Antibacterial and Antiviral Functional Materials: Chemi Tackling COVID-19-like Pandemics

ACS Pharmacology and Translational Science

4, 8-54

DOI: 10.1021/acsptsci.0c00174

Citation Report

#	Article	IF	CITATIONS
1	Chemical design principles of next-generation antiviral surface coatings. Chemical Society Reviews, 2021, 50, 9741-9765.	38.1	31
2	Functionality of nanomaterials and its technological aspects – Used in preventing, diagnosing and treating COVID-19. Materials Today: Proceedings, 2021, 47, 2337-2344.	1.8	7
3	New Insights into Antibacterial and Antifungal Properties, Cytotoxicity and Aquatic Ecotoxicity of Flame Retardant PA6/DOPO-Derivative Nanocomposite Textile Fibers. Polymers, 2021, 13, 905.	4.5	5
4	Polymeric surfaces with biocidal action: challenges imposed by the SARS-CoV-2, technologies employed, and future perspectives. Journal of Polymer Research, 2021, 28, 1.	2.4	7
5	Antiviral Nanomaterials for Designing Mixed Matrix Membranes. Membranes, 2021, 11, 458.	3.0	16
6	Biodegradable Nanofibrous Membranes for Medical and Personal Protection Applications: Manufacturing, Anti-COVID-19 and Anti-Multidrug Resistant Bacteria Evaluation. Materials, 2021, 14, 3862.	2.9	11
7	Reactive Fibrous Materials for Decontamination of Chemical and Biological Threats. Key Engineering Materials, 0, 893, 3-10.	0.4	1
8	Natural and synthetic functional materials for broad spectrum applications in antimicrobials, antivirals and cosmetics. Polymers for Advanced Technologies, 2021, 32, 4204-4222.	3.2	11
9	Antiviral properties of copper and its alloys to inactivate covid-19 virus: a review. BioMetals, 2021, 34, 1217-1235.	4.1	83
10	Efficacy of Bacterial Nanocellulose in Hard Tissue Regeneration: A Review. Materials, 2021, 14, 4777.	2.9	23
11	Synthesis of Antimicrobial Benzimidazole–Pyrazole Compounds and Their Biological Activities. Antibiotics, 2021, 10, 1002.	3.7	44
12	A sensitive and smartphone colorimetric assay for the detection of hydrogen peroxide based on antibacterial and antifungal matcha extract silver nanoparticles enriched with polyphenol. Polymer Bulletin, 2022, 79, 7363-7389.	3.3	12
13	Smart Materials Enabled with Artificial Intelligence for Healthcare Wearables. Advanced Functional Materials, 2021, 31, 2105482.	14.9	56
14	Active bayerite underpinned Ag2O/Ag: an efficient antibacterial nanohybrid combating microbial contamination. Metallomics, 2021, 13, .	2.4	6
15	Surface Design for Antibacterial Materials: From Fundamentals to Advanced Strategies. Advanced Science, 2021, 8, e2100368.	11.2	150
16	Theranostic Advances of Bionanomaterials against Gestational Diabetes Mellitus: A Preliminary Review. Journal of Functional Biomaterials, 2021, 12, 54.	4.4	21
17	DNA Studies: Latest Spectroscopic and Structural Approaches. Micromachines, 2021, 12, 1094.	2.9	1
18	Nanomaterials in the Management of Gram-Negative Bacterial Infections. Nanomaterials, 2021, 11, 2535.	4.1	23

#	Article	IF	CITATIONS
20	Engineered Bioactive Polymeric Surfaces by Radiation Induced Graft Copolymerization: Strategies and Applications. Polymers, 2021, 13, 3102.	4.5	18
21	A reactive copper-organophosphate-MXene heterostructure enabled antibacterial, self-extinguishing and mechanically robust polymer nanocomposites. Chemical Engineering Journal, 2022, 430, 132712.	12.7	64
22	Mechanisms of instantaneous inactivation of SARS-CoV-2 by silicon nitride bioceramic. Materials Today Bio, 2021, 12, 100144.	5.5	18
23	Bio-based antimicrobial delivery systems for improving microbial safety and quality of raw or minimally processed foods. Current Opinion in Food Science, 2021, 41, 189-200.	8.0	5
24	Dual-role of graphene/bacterial cellulose/magnetite nanocomposites as highly effective antibacterial agent and visible-light-driven photocatalyst. Journal of Environmental Chemical Engineering, 2021, 9, 106014.	6.7	11
25	Recent breakthroughs of antibacterial and antiviral protective polymeric materials during COVID-19 pandemic and after pandemic: Coating, packaging, and textile applications. Current Opinion in Colloid and Interface Science, 2021, 55, 101480.	7.4	54
26	Sterilization Characteristics of Cu Doped ZnO Microrods. Material Sciences, 2021, 11, 1028-1035.	0.0	0
27	Facile and green synthesis of decatungstate-based nickel(<scp>ii</scp>) complex coated onto modified Fe ₃ O ₄ nanoparticles with enhanced antimicrobial activity against antibiotic-resistant bacteria. CrystEngComm, 2021, 23, 3919-3928.	2.6	6
28	Nanotechnology Interventions in the Management of COVID-19: Prevention, Diagnosis and Virus-Like Particle Vaccines. Vaccines, 2021, 9, 1129.	4.4	26
29	Biocide effect against SARS-CoV-2 and ESKAPE pathogens of a noncytotoxic silver-copper nanofilm. Biomedical Materials (Bristol), 2021, 17, .	3.3	9
30	A diagnosis approach for semiconductor properties evaluation from ab initio calculations: Ag-based materials investigation. Journal of Solid State Chemistry, 2022, 305, 122670.	2.9	7
31	A Novel Copper-Binding Peptide That Self-Assembles Into a Transparent Antibacterial and Antiviral Coating. Frontiers in Bioengineering and Biotechnology, 2021, 9, 736679.	4.1	4
32	Masks for COVIDâ€19. Advanced Science, 2022, 9, e2102189.	11.2	89
33	Aptameric nanobiosensors for the diagnosis of COVID-19: An update. Materials Letters, 2022, 308, 131237.	2.6	10
34	Proposed approaches for coronaviruses elimination from wastewater: Membrane techniques and nanotechnology solutions. Nanotechnology Reviews, 2021, 11, 1-25.	5.8	11
35	Andrographis paniculata absorbed ZnO nanofibers as a potential antimicrobial agent for biomedical applications. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2021, 12, 045002.	1.5	7
36	Biomaterialomics: Data-Driven Pathways to Next-Generation Biomaterials. SSRN Electronic Journal, 0, ,	0.4	1
37	Copper/Silver Bimetallic Nanoparticles Supported on Aluminosilicate Geomaterials as Antibacterial Agents. ACS Applied Nano Materials, 2022, 5, 1472-1483.	5.0	20

#	Article	IF	CITATIONS
38	Chitosan/benzyloxy-benzaldehyde modified ZnO nano template having optimized and distinct antiviral potency to human cytomegalovirus. Carbohydrate Polymers, 2022, 278, 118965.	10.2	23
39	A fluorescent nanoprobe based on AlEgen: Visualization of silver ions and sensing applications in cancer cells and S. aureus. Dyes and Pigments, 2022, 198, 110027.	3.7	6
40	Advanced materials for precise detection and antibiotic-free inhibition of bacteria. Materials Today Advances, 2022, 13, 100204.	5.2	18
41	Preparation of Gentamicin Conjugated Cellulose Nanocrystals and Evaluation of Efficacy on Different Microorganisms. European Journal of Science and Technology, 0, , .	0.5	0
42	Inhibition of Escherichia Virus MS2, Surrogate of SARS-CoV-2, via Essential Oils-Loaded Electrospun Fibrous Mats: Increasing the Multifunctionality of Antivirus Protection Masks. Pharmaceutics, 2022, 14, 303.	4.5	13
43	KrF Laser and Plasma Exposure of PDMS–Carbon Composite and Its Antibacterial Properties. Materials, 2022, 15, 839.	2.9	4
44	Antibacterial self-cleaning binary and ternary hybrid photocatalysts of titanium dioxide with silver and graphene. Journal of Environmental Chemical Engineering, 2022, 10, 107275.	6.7	18
45	Ag-enriched TiO2 nanocoating apposite for self-sanitizing/ self-sterilizing/ self-disinfecting of glass surfaces. Materials Chemistry and Physics, 2022, 282, 125803.	4.0	12
46	Enhancement of Antiviral Effect of Plastic Film against SARS-CoV-2: Combining Nanomaterials and Nanopatterns with Scalability for Mass Manufacturing. Nano Letters, 2021, 21, 10149-10156.	9.1	22
47	Sustainable and safer nanoclay composites for multifaceted applications. Green Chemistry, 2022, 24, 3081-3114.	9.0	28
48	Violacein-Embedded Nanofiber Filters with Antiviral and Antibacterial Activities. SSRN Electronic Journal, O, , .	0.4	0
49	Biomaterialomics: Data science-driven pathways to develop fourth-generation biomaterials. Acta Biomaterialia, 2022, 143, 1-25.	8.3	42
50	Towards the Sustainability of the Plastic Industry through Biopolymers: Properties and Potential Applications to the Textiles World. Polymers, 2022, 14, 692.	4.5	41
51	Electrospinning research and products: The road and the way forward. Applied Physics Reviews, 2022, 9, .	11.3	50
52	Plasma-controlled surface wettability: recent advances and future applications. International Materials Reviews, 2023, 68, 82-119.	19.3	29
53	Nanoparticle Engineered Photocatalytic Paints: A Roadmap to Self-Sterilizing against the Spread of Communicable Diseases. Catalysts, 2022, 12, 326.	3.5	11
54	An Overview for the Design of Antimicrobial Polymers: From Standard Antibiotic-Release Systems to Topographical and Smart Materials. Annual Review of Materials Research, 2022, 52, 1-24.	9.3	6
55	Quantitative Fluorescent Detection of Antibacterial Activity with Pyrene-Bearing Tannic Acid. Bulletin of the Chemical Society of Japan, 2022, 95, 748-750.	3.2	0

#	Article	IF	CITATIONS
56	Construction of Ag-decorated ZnO with oxygen vacancies for enhanced antibacterial activity via increased H2O2 production. Journal of Inorganic Biochemistry, 2022, 231, 111778.	3.5	9
57	Biomaterials: Antimicrobial surfaces in biomedical engineering and healthcare. Current Opinion in Biomedical Engineering, 2022, 22, 100373.	3.4	21
58	Fabrication of Fe ₃ O ₄ /Agâ€TiO ₂ magnetic nanocomposite for antibacterial applications. Micro and Nano Letters, 2022, 17, 9-15.	1.3	4
59	Silver Nanoparticle-Decorated Personal Protective Equipment for Inhibiting Human Coronavirus Infectivity. ACS Applied Nano Materials, 2022, 5, 309-317.	5.0	22
60	Antiviral Strategies Using Natural Source-Derived Sulfated Polysaccharides in the Light of the COVID-19 Pandemic and Major Human Pathogenic Viruses. Viruses, 2022, 14, 35.	3.3	18
61	Rare Earth Molybdate with Antiviral and Antibacterial Properties. Journal of the Japan Society of Colour Material, 2021, 94, 314-320.	0.1	0
62	Electrospun Medical Sutures for Wound Healing: A Review. Polymers, 2022, 14, 1637.	4.5	44
63	Probing the competitive inhibitor efficacy of frog-skin alpha helical AMPs identified against ACE2 binding to SARS-CoV-2 S1 spike protein as therapeutic scaffold to prevent COVID-19. Journal of Molecular Modeling, 2022, 28, 128.	1.8	4
64	Chitosan with pendant (<i>E</i>)-5-((4-acetylphenyl)diazenyl)-6-aminouracil groups as synergetic antimicrobial agents. Journal of Materials Chemistry B, 2022, 10, 4048-4058.	5.8	7
65	Antiviral Biodegradable Food Packaging and Edible Coating Materials in the COVID-19 Era: A Mini-Review. Coatings, 2022, 12, 577.	2.6	14
66	Antimicrobial adhesive films by plasma-enabled polymerisation of m-cresol. Scientific Reports, 2022, 12, 7560.	3.3	6
67	Nanoscale copper and silver thin film systems display differences in antiviral and antibacterial properties. Scientific Reports, 2022, 12, 7193.	3.3	29
68	Interrogating the Effect of Assay Media on the Rate of Virus Inactivation of Highâ€Touch Copper Surfaces: A Materials Science Approach. Advanced Materials Interfaces, 2022, 9, .	3.7	5
69	Rheological behaviour and antibacterial activities of MWCNTs/ lyotropic liquid crystals based nanocolloids. Liquid Crystals, 2022, 49, 1822-1840.	2.2	6
70	Azobenzene quaternary ammonium salt for photo-controlled and reusable disinfection without drug resistance. Chinese Chemical Letters, 2023, 34, 107543.	9.0	3
71	Viruses monkeying around with surgical safety: Monkeypox preparedness in surgical settings. Journal of Medical Virology, 2023, 95, .	5.0	10
72	Porphyrin covalent organic nanodisks synthesized using acid-assisted exfoliation for improved bactericidal efficacy. Nanoscale Advances, 2022, 4, 2992-2995.	4.6	1
73	Hydrogel Nanocomposites Derived from Renewable Resources. ACS Symposium Series, 0, , 269-285.	0.5	2

		CITATION REPORT		
#	Article		IF	CITATIONS
74	Recent advances of carbon dots as new antimicrobial agents. SmartMat, 2022, 3, 226-	248.	10.7	56
75	Effects of εâ€polylysine and chitosan functionalization on pulp board properties for fo Journal of Applied Polymer Science, 0, , .	od packaging.	2.6	0
76	Surface Functionalities of Polymers for Biomaterial Applications. Polymers, 2022, 14, 2	307.	4.5	19
77	Thermoplastic elastomers containing antimicrobial and antiviral additives for mobility a Composites Part B: Engineering, 2022, 242, 110060.	pplications.	12.0	10
78	Thermal spray copper-based coatings against contamination of thermoplastic surfaces review. Engineering Science and Technology, an International Journal, 2022, 35, 10119		3.2	5
79	Antibacterial Performance of Protonated Polyaniline-Integrated Polyester Fabrics. Polyr 2617.	ners, 2022, 14,	4.5	8
80	Quenching Studies as Important Toolkit for Exploring Binding Propensity of Metal Com Serum Albumin and DNA (A Review). Pharmaceutical Chemistry Journal, 2022, 56, 545	ıplexes with -558.	0.8	2
81	Biomedical Applications of Dendrimer Functionalized Magnetic Nanoparticles. Chemist 7, .	rySelect, 2022,	1.5	1
82	Nanoparticles and essential oils with antiviral activity on packaging and surfaces: An ov their selection and application. Journal of Surfactants and Detergents, 2022, 25, 667-7	verview of '01.	2.1	4
83	A facile strategy for rapid in situ synthesis of Cu2O on PP non-woven fabric with durab antibacterial activities. Composites Communications, 2022, 34, 101271.	le	6.3	5
84	Delta SARS-CoV-2 inactivation and bactericidal performance of cotton wipes decorated nanoparticles like Brazilian heavy-fruited Myrciaria cauliflora. Materials Today Commun 2022, 33, 104288.	ł with TiO2/Ag ications,	1.9	3
85	In-situ formation of Ag NPs on the ribonic \hat{I}^3 -lactone-modified UiO-66-NH2: An effective organic synthesis and antibacterial applications. Process Biochemistry, 2022, 122, 149		3.7	7
86	Aptasensor: Surface protein detection in case of coronavirus diagnosis. , 2022, , 295-3	08.		0
87	Fabrication of antiviral nanofibers containing various Cu salts and ZnO nanorods by ele Journal of Industrial and Engineering Chemistry, 2022, 116, 572-580.	ctrospinning.	5.8	7
88	Superhydrophobic sponge decorated with hydrophobic MOF-5 nanocoating for efficier separation and antibacterial applications. Sustainable Materials and Technologies, 202	1t oil-water 2, 33, e00492.	3.3	9
89	Effect of Cu Modified Textile Structures on Antibacterial and Antiviral Protection. Mate 6164.	rials, 2022, 15,	2.9	11
90	Development of Functional Ophthalmic Materials Using Natural Materials and Gold Na Micromachines, 2022, 13, 1451.	noparticles.	2.9	3
91	Eco design for Ag-based solutions against SARS-CoV-2 and <i>E. coli</i> . Environment: 2022, 9, 4295-4304.	al Science: Nano,	4.3	4

#	Article	IF	CITATIONS
92	The formation of silver nanoparticles in solutions of sodium salts of carboxymethyl starch. Journal of the Textile Institute, 2023, 114, 1518-1526.	1.9	0
93	Effect of Reducing Agent on Characteristics and Antibacterial Activity of Copper-Containing Particles in Textile Materials. Materials, 2022, 15, 7623.	2.9	0
94	Surface antimicrobial functionalization with polymers: fabrication, mechanisms and applications. Journal of Materials Chemistry B, 2022, 10, 9349-9368.	5.8	13
95	Antiviral biomaterials. , 2023, , 519-536.		0
96	Current Development in Biomaterials—Hydroxyapatite and Bioglass for Applications in Biomedical Field: A Review. Journal of Functional Biomaterials, 2022, 13, 248.	4.4	31
97	Colloidal Cu-doped TiO2 nanocrystals containing oxygen vacancies for highly-efficient photocatalytic degradation of benzene and antibacterial. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658, 130741.	4.7	6
98	Generation of novel, hygienic, inhibitive, and cost-effective nanostructured Core-shell pigments. Progress in Organic Coatings, 2023, 175, 107325.	3.9	2
99	Review of the untapped potentials of antimicrobial materials in the construction sector. Progress in Materials Science, 2023, 133, 101065.	32.8	13
100	Nanostructured coatings based on metallic nanoparticles as viral entry inhibitor to combat COVID-19. Sustainable Materials and Technologies, 2023, 35, e00544.	3.3	1
101	Antibacterial and Antiviral Effects of Ag, Cu and Zn Metals, Respective Nanoparticles and Filter Materials Thereof against Coronavirus SARS-CoV-2 and Influenza A Virus. Pharmaceutics, 2022, 14, 2549.	4.5	8
102	Antibacterial and Antiviral Coating on Surfaces through Dopamine-Assisted Codeposition of an Antifouling Polymer and In Situ Formed Nanosilver. ACS Biomaterials Science and Engineering, 2023, 9, 329-339.	5.2	4
103	Highly stable, antiviral, antibacterial cotton textiles via molecular engineering. Nature Nanotechnology, 2023, 18, 168-176.	31.5	54
104	Mechanobactericidal Nanotopography on Nitrile Surfaces toward Antimicrobial Protective Gear. ACS Macro Letters, 0, , 227-233.	4.8	2
105	Application of antiviral activity of polymer. , 2023, , 591-615.		1
106	High in vitro activity of gold and silver nanoparticles from Solanum mammosum L. against SARS-CoV-2 surrogate Phi6 and viral model PhiX174. Nanotechnology, 2023, 34, 175705.	2.6	3
107	Role of nanocomposites for the prevention and treatment of viral infections in the health care system. , 2023, , 219-244.		0
108	Boosting the catalytic performance of Pt/TiO2 catalysts in room-temperature formaldehyde elimination by incorporating CeO2 promoters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 663, 131066.	4.7	1
109	Nanoengineering-based approaches for antimicrobial materials and coatings. , 2023, , 189-226.		0

#	Article	IF	Citations
	Zirconium-Based Metal–Organic Frameworks as Reusable Antibacterial Peroxide Carriers for		
110	Protective Textiles. Chemistry of Materials, 2023, 35, 2342-2352.	6.7	6
111	A Critical Review on Reusable Face Coverings: Mechanism, Development, Factors, and Challenges. Textiles, 2023, 3, 142-162.	4.1	3
112	Recent Development of Polyhydroxyalkanoates (PHA)-Based Materials for Antibacterial Applications: A Review. ACS Applied Bio Materials, 2023, 6, 1398-1430.	4.6	15
113	Surface modifications of low-density polyethylene films with hydrophobic and antibacterial properties by chitosan-based materials. Polymer-Plastics Technology and Materials, 2022, 61, 1706-1718.	1.3	1
114	Synthesis, Characterization and Structural Studies of Novel Pyrazoline Derivatives as Potential Inhibitors of NAD+ Synthetase in Bacteria and Cytochrome P450 51 in Fungi. ChemistrySelect, 2023, 8, .	1.5	0
115	Green synthesis of zinc oxide nanoparticles using Croton joufra leaf extract, characterization and antidiabetic activity. International Nano Letters, 2023, 13, 251-260.	5.0	1
116	Nanotechnology laying new foundations for combating COVID-19 pandemic. , 2023, , 459-506.		0
118	Antibacterial PES/Vancomycin ultrafiltration membranes with enhanced water flux and low BSA rejection. Water and Environment Journal, 2023, 37, 753-769.	2.2	0
119	Physicochemical Properties and Antiherpetic Activity of κ-Carrageenan Complex with Chitosan. Marine Drugs, 2023, 21, 238.	4.6	3
120	Biomaterial strategies to combat implant infections: new perspectives to old challenges. International Materials Reviews, 2023, 68, 1011-1049.	19.3	3
121	Inspired by nature: Fiber networks functionalized with tannic acid and condensed tannin-rich extracts of Norway spruce bark show antimicrobial efficacy. Frontiers in Bioengineering and Biotechnology, 0, 11, .	4.1	2
122	Nanomaterial-based smart coatings for antibacterial, antifungal, and antiviral activities. , 2023, , 271-302.		2
123	Green extraction of natural antibacterial cellulose-based nanofibers from pine cone. Cellulose, 2023, 30, 6219-6232.	4.9	1
124	Lignin as a Biomaterial for Bioimaging. , 2023, , 223-246.		0
125	Antiviral and antimicrobial polymer-based biomedical device coatings. , 2023, , 569-588.		0
126	Enhancement of polyvinylpyrrolidone on antimicrobial activity and mechanism of Copper(II)-β-cyclodextrin. Journal of Drug Delivery Science and Technology, 2023, 85, 104517.	3.0	1
127	Recent development in antiviral surfaces: Impact of topography and environmental conditions. Heliyon, 2023, 9, e16698.	3.2	1
128	Antibacterial and catalytic performance of rGO-CNT-ZrO ₂ composite. International Journal of Environmental Analytical Chemistry, 0, , 1-13.	3.3	1

#	Article	IF	Citations
	Bioceramics for antibacterial and antiviral applications. , 2023, , 347-367.		
129	bioceramics for antibacterial and antiviral applications. , 2023, , 347-367.		0
130	Membrane modification in enhancement of virus removal: A critical review. Journal of Environmental Sciences, 2023, , .	6.1	0
131	Do cationic polymer coatings retain their biocidal activity after washing with water?. Mendeleev Communications, 2023, 33, 562-564.	1.6	1
132	Functional Materials to Overcome Bacterial Barriers and Models to Advance Their Development. Advanced Functional Materials, 2023, 33, .	14.9	1
133	Antibacterial and virucidal activity of 28 extracts from plants endemic to Korea against <i>Bacillus cereus</i> , <i>Staphylococcus aureus</i> , and murine norovirus. Journal of Applied Biological Chemistry, 0, 66, .	0.4	0
134	Viscose nonwoven fabric with copper and its multifunctional properties. Cellulose, 2023, 30, 9843-9859.	4.9	1
135	Enhanced Antibacterial Activity at Ag–Cu Nanojunctions: Unveiling the Mechanism with Simple Surfaces of CuNPs-on-Ag Films. ACS Omega, 2023, 8, 34919-34927.	3.5	0
136	Antimicrobial hydrocolloid composite sponge with on-demand dissolving property, consisting mainly of zinc oxide nanoparticles, hydroxypropyl chitosan, and polyvinyl alcohol. Journal of Polymer Engineering, 2023, 43, 810-819.	1.4	0
137	<scp>Cypateâ€loaded hollow mesoporous Prussian blue</scp> nanoparticle/hydrogel system for efficient <scp>photodynamic therapy</scp> /photothermal therapy dualâ€modal antibacterial therapy. Journal of Biomedical Materials Research - Part A, 2024, 112, 53-64.	4.0	1
138	Bactericidal effects of copper-polypyrrole composites modified with silver nanoparticles against Gram-positive and Gram-negative bacteria. Journal of the Serbian Chemical Society, 2023, 88, 889-904.	0.8	0
140	Selective Laser Melting and Spark Plasma Sintering: A Perspective on Functional Biomaterials. Journal of Functional Biomaterials, 2023, 14, 521.	4.4	4
141	Biobased biodegradable hydrogel containing modified cellulosic nanofiber-ZnO nanohybrid as efficient metal ions removers with recyclable capacity. Journal of Cleaner Production, 2023, 430, 139748.	9.3	2
142	Preparation and Evaluation of Aminomalononitrile-Coated Ca–Sr Metal–Organic Frameworks as Drug Delivery Carriers for Antibacterial Applications. ACS Omega, 2023, 8, 41909-41917.	3.5	1
143	Quaternary ammonium-based coating of textiles is effective against bacteria and viruses with a low risk to human health. Scientific Reports, 2023, 13, .	3.3	1
144	Oxide anchored multi-charged metal complexes with binary nanoparticles for stable and efficient anti-bacterial coatings on cotton fabrics. Materials Advances, 2023, 4, 6213-6222.	5.4	0
145	Pore diameter and porosity in Cu foil anodization as an antibacterial material. AIP Conference Proceedings, 2023, , .	0.4	0
146	Use of copper-functionalized cotton waste in combined chemical and biological processes for production of valuable chemical compounds. RSC Advances, 2023, 13, 34681-34692.	3.6	0
147	Dendrimers Based Antibacterial and Antiviral Materials. ACS Symposium Series, 0, , 139-169.	0.5	Ο

		CITATION REPORT		
#	Article	IF		CITATIONS
148	Carbon Based Antibacterial and Antiviral Materials. ACS Symposium Series, 0, , 327-361.	0.	.5	0
149	Nanomaterial-Based Antibacterial and Antiviral Thin Film Coatings. ACS Symposium Series, C), , 203-250. 0.	.5	0
150	Biopolymers as Antibacterial and Antiviral Agents. ACS Symposium Series, 0, , 65-109.	0.	.5	0
151	Proteins and Peptides-Based Antibacterial and Antiviral Materials. ACS Symposium Series, 0,	, 293-325. 0.	.5	0
152	Antibacterial and Antiviral Functional Materials: Design Strategies, Classifications, Mechanis Advantages, Challenges, and Future Perspectives. ACS Symposium Series, 0, , 1-32.	ms, 0.	.5	0
154	Recent photoswitchable peptides with biological function. , 2023, , 467-508.			0
155	Antibacterial and Antiviral Materials Based on Biodegradable Polymers. ACS Symposium Seri 111-138.	ies, 0, , 0.	.5	0
156	MXene-Based Functional Materials as Antibacterial and Antiviral Agents. ACS Symposium Se 363-394.	rries, 0, , 0.	.5	0
160	Natural Products Based Antibacterial and Antiviral Materials. ACS Symposium Series, 0, , 252	1-291. 0.	.5	0
161	Preparation, Antibacterial and Antiviral Activity Measurements and Detection Methods. ACS Symposium Series, 0, , 33-64.	0.	.5	0
163	Antibacterial and Antiviral Functional Materials Based on Polymer Nanocomposites. ACS Syn Series, 0, , 171-202.	nposium 0.	.5	0
164	Polydopamineâ€Enabled Biomimetic Surface Engineering of Materials: New Insights and Pro Applications. Advanced Materials Interfaces, 2024, 11, .	mising 3.	.7	2
165	Multifunctional polymeric guanidine and hydantoin halamines with broad biocidal activity. International Journal of Pharmaceutics, 2024, 651, 123779.	5.	.2	0
166	Tailoring AA6063 for improving antibacterial properties. Applied Surface Science Advances, 2 100574.	2024, 19, 6.	.8	0
167	One-pot green solid-state synthesis of Cu2O/microcrystalline cellulose composite with high anti-pathogenic activity. Carbohydrate Polymers, 2024, 332, 121851.	10	0.2	0
168	Carbon-based two-dimensional (2D) materials: a next generation biocidal agent. Materials A 2024, 5, 1454-1461.	dvances, 5.	.4	0
169	Production and characterization of polyhydroxybutyrate bioplastic precursor from Parageob toebii using low-cost substrates and its potential antiviral activity. International Journal of Biological Macromolecules, 2024, 262, 129915.	pacillus 7.	5	0
170	A comprehensive investigation of ethyl 2-(3-methoxybenzyl) acrylate substituted pyrazolone Synthesis, computational and biological studies. Chemical Physics Impact, 2024, 8, 100531.	e analogue: 3.	.5	ο

#	Article	IF	CITATIONS
171	Chitosan-Based Structural Color Films for Humidity Sensing with Antiviral Effect. Nanomaterials, 2024, 14, 351.	4.1	0
172	Light, Copper, Action: Visible-Light Illumination Enhances Bactericidal Activity of Copper Particles. ACS Biomaterials Science and Engineering, 2024, 10, 1808-1818.	5.2	0
173	Anti-Microbial Activities of Mussel-Derived Recombinant Proteins against Gram-Negative Bacteria. Antibiotics, 2024, 13, 239.	3.7	0
174	A study on influence of wettability on antiviral coating using polyethylene glycol (PEG) and acrylic binder. Journal of Polymer Engineering, 2024, 44, 291-298.	1.4	Ο