Efficient Regulation of the Behaviors of Silk Fibroin Hyd Coupling of Hyaluronic Acid

Langmuir 37, 478-489 DOI: 10.1021/acs.langmuir.0c03136

Citation Report

#	Article	IF	CITATIONS
1	Conjugation of CMCS to silk fibroin for tuning mechanical and swelling behaviors of fibroin hydrogels. European Polymer Journal, 2021, 150, 110411.	5.4	13
2	Fabrication of Anisotropic Silk Fibroin-Cellulose Nanocrystals Cryogels with Tunable Mechanical Properties, Rapid Swelling, and Structural Recoverability via a Directional-Freezing Strategy. ACS Sustainable Chemistry and Engineering, 2021, 9, 12274-12285.	6.7	16
3	A facile strategy for the preparation of photothermal silk fibroin aerogels with antibacterial and oil-water separation abilities. Journal of Colloid and Interface Science, 2021, 603, 518-529.	9.4	34
4	Enzyme entrapment, biocatalyst immobilization without covalent attachment. Green Chemistry, 2021, 23, 4980-5005.	9.0	125
5	Silk Hydrogel Electrostatically Functionalized with a Polycationic Antimicrobial Peptide: Molecular Interactions, Gel Properties, and Antimicrobial Activity. Langmuir, 2022, 38, 50-61.	3.5	9
6	Hyaluronic acid/gelatin microcapsule functionalized with carbon nanotube through laccaseâ€eatalyzed crosslinking for fabrication of cardiac microtissue. Journal of Biomedical Materials Research - Part A, 2022, 110, 1866-1880.	4.0	9
7	Gold nanoparticles supported on ionicâ€liquidâ€functionalized cellulose (Au@CIL): A heterogeneous catalyst for the selective reduction of aromatic nitro compounds. Applied Organometallic Chemistry, 2022, 36, .	3.5	2
8	Efficient Regulation of Dyeing Behavior and Physical Properties of Bombyx mori Silks via Graft Polymerization of α-Lipoic Acid. Fibers and Polymers, 2022, 23, 2225-2233.	2.1	4
9	The relationship of rheological properties and the performance of silk fibroin hydrogels in tissue engineering application. Process Biochemistry, 2023, 125, 198-211.	3.7	10
10	Laccase-mediated formation of hydrogels based on silk-elastin-like protein polymers with ultra-high molecular weight. International Journal of Biological Macromolecules, 2023, 231, 123239.	7.5	5
11	A stretchable, self-adhesive, conductive double-network hydrogel and its application in flexible strain sensors. Journal of Polymer Research, 2023, 30, .	2.4	7
12	Accelerated Simple Preparation of Curcumin-Loaded Silk Fibroin/Hyaluronic Acid Hydrogels for Biomedical Applications. Polymers, 2023, 15, 504.	4.5	8
13	A comprehensive review of silk-fibroin hydrogels for cell and drug delivery applications in tissue engineering and regenerative medicine. Computational and Structural Biotechnology Journal, 2023, 21, 4868-4886.	4.1	1
14	Cross-Linking Methods of the Silk Protein Hydrogel in Oral and Craniomaxillofacial Tissue Regeneration. Tissue Engineering and Regenerative Medicine, 0, , .	3.7	0