini review. Inorganic Chemistry Frontiers, 2022, 10, 37-48.	3.0	11
474	Cellulose-based gel-type electrolyte fabricated by lyophilization to enable uniform Li+ ion flux distribution for stable Li metal anodes with high-rate capability. Applied Materials Today, 2023, 30, 101705.	2.3	3
475	Improved interfacial compatibility between flame-retardant electrolytes and graphite electrodes by tuning the solvation structure of Li+. Applied Surface Science, 2023, 612, 155936.	3.1	4

#	Article	IF	CITATIONS
476	Is Nonflammability of Electrolyte Overrated in the Overall Safety Performance of Lithium Ion Batteries? A Sobering Revelation from a Completely Nonflammable Electrolyte. Advanced Energy Materials, 2023, 13, .	10.2	19
477	Solvent Reorganization and Additives Synergistically Enable High-Performance Na-Ion Batteries. ACS Energy Letters, 2023, 8, 477-485.	8.8	6
478	Na Storage Activity or Inertness of P-Configurations in N, P Dual-Doped Carbon Nanofibers: Bulk vs Surface. ACS Applied Materials & Interfaces, 2022, 14, 56836-56846.	4.0	4
479	Electrolyte Engineering for Safer <scp>Lithiumâ€lon</scp> Batteries: A Review. Chinese Journal of Chemistry, 2023, 41, 1119-1141.	2.6	16
480	Concentrated electrolytes for rechargeable lithium metal batteries. Materials Futures, 2023, 2, 012101.	3.1	18
481	Influence of AlPO ₄ Impurity on the Electrochemical Properties of NASICONâ€Type Li _{1.5} Al _{0.5} Ti _{1.5} (PO ₄) ₃ Solid Electrolyte. ChemElectroChem, 2022, 9, .	1.7	3
482	Nonflammable Dual-Salt Electrolytes for Graphite/LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Lithium-Ion Batteries: Li ⁺ Solvation Structure and Electrode/Eelectrolyte Interphase. ACS Applied Energy Materials, 2022, 5, 15491-15501.	2.5	3
483	Nonâ€Flammable Electrolyte Enables Highâ€Voltage and Wideâ€Temperature Lithiumâ€lon Batteries with Fast Charging. Angewandte Chemie, 2023, 135, .	1.6	12
484	Nonâ€Flammable Electrolyte Enables Highâ€Voltage and Wideâ€Temperature Lithiumâ€lon Batteries with Fast Charging. Angewandte Chemie - International Edition, 2023, 62, .	7.2	42
485	Solvation Structures in Electrolyte and the Interfacial Chemistry for Na-Ion Batteries. ACS Energy Letters, 2022, 7, 4501-4503.	8.8	8
486	Mitigating Electron Leakage of Solid Electrolyte Interface for Stable Sodiumâ€lon Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	25
487	Mitigating Electron Leakage of Solid Electrolyte Interface for Stable Sodiumâ€lon Batteries. Angewandte Chemie, 2023, 135, .	1.6	2
488	A comparative analysis of volumetric, viscometric and conductometric properties of Triethylmethylammonium Tetrafluoroborate (TEMABF4) and Tetraethylammonium Tetrafluoroborate (TEABF4) in pure propylene carbonate (PC) and binary aqueous propylene carbonate solvents. Journal of Molecular Liquids, 2023, 374, 121244.	2.3	3
489	Novel quasi-solid-state composite electrolytes boost interfacial Li+ transport for long-cycling and dendrite-free lithium metal batteries. Energy Storage Materials, 2023, 56, 258-266.	9.5	3
490	A tailored electrolyte for safe and durable potassium ion batteries. Energy and Environmental Science, 2023, 16, 305-315.	15.6	90
491	High-safety and high-efficiency electrolyte design for 4.6 V-class lithium-ion batteries with a non-solvating flame-retardant. Chemical Science, 2023, 14, 1184-1193.	3.7	15
492	Electrochemical Reactivation of Dead Li ₂ S for Liâ^'S Batteries in Nonâ€Solvating Electrolytes. Angewandte Chemie, 2023, 135, .	1.6	0
493	High-stable nonflammable electrolyte regulated by coordination-number rule for all-climate and safer lithium-ion batteries. Energy Storage Materials, 2023, 55, 836-846.	9.5	14

ARTICLE IF CITATIONS Electrochemical Reactivation of Dead Li₂S for Liâ[^]S Batteries in Nonâ€Solvating 494 7.2 15 Electrolytes. Angewandte Chemie - International Edition, 2023, 62, . Innovative discontinuous-SEI constructed in ether-based electrolyte to maximize the capacity of hard 7.1 carbon anode. Journal of Energy Chemistry, 2023, 79, 459-467. On enhancing the Li-ion conductivity of quasi-solid-state electrolytes by suppressing the flexibility of zeolitic imidazolate framework-8 <i>via</i> a mixed ligand strategy. Physical Chemistry Chemical 496 1.3 1 Physics, 0, , . An intrinsically non-flammable organic electrolyte for wide temperature range supercapacitors. 497 Chemical Engineering Journal, 2023, 457, 141265. Realizing high reversibility and safety of Zn anode via binary mixture of organic solvents. Nano 498 8.2 20 Energy, 2023, 107, 108175. High-performance lithium metal batteries enabled by fluorinated aromatic diluent assisted nonflammable localized high-concentration electrolytes. Journal of Power Sources, 2023, 559, 232631. 499 4.0 Polymeric concentrated electrolyte enables simultaneous stabilization of electrode/electrolyte 500 6.8 15 interphases for quasiâ€solidâ€state lithium metal batteries. EcoMat, 2023, 5, . In-situ construction of barium-induced cathode electrolyte interphase to enable mechanostable 2.5 high-performance zinc-ion batteries. Materials Today Energy, 2023, 32, 101254. A comparative analysis of the influence of hydrofluoroethers as diluents on solvation structure and 502 electrochemical performance in non-flammable electrolytes. Journal of Materials Chemistry A, 2023, 5.2 8 11, 4111-4125. Designing Zwitterionic Gel Polymer Electrolytes with Dualâ€Ion Solvation Regulation Enabling Stable 10.2 Sodium Ion Capacitor. Advanced Energy Materials, 2023, 13, . A Review of Solid Electrolyte Interphase (SEI) and Dendrite Formation in Lithium Batteries. 504 13.130 Electrochemical Energy Reviews, 2023, 6, . Deep and Comprehensive Study on the Impact of Different Phosphazeneâ€Based Flameâ€Retardant Additives on Electrolyte Properties, Performance, and Durability of Highâ€Voltage LMNOâ€Based Lithiumâ€Ion 1.8 Batteries. Énergy Technology, 2023, 11, . Current trends, challenges, and prospects in material advances for improving the overall safety of 506 6.6 11 lithium-ion battery pack. Chemical Engineering Journal, 2023, 463, 142336. In-situ construction of high-mechanical-strength and fast-ion-conductivity interphase for anode-free 7.1 Li battery. Journal of Energy Chemistry, 2023, 80, 207-214. A nonflammable diethyl ethylphosphonate-based electrolyte improved by synergistic effect of lithium 508 0 4.0 difluoro(oxalato)borate and fluoroethylene carbonate. Journal of Power Sources, 2023, 570, 233051. Novelty method based on thermal trigger mechanism for high energy density lithium-ion battery 509 3.9 safety. Journal of Energy Storage, 2023, 64, 107231. Molecular Design of Asymmetric Cyclophosphamide as Electrolyte Additive for High-Voltage 510 8.8 6 Lithium-Ion Batteries. ACS Energy Letters, 2023, 8, 2241-2251. Moderately concentrated electrolyte enabling high-performance lithium metal batteries with a wide 7.1 working temperature range. Journal of Energy Chemistry, 2023, 79, 201-210.

#	Article	IF	CITATIONS
512	A highâ€safety, flameâ€retardant celluloseâ€based separator with encapsulation structure for lithiumâ€ion battery. SmartMat, 2023, 4, .	6.4	5
513	Recent progress in electrolyte design for advanced lithium metal batteries. SmartMat, 2023, 4, .	6.4	13
514	Electrochemical and Mechanical Performance According to Regulating Sintering Time of Cubic Li _{6.1} Ga _{0.3} La ₃ Zr ₂ O ₁₂ Solid Electrolyte. ACS Applied Energy Materials, 2023, 6, 2812-2818.	2.5	2
515	Non-flammable Phosphate-Grafted Nanofiber Separator Enabling Stable-Cycling and High-Safety Lithium Metal Batteries. Journal of the Electrochemical Society, 2023, 170, 030513.	1.3	1
516	Surface-dipole-directed formation of stable solid electrolyte interphase. Cell Reports Physical Science, 2023, 4, 101324.	2.8	3
517	Lowâ€Cost, Highâ€Strength Celluloseâ€based Quasiâ€Solid Polymer Electrolyte for Solidâ€State Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	21
518	Lowâ€Cost, Highâ€Strength Celluloseâ€based Quasiâ€Solid Polymer Electrolyte for Solidâ€State Lithiumâ€Metal Batteries. Angewandte Chemie, 2023, 135, .	1.6	2
519	Design of Localized High-Concentration Electrolytes via Donor Number. ACS Energy Letters, 2023, 8, 1723-1734.	8.8	21
520	Nanostructured Conducting Polymers and Their Applications in Energy Storage Devices. Polymers, 2023, 15, 1450.	2.0	12
521	An Intrinsically Nonflammable Electrolyte for Prominentâ€5afety Lithium Metal Batteries with High Energy Density and Cycling Stability. Advanced Functional Materials, 2023, 33, .	7.8	4
522	Highly stable lithium-ion wide-temperature storage performance achieved via anion-dominated solvation structure and electric double-layer engineering. Journal of Power Sources, 2023, 567, 232975.	4.0	1
523	Flameâ€Retardant Additive/Coâ€Solvent Contained in Organic Solution for Safe Second Batteries: A Review. ChemElectroChem, 2023, 10, .	1.7	1
524	Thermally insulating and fireâ€retardant bioâ€mimic structural composites with a negative Poisson's ratio for battery protection. , 2023, 5, .		4
525	Zwitterionic poly(ionic liquids)-based polymer electrolytes for Lithium-ion batteries applications. Ionics, 2023, 29, 2249-2259.	1.2	3
526	Revealing Structural Insights of Solid Electrolyte Interphase in Highâ€Concentrated Nonâ€Flammable Electrolyte for Li Metal Batteries by Cryoâ€TEM. Small, 2023, 19, .	5.2	4
527	Emerging electrolytes with fluorinated solvents for rechargeable lithium-based batteries. Chemical Society Reviews, 2023, 52, 2713-2763.	18.7	58
528	Regulating the Solvation Structure of Electrolyte via Dual–Salt Combination for Stable Potassium Metal Batteries. Advanced Science, 2023, 10, .	5.6	7
529	Binderâ€Induced Ultrathin SEI for Defectâ€Passivated Hard Carbon Enables Highly Reversible Sodiumâ€Ion Storage. Advanced Energy Materials, 2023, 13, .	10.2	30

#	Article	IF	CITATIONS
532	Recent advances of Na3V2(PO4)3 as cathode for rechargeable zinc-based batteries. Carbon Letters, 2023, 33, 989-1012.	3.3	2
539	Building Better Full Manganese-Based Cathode Materials for Next-Generation Lithium-Ion Batteries. Electrochemical Energy Reviews, 2023, 6, .	13.1	10
555	Recent progress in nonflammable electrolytes and cell design for safe Li-ion batteries. Journal of Materials Chemistry A, 2023, 11, 15576-15599.	5.2	3
561	Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries. Chemical Society Reviews, 2023, 52, 5255-5316.	18.7	24
574	Electrolyte designs for safer lithium-ion and lithium-metal batteries. Journal of Materials Chemistry A, 0, , .	5.2	0
578	Interfacial engineering of the layered oxide cathode materials for sodium-ion battery. Nano Research, 2024, 17, 1441-1464.	5.8	3
582	Recent status, key strategies and challenging perspectives of fast-charging graphite anodes for lithium-ion batteries. Energy and Environmental Science, 2023, 16, 4834-4871.	15.6	14
594	From Liquid to Solid-State Lithium Metal Batteries: Fundamental Issues and Recent Developments. Nano-Micro Letters, 2024, 16, .	14.4	1
610	Lithium batteries - Secondary systems – All-solid state systems Halides and oxy-halides lithium-based solid electrolytes. , 2023, , .		0
624	Tailored nonwoven supported non-flammable quasi-solid electrolyte enables an ultra-stable sodium metal battery. Energy Advances, 2024, 3, 419-423.	1.4	О