m6A RNA methylation-mediated HNF3Î³ reduction rendedifferentiation and sorafenib resistance

Signal Transduction and Targeted Therapy 5, 296

DOI: 10.1038/s41392-020-00299-0

Citation Report

#	Article	IF	CITATIONS
1	miR-552 promotes the proliferation and metastasis of cervical cancer cells through targeting MUC15 pathway. Journal of Cancer, 2021, 12, 6094-6104.	2.5	3
2	miR-186 Inhibits Liver Cancer Stem Cells Expansion via Targeting PTPN11. Frontiers in Oncology, 2021, 11, 632976.	2.8	16
3	N6-methyladenosine-dependent signalling in cancer progression and insights into cancer therapies. Journal of Experimental and Clinical Cancer Research, 2021, 40, 146.	8.6	26
4	N6-methyladenosine methyltransferases: functions, regulation, and clinical potential. Journal of Hematology and Oncology, 2021, 14, 117.	17.0	105
5	Upregulation of lncRNA NIFK-AS1 in hepatocellular carcinoma by m6A methylation promotes disease progression and sorafenib resistance. Human Cell, 2021, 34, 1800-1811.	2.7	44
6	Mechanisms of Pharmacoresistance in Hepatocellular Carcinoma: New Drugs but Old Problems. Seminars in Liver Disease, 2022, 42, 087-103.	3.6	10
7	The RNA m6A writer METTL14 in cancers: Roles, structures, and applications. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188609.	7.4	58
8	The functional roles, cross-talk and clinical implications of m6A modification and circRNA in hepatocellular carcinoma. International Journal of Biological Sciences, 2021, 17, 3059-3079.	6.4	24
9	miR-369 inhibits Liver Cancer progression by targeting ZEB1 pathway and predicts the prognosis of HCC patients. Journal of Cancer, 2021, 12, 3067-3076.	2.5	13
10	Comprehensive analysis of N6-methyladenosine -related long non-coding RNAs and immune cell infiltration in hepatocellular carcinoma. Bioengineered, 2021, 12, 1708-1724.	3.2	17
11	Comprehensive Analysis of m6A RNA Methylation Regulators in the Prognosis and Immune Microenvironment of Multiple Myeloma. Frontiers in Oncology, 2021, 11, 731957.	2.8	4
12	Hepatocellular Carcinoma Differentiation: Research Progress in Mechanism and Treatment. Frontiers in Oncology, 2021, 11, 790358.	2.8	4
13	Potential applications of <scp> <i>N</i> ⁶â€methyladenosine </scp> modification in the prognosis and treatment of cancers via modulating apoptosis, autophagy, and ferroptosis. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1719.	6.4	11
14	ZC3H13 Inhibits the Progression of Hepatocellular Carcinoma through m6A-PKM2-Mediated Glycolysis and Enhances Chemosensitivity. Journal of Oncology, 2021, 2021, 1-15.	1.3	14
15	miR-4461 inhibits the progression of Gallbladder carcinoma via regulating EGFR/AKT signaling. Cell Cycle, 2022, 21, 1166-1177.	2.6	5
16	Targeting IGF2BP2 Promotes Differentiation of Radioiodine Refractory Papillary Thyroid Cancer via Destabilizing RUNX2 mRNA. Cancers, 2022, 14, 1268.	3.7	7
17	The regulatory role of <scp>N⁶</scp> â€methyladenosine modification in the interaction between host and microbes. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1725.	6.4	8
18	Downregulation of MUC15 by miR-183-5p.1 promotes liver tumor-initiating cells properties and tumorigenesis via regulating c-MET/PI3K/AKT/SOX2 axis. Cell Death and Disease, 2022, 13, 200.	6.3	13

CITATION REPORT

#	Article	IF	CITATIONS
19	The Emerging Role of N6-Methyladenosine RNA Methylation as Regulators in Cancer Therapy and Drug Resistance. Frontiers in Pharmacology, 2022, 13, 873030.	3.5	8
20	RNA N6â€methyladenosine in nonocular and ocular disease. Journal of Cellular Physiology, 2022, 237, 1686-1710.	4.1	4
21	Notch–Sox9 Axis Mediates Hepatocyte Dedifferentiation in KrasG12V-Induced Zebrafish Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2022, 23, 4705.	4.1	5
22	miR-600 promotes ovarian cancer cells stemness, proliferation and metastasis via targeting KLF9. Journal of Ovarian Research, 2022, 15, 52.	3.0	10
23	Identification of m6A-Related IncRNA to Predict the Prognosis of Patients with Hepatocellular Carcinoma. BioMed Research International, 2022, 2022, 1-19.	1.9	2
24	m6A Regulator-Mediated Methylation Modification Patterns and Characteristics in COVID-19 Patients. Frontiers in Public Health, 2022, 10, .	2.7	5
25	The Pyroptosis-Related Long Noncoding RNA Signature Predicts Prognosis and Indicates Immunotherapeutic Efficiency in Hepatocellular Carcinoma. Frontiers in Cell and Developmental Biology, 2022, 10, .	3.7	13
26	Novel insights into m ⁶ A modification of coding and non-coding RNAs in tumor biology: From molecular mechanisms to therapeutic significance. International Journal of Biological Sciences, 2022, 18, 4432-4451.	6.4	13
27	RNA N6-Methyladenine Modification, Cellular Reprogramming, and Cancer Stemness. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	1
28	Mechanisms of resistance to tyrosine kinase inhibitors in liver cancer stem cells and potential therapeutic approaches. Essays in Biochemistry, 0, , .	4.7	5
29	Mutual regulation between N6-methyladenosine (m6A) modification and circular RNAs in cancer: impacts on therapeutic resistance. Molecular Cancer, 2022, 21, .	19.2	29
30	The role, mechanism, and application of RNA methyltransferase METTL14 in gastrointestinal cancer. Molecular Cancer, 2022, 21, .	19.2	15
31	m6A modification-mediated BATF2 suppresses metastasis and angiogenesis of tongue squamous cell carcinoma through inhibiting VEGFA. Cell Cycle, 2023, 22, 100-116.	2.6	4
32	Role of <scp>m6A</scp> RNA methylation in the development of hepatitis B virusâ€associated hepatocellular carcinoma. Journal of Gastroenterology and Hepatology (Australia), 2022, 37, 2039-2050.	2.8	3
33	Critical role of m6A modification in T-helper cell disorders. Molecular Immunology, 2022, 151, 1-10.	2.2	1
34	RNA m6A modification in liver biology and its implication in hepatic diseases and carcinogenesis. American Journal of Physiology - Cell Physiology, 2022, 323, C1190-C1205.	4.6	8
35	m6A-Related Angiogenic Genes to Construct Prognostic Signature, Reveal Immune and Oxidative Stress Landscape, and Screen Drugs in Hepatocellular Carcinoma. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-24.	4.0	4
36	The role of RNA modification in hepatocellular carcinoma. Frontiers in Pharmacology, 0, 13, .	3.5	6

CITATION REPORT

#	Article	IF	CITATIONS
37	The emerging therapeutic target of dynamic and reversible N6-methyladenosine modification during cancer development. Frontiers in Oncology, 0, 12, .	2.8	1
38	Differentiation therapy: Unlocking phenotypic plasticity of hepatocellular carcinoma. Critical Reviews in Oncology/Hematology, 2022, 180, 103854.	4.4	5
39	The role of RNA modification in the generation of acquired drug resistance in glioma. Frontiers in Genetics, 0, 13, .	2.3	1
40	M6A regulator-mediated immune infiltration and methylation modification in hepatocellular carcinoma microenvironment and immunotherapy. Frontiers in Pharmacology, 0, 13, .	3.5	2
41	Inhibition of USP1 activates ER stress through Ubi-protein aggregation to induce autophagy and apoptosis in HCC. Cell Death and Disease, 2022, 13, .	6.3	6
42	N ⁶ â€methyladenosineâ€modified lncRNA ARHCAP5â€AS1 stabilises CSDE1 and coordinates oncogenic RNA regulons in hepatocellular carcinoma. Clinical and Translational Medicine, 2022, 12, .	4.0	19
43	RNA N6-methyladenosine modification mediates downregulation of NR4A1 to facilitate malignancy of cervical cancer. Cell and Bioscience, 2022, 12, .	4.8	5
44	RNA N6-methyladenosine modification in female reproductive biology and pathophysiology. Cell Communication and Signaling, 2023, 21, .	6.5	3
45	Aberrant RNA m6A modification in gastrointestinal malignancies: versatile regulators of cancer hallmarks and novel therapeutic opportunities. Cell Death and Disease, 2023, 14, .	6.3	3
47	N6-Methyladenosine–Mediated Up-Regulation of FZD10 Regulates Liver Cancer Stem Cells' Properties and Lenvatinib Resistance Through WNT/l²-Catenin and Hippo Signaling Pathways. Gastroenterology, 2023, 164, 990-1005.	1.3	47
48	Emerging roles of m6A RNA modification in cancer therapeutic resistance. Experimental Hematology and Oncology, 2023, 12, .	5.0	7
49	Characterization of prognostic value and immunological roles of RAB22A in hepatocellular carcinoma. Frontiers in Immunology, 0, 14, .	4.8	4
50	Exosome-derived circCCAR1 promotes CD8 + T-cell dysfunction and anti-PD1 resistance in hepatocellular carcinoma. Molecular Cancer, 2023, 22, .	19.2	47
51	m6A RNA methylation-mediated upregulation of HLF promotes intrahepatic cholangiocarcinoma progression by regulating the FZD4/l²-catenin signaling pathway. Cancer Letters, 2023, 560, 216144.	7.2	9
52	Post-transcriptional modification of m6A methylase METTL3 regulates ERK-induced androgen-deprived treatment resistance prostate cancer. Cell Death and Disease, 2023, 14, .	6.3	3
53	Important oncogenic and immunogenic roles of SPP1 and CSF1 in hepatocellular carcinoma. , 2023, 40, .		1
54	N6-Methyladenosine modification and prognostic analysis of UBE2K in hepatocellular carcinoma: a potential target?. Critical Reviews in Eukaryotic Gene Expression, 2023, , .	0.9	0
55	Role of m6A modification in immune microenvironment of digestive system tumors. Biomedicine and Pharmacotherapy, 2023, 164, 114953.	5.6	1

CITATION REPORT

#	Article	IF	CITATIONS
56	Crosstalk between gut microbiota and RNA N6-methyladenosine modification in cancer. FEMS Microbiology Reviews, 2023, 47, .	8.6	0
57	Relevance of the organic anion transporting polypeptide 1B3 (OATP1B3) in the personalized pharmacological treatment of hepatocellular carcinoma. Biochemical Pharmacology, 2023, 214, 115681.	4.4	1
58	METTL14 drives growth and metastasis of non-small cell lung cancer by regulating pri-miR-93-5p maturation and TXNIP expression. Genes and Genomics, 0, , .	1.4	0
59	Methyltransferase-like proteins in cancer biology and potential therapeutic targeting. Journal of Hematology and Oncology, 2023, 16, .	17.0	9
60	METTL14‑mediated RNA methylation in digestive system tumors. International Journal of Molecular Medicine, 2023, 52, .	4.0	1
61	N6-methyladenosine (m6A) in cancer therapeutic resistance: Potential mechanisms and clinical implications. Biomedicine and Pharmacotherapy, 2023, 167, 115477.	5.6	2
62	Characterisation of forkhead box protein A3 as a key transcription factor for hepatocyte regeneration. JHEP Reports, 2023, , 100906.	4.9	0
63	Dual-functional extracellular vesicles enable synergistic treatment via m6A reader YTHDF1-targeting epigenetic regulation and chemotherapy. Nano Research, 0, , .	10.4	1
64	m6A-modified RIPK4 facilitates proliferation and cisplatin resistance in epithelial ovarian cancer. Gynecologic Oncology, 2024, 180, 99-110.	1.4	2
65	Recent Advances in RNA m6A Modification in Solid Tumors and Tumor Immunity. Cancer Treatment and Research, 2023, , 95-142.	0.5	0
66	RNA modification-mediated mRNA translation regulation in liver cancer: mechanisms and clinical perspectives. Nature Reviews Gastroenterology and Hepatology, 2024, 21, 267-281.	17.8	0
67	Liquid-liquid phase separation-related IncRNA prognostic signature and ZNF32-AS2 as a novel biomarker in hepatocellular carcinoma. Computers in Biology and Medicine, 2024, 169, 107975.	7.0	1
68	New horizons for the role of RNA N6-methyladenosine modification in hepatocellular carcinoma. Acta Pharmacologica Sinica, 0, , .	6.1	0
69	<i>N6</i> -Methyladenosine Reader YTHDF1 Promotes Stemness and Therapeutic Resistance in Hepatocellular Carcinoma by Enhancing NOTCH1 Expression. Cancer Research, 2024, 84, 827-840.	0.9	0
70	Characterization of <scp>m6A RNA</scp> methylation mediated immune heterogeneity and functional validation in <scp>hepatocellular carcinoma</scp> . Environmental Toxicology, 0, , .	4.0	0
71	N6-methyladenosine (m6A) modification in hepatocellular carcinoma. Biomedicine and Pharmacotherapy, 2024, 173, 116365.	5.6	0
72	Landscape of m6A RNA methylation regulators in liver cancer and its therapeutic implications. Frontiers in Pharmacology, 0, 15, .	3.5	0