Metal–Organic Frameworks for the Removal of Emer

Chemical Reviews 120, 8378-8415

DOI: 10.1021/acs.chemrev.9b00797

Citation Report

#	Article	IF	Citations
1	Best Practices for Evaluating New Materials as Adsorbents for Water Treatment., 2020, 2, 1532-1544.		47
2	Selective CO2 adsorption over functionalized Zr-based metal organic framework under atmospheric or lower pressure: Contribution of functional groups to adsorption. Chemical Engineering Journal, 2020, 402, 126254.	6.6	58
3	Removal of nitrogen-containing compounds from microalgae derived biofuel by adsorption over functionalized metal organic frameworks. Fuel, 2020, 280, 118622 .	3.4	31
4	Detoxification of Endocrine Disruptors in Water Using Visible-Light-Active Nanostructures: A Review. ACS Applied Nano Materials, 2020, 3, 11659-11687.	2.4	22
5	Heterogeneous Photocatalytic Selective Reductive Transformations of Organic Compounds: a Review. Theoretical and Experimental Chemistry, 2020, 56, 143-173.	0.2	12
6	Antibiotic Adsorption by Metal-Organic Framework (UiO-66): A Comprehensive Kinetic, Thermodynamic, and Mechanistic Study. Antibiotics, 2020, 9, 722.	1.5	17
7	Plasmonic hydrogels for capture, detection and removal of organic pollutants. Environmental Science: Nano, 2020, 7, 3888-3900.	2.2	23
8	Robust Anionic Ln ^{III} –Organic Frameworks: Chemical Fixation of CO ₂ , Tunable Light Emission, and Fluorescence Recognition of Fe ³⁺ . Inorganic Chemistry, 2020, 59, 13407-13415.	1.9	25
9	Distinct and Selective Amine- and Anion-Responsive Behaviors of an Electron-Deficient and Anion-Exchangeable Metal–Organic Framework. ACS Applied Materials & Interfaces, 2020, 12, 43958-43966.	4.0	33
10	Graphitic carbon nitride nanotubes: a new material for emerging applications. RSC Advances, 2020, 10, 34059-34087.	1.7	35
11	Rice Crust-Like ZnO/Ti3C2Tx MXene Hybrid Structures for Improved Photocatalytic Activity. Catalysts, 2020, 10, 1140.	1.6	35
12	Current Trends in the Application of Nanomaterials for the Removal of Emerging Micropollutants and Pathogens from Water. Molecules, 2020, 25, 2016.	1.7	63
13	Removal of heavy metals by polysaccharide: a review. Polymer-Plastics Technology and Materials, 2020, 59, 1770-1790.	0.6	20
14	Modulation of driving forces fo UiO-66 analog adsorbents by decoration with amino functional groups: Superior adsorption of hazardous dyes. Journal of Molecular Structure, 2020, 1220, 128716.	1.8	15
15	A remarkable adsorbent for removal of bisphenol S from water: Aminated metal-organic framework, MIL-101-NH2. Chemical Engineering Journal, 2020, 396, 125224.	6.6	63
16	Highly Efficient Separation of Anionic Organic Pollutants from Water via Construction of Functional Cationic Metal–Organic Frameworks and Mechanistic Study. ACS Applied Materials & lnterfaces, 2020, 12, 22835-22844.	4.0	12
17	Adsorptive removal of hazardous organics from water and fuel with functionalized metal-organic frameworks: Contribution of functional groups. Journal of Hazardous Materials, 2021, 403, 123655.	6.5	109
18	MOF based engineered materials in water remediation: Recent trends. Journal of Hazardous Materials, 2021, 403, 123605.	6.5	226

#	ARTICLE	IF	Citations
19	A remarkable adsorbent for removal of nitrogenous compounds from fuel: A metal–organic framework functionalized both on metal and ligand. Chemical Engineering Journal, 2021, 404, 126491.	6.6	29
20	A versatile strategy to eliminate emerging contaminants from the aqueous environment: Heterogeneous Fenton process. Journal of Cleaner Production, 2021, 278, 124014.	4.6	111
21	Encapsulated anion-dominated photocatalytic and adsorption performances for organic dye degradation and oxoanion pollutant capture over cationic Cu(<scp>i</scp>)-organic framework semiconductors. Dalton Transactions, 2021, 50, 197-207.	1.6	19
22	HKUST-1 modified ultrastability cellulose/chitosan composite aerogel for highly efficient removal of methylene blue. Carbohydrate Polymers, 2021, 255, 117402.	5.1	87
23	An environment friendly free-standing cellulose membrane derived for catalytic reduction of 4-nitrophenol: A sustainable approach. Journal of Environmental Chemical Engineering, 2021, 9, 104596.	3.3	36
24	Application of Fe(VI) in abating contaminants in water: State of art and knowledge gaps. Frontiers of Environmental Science and Engineering, 2021, 15 , 1 .	3.3	43
25	Zwitterionic surface charge regulation in ionic covalent organic nanosheets: Synergistic adsorption of fluoroquinolone antibiotics. Chemical Engineering Journal, 2021, 417, 128034.	6.6	26
26	A hydrolytically stable cage-based metal–organic framework containing two types of building blocks for the adsorption of iodine and dyes. Inorganic Chemistry Frontiers, 2021, 8, 1083-1092.	3.0	55
27	Application of Metalâ€Organic Frameworks in Adsorptive Removal of Organic Contaminants from Water, Fuel and Air. Chemistry - an Asian Journal, 2021, 16, 185-196.	1.7	31
28	Peroxidase-like recyclable SERS probe for the detection and elimination of cationic dyes in pond water. Journal of Hazardous Materials, 2021, 408, 124426.	6.5	34
29	Recent advances in process engineering and upcoming applications of metal–organic frameworks. Coordination Chemistry Reviews, 2021, 426, 213544.	9.5	243
30	AIE-active polyelectrolyte based photosensitizers: the effects of structure on antibiotic-resistant bacterial sensing and killing and pollutant decomposition. Journal of Materials Chemistry B, 2021, 9, 5309-5317.	2.9	8
31	Recent advances in metal–organic frameworks as adsorbent materials for hazardous dye molecules. Dalton Transactions, 2021, 50, 3083-3108.	1.6	88
32	Visible-light-assisted photocatalytic degradation of methylene blue in water by highly chemically stable Cd-CPs at room temperature. New Journal of Chemistry, 0, , .	1.4	3
33	HPO ₄ ^{2â^'} enhanced catalytic activity of N, S, B, and O-codoped carbon nanosphere-armored Co ₉ S ₈ nanoparticles for organic pollutants degradation <i>via</i> peroxymonosulfate activation: critical roles of superoxide radical, singlet oxygen and electron transfer. Physical Chemistry Chemical Physics, 2021, 23, 5283-5297.	1.3	13
34	An anionic-ligand installed pyrene-based MOF for the fluorescence detection of paraquat. New Journal of Chemistry, 2021, 45, 4401-4407.	1.4	11
35	Adsorptive Purification of Water Contaminated with Hazardous Organics by Using Functionalized Metal-Organic Frameworks., 2021,, 269-290.		0
36	Incorporation of homogeneous organometallic catalysts into metal–organic frameworks for advanced heterogenization: a review. Catalysis Science and Technology, 2021, 11, 5734-5771.	2.1	35

#	ARTICLE	IF	CITATIONS
37	HKUST-1 MOF in reline deep eutectic solvent: synthesis and phase transformation. Dalton Transactions, 2021, 50, 4145-4151.	1.6	21
38	Predicting the adsorption of organic pollutants on boron nitride nanosheets <i>via in silico</i> techniques: DFT computations and QSAR modeling. Environmental Science: Nano, 2021, 8, 795-805.	2.2	13
39	Metal-Organic Frameworks for Environmental Applications. Engineering Materials, 2021, , 1-39.	0.3	0
40	An Anionic Indium–Organic Framework with Spirobifluorene-Based Ligand for Selective Adsorption of Organic Dyes. Inorganic Chemistry, 2021, 60, 1571-1578.	1.9	39
41	DETA impregnated attapulgite hybrid ZIF-8 composite as an adsorbent for the adsorption of aspirin and ibuprofen in aqueous solution. New Journal of Chemistry, 2021, 45, 5637-5644.	1.4	2
42	Transition metal-based metal–organic frameworks for environmental applications: a review. Environmental Chemistry Letters, 2021, 19, 1295-1334.	8.3	63
43	Virus removal from drinking water using modified activated carbon fibers. RSC Advances, 2021, 11, 31547-31556.	1.7	4
44	Post-synthetic modification of a highly flexible 3D soft porous metal–organic framework by incorporating conducting polypyrrole: enhanced MOF stability and capacitance as an electrode material. Chemical Communications, 2021, 57, 2523-2526.	2.2	15
45	Remediation of Emerging Contaminants. Environmental Chemistry for A Sustainable World, 2021, , $1\text{-}106$.	0.3	5
46	Progress in the design of nanoporous adsorbent materials containing transition metals for the removal of contaminants of emerging concern. Environmental Pollutants and Bioavailability, 2021, 33, 41-54.	1.3	5
47	Synchronous oil/water separation and wastewater treatment on a copper-oxide-coated mesh. RSC Advances, 2021, 11, 17740-17745.	1.7	13
48	Facile construction of an Ag0-doped Ag(i)-based coordination polymer via a self-photoreduction strategy for enhanced visible light driven photocatalysis. CrystEngComm, 2021, 23, 5397-5402.	1.3	11
49	Water-stable hydrazone-linked porous organic cages. Chemical Science, 2021, 12, 13307-13315.	3.7	22
50	Fabrication and application of a MIL-68(In)–NH ₂ incorporated high internal phase emulsion polymeric monolith as a solid phase extraction adsorbent in triazine herbicide residue analysis. RSC Advances, 2021, 11, 20439-20445.	1.7	8
51	Silicate-Enhanced Heterogeneous Flow-Through Electro-Fenton System Using Iron Oxides under Nanoconfinement. Environmental Science & Environmental Scie	4.6	192
52	Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chemical Reviews, 2021, 121, 3751-3891.	23.0	442
53	Highly Selective Separation Intermediateâ€Size Anionic Pollutants from Smaller and Larger Analogs via Thermodynamically and Kinetically Cooperativeâ€Controlled Crystallization. Advanced Science, 2021, 8, 2003243.	5.6	1
54	Metal–Organic-Framework-Based Materials for Antimicrobial Applications. ACS Nano, 2021, 15, 3808-3848.	7.3	241

#	Article	IF	CITATIONS
55	Use of highly stable phosphonate coordination polymers as adsorbents for wastewater. Applied Organometallic Chemistry, 2021, 35, e6184.	1.7	2
56	Single-Atom Fe Catalyst Outperforms Its Homogeneous Counterpart for Activating Peroxymonosulfate to Achieve Effective Degradation of Organic Contaminants. Environmental Science & Echnology, 2021, 55, 7034-7043.	4.6	244
57	A journey to the world of fascinating ZnO nanocomposites made of chitosan, starch, cellulose, and other biopolymers: Progress in recent achievements in eco-friendly food packaging, biomedical, and water remediation technologies. International Journal of Biological Macromolecules, 2021, 170, 701-716.	3.6	33
58	Metal-organic frameworks for environmental applications. Cell Reports Physical Science, 2021, 2, 100348.	2.8	44
59	Enhanced photo-catalytic efficiency through dual-functional ZIF based materials: Fabrication and application as a degradation of organic dyes. Journal of the Taiwan Institute of Chemical Engineers, 2021, 120, 368-380.	2.7	15
60	Light-Harvesting Metal-Organic Frameworks (MOFs) La-PTC for Photocatalytic Dyes Degradation. Bulletin of Chemical Reaction Engineering and Catalysis, 2021, 16, 170-178.	0.5	14
61	In-situ growth of metal-organic frameworks in a reactive 3D printable material. Applied Materials Today, 2021, 22, 100930.	2.3	15
62	Metal Organic Frameworks (MOFs) as Photocatalysts for the Degradation of Agricultural Pollutants in Water. ACS ES&T Engineering, 2021, 1, 804-826.	3.7	82
63	Experimental strategies on enhancing toxic gases uptake of metal–organic frameworks. Coordination Chemistry Reviews, 2021, 430, 213738.	9.5	61
65	Anion binding in metal-organic frameworks. Coordination Chemistry Reviews, 2021, 432, 213708.	9.5	29
66	Chromic and Fluorescence-Responsive Metal–Organic Frameworks Afforded by N-Amination Modification. ACS Applied Materials & Interfaces, 2021, 13, 20380-20387.	4.0	29
67	A Versatile Cationic Organic Network Adsorbent for the Highly Efficient Removal of Diverse Water Contaminants. Advanced Materials Interfaces, 2021, 8, 2100016.	1.9	9
68	A 3D Cd(II) MOF of tetracarboxylate and tris(benzimidazole) ligands: Luminescence sensing properties. Inorganica Chimica Acta, 2021, 518, 120242.	1.2	7
69	Heterogeneous sonocatalytic degradation of atenolol using CuFe2O4 from aqueous solution: effects of operational parameters, energy consumption and degradation mechanism. International Journal of Environmental Analytical Chemistry, 0, , 1-20.	1.8	5
70	Efficient photocatalytic degradation of tetracycline under visible light by Z-scheme Ag3PO4/mixed-valence MIL-88A(Fe) heterojunctions: Mechanism insight, degradation pathways and DFT calculation. Chemical Engineering Journal, 2021, 410, 128454.	6.6	136
71	Review on the hazardous applications and photodegradation mechanisms of chlorophenols over different photocatalysts. Environmental Research, 2021, 195, 110742.	3.7	111
72	Metal-to-Semiconductor Transition in Two-Dimensional Metal–Organic Frameworks: An <i>Ab Initio</i> Dynamics Perspective. ACS Applied Materials & Dynamics Per	4.0	8
73	Building a shp : A Rare-Earth Metal–Organic Framework and Its Application in a Catalytic Photooxidation Reaction. Chemistry of Materials, 2021, 33, 4163-4169.	3.2	39

#	Article	IF	CITATIONS
74	Two-Dimensional Metal–Organic Framework Nanostructures Based on 4,4′-Sulfonyldibenzoate for Photocatalytic Degradation of Organic Dyes. Crystal Growth and Design, 2021, 21, 3364-3374.	1.4	26
75	Simulation Meets Experiment: Unraveling the Properties of Water in Metal–Organic Frameworks through Vibrational Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 12451-12460.	1.5	16
76	Phase pure synthesis of lanthanum doped bismuth ferrite nanostructures for the adsorption of doxorubicin. Ceramics International, 2021, 47, 14390-14398.	2.3	16
77	Europium-based metal-organic framework containing characteristic metal chains: A novel turn-on fluorescence sensor for simultaneous high-performance detection and removal of tetracycline. Sensors and Actuators B: Chemical, 2021, 334, 129610.	4.0	46
78	Directing photocatalytic pathway to exceedingly high antibacterial activity in water by functionalizing holey ultrathin nanosheets of graphitic carbon nitride. Water Research, 2021, 198, 117125.	5. 3	68
79	Recognition and Sequestration of Toxic Inorganic Water Pollutants with Hydrolytically Stable Metalâ€Organic Frameworks. Chemical Record, 2021, 21, 1666-1680.	2.9	22
80	Asymmetric catalysis using metal-organic frameworks. Coordination Chemistry Reviews, 2021, 437, 213845.	9.5	80
81	Superior adsorptive removal of azo dyes from aqueous solution by a Ni(II)-doped metal–organic framework. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 619, 126549.	2.3	19
82	Zn(II)/Cd(II)-Based Metal–Organic Frameworks as Bifunctional Materials for Dye Scavenging and Catalysis of Fructose/Glucose to 5-Hydroxymethylfurfural. Inorganic Chemistry, 2021, 60, 9181-9191.	1.9	33
83	Adsorptive removal of aflatoxin B1 from vegetable oils via novel adsorbents derived from a metal-organic framework. Journal of Hazardous Materials, 2021, 412, 125170.	6.5	51
84	Preparation of hollow hierarchical porous CoMgAl-borate LDH ball-flower and its calcinated product with extraordinary adsorption capacity for Congo red and methyl orange. Applied Clay Science, 2021, 207, 106093.	2.6	30
85	Engineering carbon nanocatalysts towards efficient degradation of emerging organic contaminants via persulfate activation: A review. Chinese Chemical Letters, 2022, 33, 1-10.	4.8	88
86	Chitin/Metalâ€Organic Framework Composites as Wideâ€Range Adsorbent. ChemSusChem, 2021, 14, 2892-2901.	3.6	17
87	Highly Efficient Removal of Neonicotinoid Insecticides by Thioether-Based (Multivariate) Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 28424-28432.	4.0	29
88	Facile preparation of nano-g-C3N4/UiO-66-NH2 composite as sorbent for high-efficient extraction and preconcentration of food colorants prior to HPLC analysis. Chinese Chemical Letters, 2022, 33, 903-906.	4.8	36
89	Nanofibrous Photocatalytic Membranes Based on Tailored Anisotropic Gold/Ceria Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2021, 13, 37578-37588.	4.0	12
90	High-Efficiency Organic Contaminants Remover Based on Modulated Self-Assembly of Cobalt Metal–Organic Frameworks. Crystal Growth and Design, 2021, 21, 4305-4317.	1.4	8
91	Solar-Powered Sustainable Water Production: State-of-the-Art Technologies for Sunlight–Energy–Water Nexus. ACS Nano, 2021, 15, 12535-12566.	7.3	220

#	Article	IF	CITATIONS
92	New insights into adsorption equilibrium of organic pollutant on MnO2 nanorods: Experimental and computational studies. Journal of Molecular Liquids, 2022, 345, 117016.	2.3	6
93	Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environmental Pollution, 2021, 280, 116995.	3.7	238
94	Photodegradation of Brilliant Green Dye by a Zinc bioMOF and Crystallographic Visualization of Resulting CO2. Molecules, 2021, 26, 4098.	1.7	5
95	How to Prepare Kinetically Stable Selfâ€assembled Pt ₁₂ L ₂₄ Nanocages while Circumventing Kinetic Traps. Chemistry - A European Journal, 2021, 27, 12667-12674.	1.7	22
96	Green synthesis of Ag@CdO nanocomposite and their application towards brilliant green dye degradation from wastewater. Journal of Nanostructure in Chemistry, 2022, 12, 329-341.	5.3	34
97	One-pot synthesis of 3D porous Bi7O9I3/N-doped graphene aerogel with enhanced photocatalytic activity for organic dye degradation in wastewater. Ceramics International, 2021, 47, 19556-19566.	2.3	17
98	The recent advances in magnetic sorbents and their applications. TrAC - Trends in Analytical Chemistry, 2021, 141, 116302.	5.8	65
99	Polyamine functionalized cotton fibers selectively capture negatively charged dye pollutants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623, 126666.	2.3	9
100	Metal–organic frameworks containing uncoordinated nitrogen: Preparation, modification, and application in adsorption. Materials Today, 2021, 51, 566-585.	8.3	50
101	Adsorbents for real-scale water remediation: Gaps and the road forward. Journal of Environmental Chemical Engineering, 2021, 9, 105380.	3.3	21
102	A review on remedial measures for effective separation of emerging contaminants from wastewater. Environmental Technology and Innovation, 2021, 23, 101741.	3.0	38
103	Clay-hydrogel nanocomposites for adsorptive amputation of environmental contaminants from aqueous phase: A review. Journal of Environmental Chemical Engineering, 2021, 9, 105575.	3.3	45
104	Covalent organic framework-based materials: Synthesis, modification, and application in environmental remediation. Coordination Chemistry Reviews, 2021, 441, 213989.	9.5	91
105	SERS Gas Sensors Based on Multiple Polymer Films with High Design Flexibility for Gas Recognition. Sensors, 2021, 21, 5546.	2.1	8
106	Adsorptive Removal of Industrial Dye by Nanoporous Zr porphyrinic Metal–Organic Framework Microcubes. ACS Applied Nano Materials, 2021, 4, 10068-10076.	2.4	18
107	Oxidative desulfurization of liquid fuel with tungsten-nitride@porous carbon, derived from MAF-6(Zn) loaded with phosphotungstic acid and melamine. Chemical Engineering Journal, 2021, 419, 129485.	6.6	34
108	Synthesis, Crystal Structure, and Luminescence of Cadmium(II) and Silver(I) Coordination Polymers Based on 1,3-Bis(1,2,4-triazol-1-yl)adamantane. Molecules, 2021, 26, 5400.	1.7	7
109	Silver-functionalized UiO-66 metal-organic framework-coated 3D printed device for the removal of radioactive iodine from wastewaters. Applied Materials Today, 2021, 24, 101130.	2.3	6

#	Article	IF	CITATIONS
110	Hydrophobicity: a key factor en route to applications of metal–organic frameworks. Trends in Chemistry, 2021, 3, 911-925.	4.4	14
111	Investigation of hierarchically porous zeolitic imidazolate frameworks for highly efficient dye removal. Journal of Hazardous Materials, 2021, 417, 126011.	6.5	28
112	Single-atom engineering of metal-organic frameworks toward healthcare. CheM, 2021, 7, 2635-2671.	5.8	55
113	Bimetallic Eu/Fe-MOFs ratiometric fluorescent nanoenzyme for selective cholesterol detection in biological serum: Synthesis, characterization, mechanism and DFT calculations. Sensors and Actuators B: Chemical, 2022, 354, 130760.	4.0	21
114	Solid solution approach to the design of copper mixed-triazolate multivariate-MOFs for the efficient adsorption of triclosan. Microporous and Mesoporous Materials, 2021, 324, 111297.	2.2	7
115	2D MOFsâ€based Materials for the Application of Water Pollutants Removing: Fundamentals and Prospects. Chemistry - an Asian Journal, 2021, 16, 3585-3598.	1.7	9
116	Contribution of hydrogen bonding to liquid-phase adsorptive removal of hazardous organics with metal-organic framework-based materials. Chemical Engineering Journal, 2022, 430, 132596.	6.6	79
117	Photocatalytic Degradation of Organic Pollutants Using Porous gâ€C ₃ N ₄ Nanosheets Decorated with Gold Nanoparticles. ChemistrySelect, 2021, 6, 9458-9466.	0.7	5
118	Binder-Free Flexible Three-Dimensional Porous Electrodes by Combining Microstructures and Catalysis to Enhance the Performance of Lithium-Oxygen Batteries. Industrial & Engineering Chemistry Research, 2021, 60, 14113-14123.	1.8	2
119	Graphene-like MOF nanosheets stabilize graphene oxide membranes enabling selective molecular sieving. Journal of Membrane Science, 2021, 633, 119397.	4.1	59
120	Insights into Paraben Adsorption by Metal–Organic Frameworks for Analytical Applications. ACS Applied Materials & Description (1988)	4.0	9
121	Sequestration and Removal of Multiple Small-Molecule Contaminants Using an Optimized Aptamer-Based Ultrafiltration System. Bioconjugate Chemistry, 2021, 32, 2043-2051.	1.8	6
122	The upsurge of photocatalysts in antibiotic micropollutants treatment: Materials design, recovery, toxicity and bioanalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 48, 100437.	5.6	26
123	Shining Light on Porous Liquids: From Fundamentals to Syntheses, Applications and Future Challenges. Advanced Functional Materials, 2022, 32, 2104162.	7.8	40
124	Husbandry waste derived coralline-like composite biomass material for efficient heavy metal ions removal. Bioresource Technology, 2021, 337, 125408.	4.8	15
125	Sustainable fabrication of hematite (\hat{l}_{\pm} -Fe2O3) nanoparticles using biomolecules of Punica granatum seed extract for unconventional solar-light-driven photocatalytic remediation of organic dyes. Journal of Molecular Liquids, 2021, 339, 116729.	2.3	35
126	Adsorptive removal of pesticides from water with metal–organic framework-based materials. Chemical Engineering Journal, 2021, 421, 129688.	6.6	92
127	Magnetic porous carbon nanopolyhedron modified rGO composites as recyclable sorbent for effective removal of bisphenol A from water. Journal of Environmental Chemical Engineering, 2021, 9, 105911.	3.3	6

#	Article	IF	CITATIONS
128	Simultaneous introduction of oxygen vacancies and hierarchical pores into titanium-based metal-organic framework for enhanced photocatalytic performance. Journal of Colloid and Interface Science, 2021, 599, 785-794.	5.0	23
129	Synergic coordination and precipitation effects induced by free carboxyl for separation of iron(III) and nickel(II) in zirconium-metal-organic framework. Journal of Solid State Chemistry, 2021, 302, 122460.	1.4	19
130	Recent advances in molecular oxygen activation via photocatalysis and its application in oxidation reactions. Chemical Engineering Journal, 2021, 421, 129915.	6.6	71
131	Degradation of ciprofloxacin using hematite/MOF nanocomposite as a heterogeneous Fenton-like catalyst: A comparison of composite and coreâ°shell structures. Chemosphere, 2021, 281, 130970.	4.2	63
132	Hyperporous magnetic catalyst foam for highly efficient and stable adsorption and reduction of aqueous organic contaminants. Journal of Hazardous Materials, 2021, 420, 126622.	6.5	7
133	An updated status and trends in actinide metal-organic frameworks (An-MOFs): From synthesis to application. Coordination Chemistry Reviews, 2021, 446, 214011.	9.5	93
134	Hydrothermally synthesized titanate nanomaterials for the removal of heavy metals and radionuclides from water: A review. Chemosphere, 2021, 282, 131046.	4.2	22
135	Preparation of carboxymethyl chitosan/phytic acid composite hydrogels for rapid dye adsorption in wastewater treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127355.	2.3	30
136	Defect-triggered catalysis with multiple reactive species over bismuth oxyhalides in the dark. Applied Surface Science, 2021, 567, 150765.	3.1	7
137	Iron-based metal-organic framework: Synthesis, structure and current technologies for water reclamation with deep insight into framework integrity. Chemosphere, 2021, 284, 131171.	4.2	83
138	A 3D printed synergistic aerogel microreactor toward stable and high-efficiency photocatalytic degradation. Materials Today Chemistry, 2021, 22, 100566.	1.7	6
139	Adsorptive removal of nitro- or sulfonate-containing dyes by a functional metal–organic framework: Quantitative contribution of hydrogen bonding. Chemical Engineering Journal, 2021, 425, 130598.	6.6	33
140	Adsorptive removal of herbicides with similar structures from water over nitrogen-enriched carbon, derived from melamine@metal-azolate framework-6. Environmental Research, 2022, 204, 111991.	3.7	7
141	Adsorptive removal of organic pollutant methylene blue using polysaccharide-based composite hydrogels. Chemosphere, 2022, 286, 131890.	4.2	60
142	Oxidative modification of metal-organic framework-derived carbon: An effective strategy for adsorptive elimination of carbazole and benzonitrile. Fuel, 2022, 307, 121764.	3.4	16
143	Facile single-step synthesis of MXene@CNTs hybrid nanocomposite by CVD method to remove hazardous pollutants. Chemosphere, 2022, 286, 131733.	4.2	46
144	Confined conductive and light-adsorbed network in metal organic frameworks (MIL-88B(Fe)) with enhanced photo-Fenton catalytic activity for sulfamethoxazole degradation. Chemical Engineering Journal, 2022, 427, 131962.	6.6	42
145	Three-dimension hierarchical composite via in-situ growth of Zn/Al layered double hydroxide plates onto polyaniline-wrapped carbon sphere for efficient naproxen removal. Journal of Hazardous Materials, 2022, 423, 127192.	6.5	65

#	Article	IF	CITATIONS
146	Electrosorption of cadmium ions in aqueous solutions using a copper-gallate metal-organic framework. Chemosphere, 2022, 286, 131853.	4.2	16
147	Coupling solar-driven photothermal effect into photocatalysis for sustainable water treatment. Journal of Hazardous Materials, 2022, 423, 127128.	6.5	106
148	Recent advances in the capture and abatement of toxic gases and vapors by metal–organic frameworks. Materials Chemistry Frontiers, 2021, 5, 5970-6013.	3.2	44
149	A photosensitive metal–organic framework having a flower-like structure for effective visible light-driven photodegradation of rhodamine B. RSC Advances, 2021, 11, 18565-18575.	1.7	31
150	Metal–organic cages for molecular separations. Nature Reviews Chemistry, 2021, 5, 168-182.	13.8	227
151	Flexible luminescent non-lanthanide metal–organic frameworks as small molecules sensors. Dalton Transactions, 2021, 50, 14513-14531.	1.6	22
152	Water-Stable Zn(II) Coordination Polymers Regulated by Polysubstituted Benzenes and Their Photocatalytic Performance toward Methylene Blue Degradation Dominated by Ligand-Field Effects. Crystal Growth and Design, 2021, 21, 1218-1232.	1.4	22
153	Remarkable metal–organic framework composites for adsorptive removal of nitrogenous compounds from fuel. Chemical Engineering Journal, 2020, 398, 125590.	6.6	9
154	Advanced Materials with Special Wettability toward Intelligent Oily Wastewater Remediation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 67-87.	4.0	190
155	Constructing Mesoporous Adsorption Channels and MOF–Polymer Interfaces in Electrospun Composite Fibers for Effective Removal of Emerging Organic Contaminants. ACS Applied Materials & Description (Among Advance) (Among Mesoporous) (Among M	4.0	86
156	Post-synthetically modified metal–organic frameworks for sensing and capture of water pollutants. Dalton Transactions, 2021, 50, 17832-17850.	1.6	22
157	A green and sustainable approach for the synthesis of 1,5-benzodiazepines and spirooxindoles in one-pot using a MIL-101(Cr) metal–organic framework as a reusable catalyst. New Journal of Chemistry, 2021, 45, 19553-19564.	1.4	13
158	Co-modification of lignocellulosic biomass by maleic anhydride and ferric hydroxide for the highly efficient biosorption of methylene blue. New Journal of Chemistry, 2021, 45, 19678-19690.	1.4	2
159	Synthesis, crystal structure and magnetic properties of a one-dimensional Mn ²⁺ complex constructed from (+)-dibenzoyltartaric acid and 2,2′-bipyridine. Acta Crystallographica Section C, Structural Chemistry, 2021, 77, 707-712.	0.2	0
160	Porous metal–organic framework-based filters: Synthesis methods and applications for environmental remediation. Chemical Engineering Journal, 2022, 430, 133160.	6.6	36
161	Solar-driven on-site H2O2 generation and tandem photo-Fenton reaction on a triphase interface for rapid organic pollutant degradation. Chemical Engineering Journal, 2022, 430, 133168.	6.6	27
162	Biomineralization-mimetic growth of ultrahigh-load metal-organic frameworks on inert glass fibers to prepare hybrid membranes for collecting organic hazards in unconventional environment. Chemical Engineering Journal, 2022, 430, 132956.	6.6	9
163	Hydroxyapatite-Based Materials for Environmental Remediation. Environmental Footprints and Eco-design of Products and Processes, 2022, , 55-100.	0.7	0

#	Article	IF	CITATIONS
164	Photocatalytic-sorption processes for the removal of pollutants from wastewater using polymer metal oxide nanocomposites and associated environmental risks. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100596.	1.7	11
165	Bismuth-rich strategy intensifies the molecular oxygen activation and internal electrical field for the photocatalytic degradation of tetracycline hydrochloride. Chemical Engineering Journal, 2022, 430, 132963.	6.6	68
166	Dual removal and selective recovery of phosphate and an organophosphorus pesticide from water by a Zr-based metal-organic framework. Materials Today Chemistry, 2021, 22, 100596.	1.7	9
167	Synthesis of the metal-organic framework – Copper oxide nanocomposite and LED visible light organic contaminants (dye and pharmaceutical) destruction ability in the water. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 274, 115495.	1.7	8
168	Dithia-Crown-Ether Integrated Self-Exfoliated Polymeric Covalent Organic Nanosheets for Selective Sensing and Removal of Mercury. ACS Applied Polymer Materials, 2021, 3, 5527-5535.	2.0	14
169	Highly efficient reduction of p-Nitrophenol by sodium borohydride over binary ZIF-67/g-C3N4 heterojunction catalyst. Journal of Environmental Chemical Engineering, 2021, 9, 106677.	3.3	25
170	Three birds with one stone approach to superior N/S co-doped microporous carbon for gas storage and water purification. Chemical Engineering Journal, 2022, 431, 133231.	6.6	4
171	The effective removal of Congo Red using a bio-nanocluster: Fe3O4 nanoclusters modified bacteria. Journal of Hazardous Materials, 2022, 424, 127577.	6.5	23
172	Adsorption of phosphate on UiO-66-NH2 prepared by a green synthesis method. Journal of Environmental Chemical Engineering, 2021, 9, 106672.	3.3	46
173	Mixed component metal-organic frameworks: Heterogeneity and complexity at the service of application performances. Coordination Chemistry Reviews, 2022, 451, 214273.	9.5	70
174	Morphology control synthesis of Cr-benzenedicarboxylate MOFs for the removal of methylene blue. Journal of Solid State Chemistry, 2022, 305, 122651.	1.4	5
175	Metal-organic framework for removal of environmental contaminants. , 2022, , 561-577.		0
176	Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted Applications: A review. Coordination Chemistry Reviews, 2022, 451, 214263.	9.5	165
177	Metal-organic frameworks bearing free carboxylic acids: Preparation, modification, and applications. Coordination Chemistry Reviews, 2022, 450, 214237.	9.5	66
178	Edible ligand-metal-organic frameworks: Synthesis, structures, properties and applications. Coordination Chemistry Reviews, 2022, 450, 214234.	9.5	16
179	Silsesquioxane-based and triptycene-linked nanoporous polymers (STNPs) with a high surface area for CO2 uptake and efficient dye removal applications. Materials Advances, 2020, 1, 3406-3416.	2.6	11
180	Adsorption, isolated electron/hole transport, and confined catalysis coupling to enhance the photocatalytic degradation performance. Applied Catalysis B: Environmental, 2022, 303, 120892.	10.8	45
181	Carbonization reduces the toxicity of metal-organic framework MOF-199 to white-rot fungus Phanerochaete chrysosporium. Journal of Environmental Chemical Engineering, 2021, 9, 106705.	3.3	12

#	Article	IF	CITATIONS
182	UiO-67-derived bithiophene and bithiazole MIXMOFs for luminescence sensing and removal of contaminants of emerging concern in wastewater. Inorganic Chemistry Frontiers, 2021, 9, 90-102.	3.0	3
183	Sustainable synthesis of a new semiamorphous Ti-BDC MOF material and the photocatalytic performance of its ternary composites with Ag3PO4 and g-C3N4. Applied Surface Science, 2022, 578, 151996.	3.1	20
184	UiO-66-NH-(AO) MOFs with a New Ligand BDC-NH-(CN) for Efficient Extraction of Uranium from Seawater. ACS Applied Materials & Ligand BDC-NH-(CN) for Efficient Extraction of Uranium from Seawater. ACS Applied Materials & Ligand BDC-NH-(CN) for Efficient Extraction of Uranium from Seawater. ACS Applied Materials & Ligand BDC-NH-(CN) for Efficient Extraction of Uranium from Seawater. ACS Applied Materials & Ligand BDC-NH-(CN) for Efficient Extraction of Uranium from Seawater. ACS Applied Materials & Ligand BDC-NH-(CN) for Efficient Extraction of Uranium from Seawater. ACS Applied Materials & Ligand BDC-NH-(CN) for Efficient Extraction of Uranium from Seawater. ACS Applied Materials & Ligand BDC-NH-(CN) for Efficient Extraction of Uranium from Seawater. ACS Applied Materials & Ligand BDC-NH-(CN) for Efficient Extraction of Uranium from Seawater. ACS Applied Materials & Ligand BDC-NH-(CN) for Efficient Extraction of Uranium from Seawater. ACS Applied Materials & Ligand BDC-NH-(CN) for Efficient Extraction of Uranium from Seawater. ACS Applied Materials & Ligand BDC-NH-(CN) for Efficient Extraction of Uranium from Seawater. ACS Applied Materials & Ligand BDC-NH-(CN) for Efficient Extraction of Uranium from Seawater. ACS Applied Materials & Ligand BDC-NH-(CN) for Efficient Extraction of Uranium from Seawater. ACS Applied Materials & Ligand BDC-NH-(CN) for Efficient Extraction of Uranium from Seawater. ACS Applied Materials & Ligand BDC-NH-(CN) for Efficient Extraction of Uranium from Seawater & Ligand BDC-NH-(CN) for Efficient Extraction of Uranium from Seawater & Ligand BDC-NH-(CN) for Efficient Extraction of Uranium from Seawater & Ligand BDC-NH-(CN) for Efficient Extraction of Uranium from Seawater & Ligand BDC-NH-(CN) for Efficient Extraction of Uranium from Seawater & Ligand BDC-NH-(CN) for Efficient Extraction of Uranium from Seawater & Ligand BDC-NH-(CN) for Efficient Extraction of Uranium from Seawater & Ligand BDC-NH-(CN) for Efficient Extraction of Uranium from Seawater & Ligand BDC-NH-(CN) for Efficient Extr	4.0	40
185	Science and Technology Roadmap for Adsorption of Metallic Contaminants from Aqueous Effluents Using Biopolymers and Its' Derivatives. Environmental Science and Engineering, 2022, , 165-196.	0.1	1
186	Nanoarchitecturing bimetallic manganese cobaltite spinels for sonocatalytic degradation of oxytetracycline. Chemical Engineering Journal, 2022, 431, 133851.	6.6	64
187	A Zn-coordination polymer with serine-derived backbone and its use as bifunctional luminescence sensor for Ce(III) and Cu(II). Journal of Solid State Chemistry, 2022, 306, 122717.	1.4	4
188	UiO-66 metal–organic frameworks in water treatment: A critical review. Progress in Materials Science, 2022, 125, 100904.	16.0	161
189	Photocatalytic MOF membranes with two-dimensional heterostructure for the enhanced removal of agricultural pollutants in water. Chemical Engineering Journal, 2022, 435, 133870.	6.6	10
190	On the Role of Dioxane in the Synthesis of In-Derived MOFs. Crystal Growth and Design, 2021, 21, 6840-6846.	1.4	2
191	Challenges and Recent Advances in Enzyme-Mediated Wastewater Remediation—A Review. Nanomaterials, 2021, 11, 3124.	1.9	28
192	Carbonaceous nanomaterial-TiO2 heterojunctions for visible-light-driven photocatalytic degradation of aqueous organic pollutants. Applied Catalysis A: General, 2022, 630, 118460.	2.2	26
193	Coordination Polymers as a Functional Material for the Selective Molecular Recognition of Nitroaromatics and ⟨i⟩ipso⟨li⟩â€Hydroxylation of Arylboronic Acids. Chemistry - an Asian Journal, 2022, 17, .	1.7	12
194	Green and efficient synthesis of Co-MOF-based/g-C3N4 composite catalysts to activate peroxymonosulfate for degradation of the antidepressant venlafaxine. Journal of Colloid and Interface Science, 2022, 610, 280-294.	5.0	34
195	Magnetic Conjugated Microporous Polymer Hollow Spheres Decorated with Fe ₃ O ₄ Nanoparticles for Selective Absorption and Sterilization. SSRN Electronic Journal, 0, , .	0.4	0
196	Physiological and kinetic evaluation of ampicillin oxidation as unique electron source by a denitrifying sludge. Journal of Chemical Technology and Biotechnology, 2022, 97, 1457-1467.	1.6	2
197	Kitchen Waste Derived Porous Nanocarbon Spheres for Metal Free Degradation of Azo Dyes: An Environmental Friendly, Cost Effective Method. Journal of Cluster Science, $0, 1$.	1.7	0
198	Redox-active metal-organic frameworks for the removal of contaminants of emerging concern. Separation and Purification Technology, 2022, 284, 120246.	3.9	15
199	Metal organic frameworks (MOFs) as a cutting-edge tool for the selective detection and rapid removal of heavy metal ions from water: Recent progress. Journal of Environmental Chemical Engineering, 2022, 10, 106991.	3.3	51

#	Article	IF	CITATIONS
200	A remarkable adsorbent for denitrogenation of liquid fuel: Ethylenediaminetetraacetic acid-grafted metal–organic framework, MOF-808. Separation and Purification Technology, 2022, 284, 120248.	3.9	14
201	Nanomaterials: types, properties, recent advances, and toxicity concerns. Current Opinion in Environmental Science and Health, 2022, 25, 100319.	2.1	33
202	Synthesis of nano-sized Ag3PW12O40/ZnO heterojunction as a photocatalyst for degradation of organic pollutants under simulated sunlight. Arabian Journal of Chemistry, 2022, 15, 103659.	2.3	1
203	Preparation of functional material layers of TT-COFs with built-in formyl groups for efficient dyes removal. Journal of Colloid and Interface Science, 2022, 612, 608-616.	5.0	9
204	Recent trends in the application of metal-organic frameworks (MOFs) for the removal of toxic dyes and their removal mechanism-a review. Sustainable Materials and Technologies, 2022, 31, e00378.	1.7	43
205	Construction of ternary (1D/2D/3D) Fe2O3-supported micro pillared Cu-based MOF on chitosan with improved photocatalytic behavior on removal of paraquat. Environmental Science and Pollution Research, 2023, 30, 24876-24889.	2.7	2
206	Characterization techniques for nanomaterials used in nanobioremediation., 2022,, 29-43.		1
207	Magnetic conjugated microporous polymer hollow spheres decorated with Fe ₃ O ₄ nanoparticles for selective absorption and sterilization. Environmental Science: Nano, 2022, 9, 1381-1390.	2.2	8
208	Functionally modified metal–organic frameworks for the removal of toxic dyes from wastewater. CrystEngComm, 2022, 24, 434-449.	1.3	17
209	Metal–Organic Network-Forming Glasses. Chemical Reviews, 2022, 122, 4163-4203.	23.0	121
210	Removal of emerging contaminants from wastewater using advanced treatments. A review. Environmental Chemistry Letters, 2022, 20, 1333-1375.	8.3	124
211	Chemosensing technology for rapid detection of emerging contaminants., 2022,, 407-464.		1
212	Which factors govern the adsorption of peptides to Zr(<scp>iv</scp>)-based metal–organic frameworks?. Materials Advances, 2022, 3, 2475-2487.	2.6	7
213	ZIF-8 metal-organic framework conjugated to pristine and doped B12N12 nanoclusters as a new hybrid nanomaterial for detection of amphetamine. Inorganic Chemistry Communication, 2022, 135, 109119.	1.8	6
214	Rational design of carborane-based Cu ₂ -paddle wheel coordination polymers for increased hydrolytic stability. Dalton Transactions, 2022, 51, 1137-1143.	1.6	11
215	Emerging porous organic polymers for biomedical applications. Chemical Society Reviews, 2022, 51, 1377-1414.	18.7	103
216	Proton Conductive Lanthanide-Based Metal–Organic Frameworks: Synthesis Strategies, Structural Features, and Recent Progress. Topics in Current Chemistry, 2022, 380, 9.	3.0	23
217	Confined space synthesis of chromium–based metal–organic frameworks in activated carbon: Synergistic effect on the adsorption of contaminants of emerging concern from water. Journal of Environmental Chemical Engineering, 2022, 10, 107282.	3.3	6

#	Article	IF	CITATIONS
218	Determination of anionic perfluorinated compounds in water samples using cationic fluorinated metal organic framework membrane coupled with UHPLC–MS/MS. Journal of Hazardous Materials, 2022, 429, 128333.	6.5	23
219	Application of machine learning in predicting the adsorption capacity of organic compounds onto biochar and resin. Environmental Research, 2022, 208, 112694.	3.7	23
220	Chapter 5. 2D Photocatalytic Materials for Environmental Applications. Inorganic Materials Series, 2022, , 217-293.	0.5	0
221	Ultrathin Bi ₄ O ₅ Br ₂ nanosheets with surface oxygen vacancies and strong interaction with Bi ₂ O ₂ CO ₃ for highly efficient removal of water contaminants. Environmental Science: Nano, 2022, 9, 1341-1352.	2.2	5
222	Accurate Removal of Toxic Organic Pollutants from Complex Water Matrices. Environmental Science & Environmental & Environmental & Environmental & Environmental & Environmenta	4.6	44
223	Series of Stable Anionic Lanthanide Metal–Organic Frameworks as a Platform for Pollutant Separation and Efficient Nanoparticle Catalysis. Inorganic Chemistry, 2022, 61, 3472-3483.	1.9	8
224	Wastewater treatment and emerging contaminants: Bibliometric analysis. Chemosphere, 2022, 297, 133932.	4.2	121
225	Hypercrosslinked triazine-phloroglucinol hierarchical porous polymers for the effective removal of organic micropollutants. Chemical Engineering Journal, 2022, 435, 134990.	6.6	26
226	Metal–Organic Frameworks (Mofs) for the Efficient Removal of Contaminants from Water: Underlying Mechanisms, Recent Advances, Challenges, and Future Prospects. SSRN Electronic Journal, 0, , .	0.4	0
227	Hypercrosslinked Triazine-Phloroglucinol Hierarchical Porous Polymers for the Effective Removal of Organic Micropollutants. SSRN Electronic Journal, 0, , .	0.4	0
228	Amorphous metal–organic frameworks obtained from a crystalline precursor for the capture of iodine with high capacities. Chemical Communications, 2022, 58, 5013-5016.	2.2	22
229	Active site regulated Z-scheme MIL-101(Fe)/Bi ₂ WO ₆ /Fe(<scp>iii</scp>) with the synergy of hydrogen peroxide and visible-light-driven photo-Fenton degradation of organic contaminants. Nanoscale, 2022, 14, 7055-7074.	2.8	12
230	Synthesis of Metal–Organic Coordination Polymers and Their Derived Nanostructures for Organic Dye Removal and Analyte Detection. SSRN Electronic Journal, 0, , .	0.4	0
231	Effective Design and Synthesis of Donor-Acceptor Covalent Triazine Polymers with Boosted Photocatalytic Performance for Cr(Vi) Reduction. SSRN Electronic Journal, 0, , .	0.4	0
232	Coordination Polymers in Adsorptive Remediation of Environmental Contaminants. SSRN Electronic Journal, $0, , .$	0.4	0
233	Controlled polymerization of metal complex monomers – fabricating random copolymers comprising different metal species and nano-colloids. Chemical Communications, 2022, 58, 5273-5276.	2.2	4
234	Structure, magnetic properties and spin density of two alternative Mn(<scp>ii</scp>) coordination polymers based on 1,4-bis(2′-carboxyphenoxy)benzene. Dalton Transactions, 2022, 51, 4869-4877.	1.6	4
235	Metal–organic cages against toxic chemicals and pollutants. Chemical Communications, 2022, 58, 5055-5071.	2.2	24

#	Article	IF	CITATIONS
236	Two bis-ligand-coordinated Zn(<scp>ii</scp>)-MOFs for luminescent sensing of ions, antibiotics and pesticides in aqueous solutions. RSC Advances, 2022, 12, 7780-7788.	1.7	15
237	Preparation and characterization of a newly constructed multifunctional Co(<scp>ii</scp>)–organic framework: proton conduction and adsorption of Congo red in aqueous medium. CrystEngComm, 2022, 24, 3380-3393.	1.3	7
238	Double network hydrogels for energy/environmental applications: challenges and opportunities. Journal of Materials Chemistry A, 2022, 10, 9215-9247.	5.2	46
239	Controlling Metal Clusters in Breathing Metal–Organic Framework Nanostructures for Boosting Visible-Light-Induced ·OH Radical Formation. ACS Applied Nano Materials, 2022, 5, 2510-2521.	2.4	7
240	Synthesis, Structure and Topology of Copper(I) Tetrazolate Framework: Facile Approach to Design Multiple Dye Adsorbent with Carbon Composites. ChemistrySelect, 2022, 7, .	0.7	3
241	Fog Harvesting Devices Inspired from Single to Multiple Creatures: Current Progress and Future Perspective. Advanced Functional Materials, 2022, 32, .	7.8	62
242	Metal organic frameworks as versatile platforms for wastewater remediation. Materials Today: Proceedings, 2022, 57, 846-850.	0.9	2
243	Unfolding the Role of Building Units of MOFs with Mechanistic Insight Towards Selective Metal Ions Detection in Water**. Chemistry - A European Journal, 2022, 28, .	1.7	13
244	Multivariate Metal–Organic Framework/Single-Walled Carbon Nanotube Buckypaper for Selective Lead Decontamination. ACS Applied Nano Materials, 2022, 5, 5223-5233.	2.4	20
245	pHâ€Triggered Removal of Nitrogenous Organic Micropollutants from Water by Using Metalâ€Organic Polyhedra. Chemistry - A European Journal, 2022, 28, .	1.7	4
246	UiO-66-derived porous-carbon adsorbents: synthesis, characterization and tetracycline adsorption performance. Carbon Letters, 2022, 32, 875-884.	3.3	17
247	Low-Temperature and Additive-Free Synthesis of Spherical MIL-101(Cr) with Enhanced Dye Adsorption Performance. Inorganics, 2022, 10, 33.	1.2	5
248	Mixed-Linker Strategy for the Construction of Metal–Organic Framework Combined with Dyes toward Alcohol Detection. Inorganic Chemistry, 2022, 61, 5318-5325.	1.9	3
249	S-scheme heterojunction BP/WO3 with tight interface firstly prepared in magnetic stirring reactor for enhanced photocatalytic degradation of hazardous contaminants under visible light. Separation and Purification Technology, 2022, 292, 120986.	3.9	10
250	Metal–Organic Frameworks in Agriculture. ACS Applied Materials & Interfaces, 2022, 14, 16983-17007.	4.0	53
251	Wet electrospinning-aided self-assembly of multifunctional GO-CNT@PCL core-shell nanocomposites with spider leg bioinspired hierarchical architectures. Composites Science and Technology, 2022, 221, 109363.	3.8	17
252	Metal-organic framework (MOF-808) functionalized with ethyleneamines: Selective adsorbent to capture CO2 under low pressure. Journal of CO2 Utilization, 2022, 58, 101932.	3.3	36
253	Electrochemical Synthesis Methods of Metalâ€Organic Frameworks and Their Environmental Analysis Applications: A Review. ChemElectroChem, 2022, 9, .	1.7	16

#	Article	IF	CITATIONS
254	Aquatic arsenic removal with a Zr-MOF constructed via in situ nitroso coupling. Separation and Purification Technology, 2022, 288, 120700.	3.9	15
255	Effective design and synthesis of donor-acceptor covalent triazine polymers with boosted photocatalytic performance for Cr(VI) reduction. Separation and Purification Technology, 2022, 290, 120829.	3.9	9
256	Photocatalytic applications of heterostructure Ag2S/TiO2 nanotube arrays for U(VI) reduction and phenol degradation. Journal of Solid State Chemistry, 2022, 310, 123010.	1.4	12
257	Comparative analysis of separation methods used for the elimination of pharmaceuticals and personal care products (PPCPs) from water – A critical review. Separation and Purification Technology, 2022, 290, 120797.	3.9	41
258	Fe–O–Zr in MOF for effective photo-Fenton Bisphenol A degradation: Boosting mechanism of electronic transmission. Chemosphere, 2022, 299, 134481.	4.2	20
259	Polyvinylpyrrolidone/Single-Walled Carbon Nanotubes Incorporated Polyhipe Monoliths Followed by HPLC for Determination of Tetracycline Antibiotics in Water Samples. Journal of Water Chemistry and Technology, 2021, 43, 483-490.	0.2	2
260	A survey of recent progress on novel catalytic materials with precise crystalline structures for oxidation/hydrogenation of key biomass platform chemicals. EcoMat, 2021, 3, .	6.8	9
261	A Cyclic Titanium-Oxo Cluster with a Tetrathiafulvalene Connector as a Precursor for Highly Efficient Adsorbent of Cationic Dyes. Inorganic Chemistry, 2022, 61, 486-495.	1.9	7
262	Emerging Contaminants Removal from Wastewater by Nanotechnological Methods. Energy, Environment, and Sustainability, 2022, , 261-285.	0.6	1
263	Elucidating the Mechanistic Origin of a Spin State-Dependent FeN _{<i>x</i><_{â€"C Catalyst toward Organic Contaminant Oxidation via Peroxymonosulfate Activation. Environmental Science & Envir}}	4.6	81
264	Investigation of the aqueous adsorption capacity of a 6-connected Zr-MOF for anionic and cationic dyes in comparison with other traditional porous materials. IOP Conference Series: Earth and Environmental Science, 2021, 947, 012032.	0.2	0
265	Supramolecular Frameworks and a Luminescent Coordination Polymer from New β-Diketone/Tetrazole Ligands. Inorganics, 2022, 10, 55.	1.2	2
266	Introduction of alkyl and sulfonic groups in Ti-metal-organic framework for boosting removal of metformin hydrochloride. Journal of Molecular Structure, 2022, 1263, 133121.	1.8	1
267	Recent Advances in the Applications of Carbon Nanostructures on Optical Sensing of Emerging Aquatic Pollutants. ChemNanoMat, 2022, 8, .	1.5	6
268	Cationic Zr-based metal-organic framework via post-synthetic alkylation for selective adsorption and separation of anionic dyes. Materials Today Chemistry, 2022, 24, 100897.	1.7	6
269	Zn/Co-ZIFs@MIL-101(Fe) metal–organic frameworks are effective photo-Fenton catalysts for RhB removal. Separation and Purification Technology, 2022, 293, 121099.	3.9	46
270	Effective defluoridation of water using nanosized UiO-66-NH2 encapsulated within macroreticular polystyrene anion exchanger. Chemosphere, 2022, 300, 134584.	4.2	5
271	Nanoarchitecturing TiO2/NiCr2O4 p-n heterojunction photocatalysts for visible-light-induced activation of persulfate to remove tetracycline hydrochloride. Chemosphere, 2022, 300, 134594.	4.2	21

#	Article	IF	CITATIONS
272	Efficient Oxidation of Paracetamol Triggered by Molecularâ \in oxygen Activation at βâ \in cyclodextrin Modified Titanate Nanotube. Chemistry - an Asian Journal, 2022, , .	1.7	3
273	A review on the adsorption mechanism of different organic contaminants by covalent organic framework (COF) from the aquatic environment. Environmental Science and Pollution Research, 2022, 29, 32566-32593.	2.7	36
274	Unveiling the Impact of Diverse Morphology of Ionic Porous Organic Polymers with Mechanistic Insight on the Ultrafast and Selective Removal of Toxic Pollutants from Water. ACS Applied Materials & Amp; Interfaces, 2022, 14, 20042-20052.	4.0	18
275	Development and perspectives of rapid detection technology in food and environment. Critical Reviews in Food Science and Nutrition, 2022, 62, 4706-4725.	5.4	21
277	Metal–Organic Framework-Based Selective Molecular Recognition of Organic Amines and Fixation of CO ₂ into Cyclic Carbonates. Inorganic Chemistry, 2022, 61, 6977-6994.	1.9	22
278	Trap Inlaid Cationic Hybrid Composite Material for Efficient Segregation of Toxic Chemicals from Water. Angewandte Chemie, 0, , .	1.6	2
279	Trap Inlaid Cationic Hybrid Composite Material for Efficient Segregation of Toxic Chemicals from Water. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
280	Synthesis Metal-Organic Framework (MOFs) Cr-PTC-HIna Modulated Isonicotinic Acid for Methylene Blue Photocatalytic Degradation. Bulletin of Chemical Reaction Engineering and Catalysis, 2022, 17, 383-393.	0.5	3
281	Killing Two Birds with One Stone: Biomineralized Bacteria Tolerate Adverse Environments and Absorb Hexavalent Chromium. ACS Omega, 2022, 7, 15385-15395.	1.6	3
282	Water-Stable Carborane-Based Eu ³⁺ /Tb ³⁺ Metal–Organic Frameworks for Tunable Time-Dependent Emission Color and Their Application in Anticounterfeiting Bar-Coding. Chemistry of Materials, 2022, 34, 4795-4808.	3.2	27
283	Construction of ternary Z-scheme covalent triazine framework@Au@TiO2 for enhanced visible-light-driven hydrogen evolution activity. International Journal of Hydrogen Energy, 2022, 47, 18334-18346.	3.8	7
284	Encapsulation-Led Adsorption of Neutral Dyes and Complete Photodegradation of Cationic Dyes and Antipsychotic Drugs by Lanthanide-Based Macrocycles. Inorganic Chemistry, 2022, 61, 7682-7699.	1.9	12
285	A Porous Sulfonated 2D Zirconium Metal–Organic Framework as a Robust Platform for Proton Conduction. Chemistry - A European Journal, 2022, 28, .	1.7	8
286	Functionalized metal-organic framework-derived carbon: Effective adsorbent to eliminate methylene blue, a small cationic dye from water. Chemosphere, 2022, 303, 134890.	4.2	11
287	Well-construction of Zn2SnO4/SnO2@ZIF-8 coreâ€"shell hetero-structure with efficient photocatalytic activity towards tetracycline under restricted space. Chinese Journal of Chemical Engineering, 2022, 52, 45-55.	1.7	8
288	Screening of hierarchical porous UiO-67 for efficient removal of glyphosate from aqueous solution. Journal of Environmental Chemical Engineering, 2022, 10, 107824.	3.3	13
289	Facile construction of Fe3+/Fe2+ mediated charge transfer pathway in MIL-101 for effective tetracycline degradation. Journal of Cleaner Production, 2022, 359, 131808.	4.6	17
290	An innovative S-scheme AgCl/MIL-100(Fe) heterojunction for visible-light-driven degradation of sulfamethazine and mechanism insight. Journal of Hazardous Materials, 2022, 435, 129061.	6.5	45

#	Article	IF	Citations
291	Metal–organic-framework-based photocatalysts for microorganism inactivation: a review. Catalysis Science and Technology, 2022, 12, 3767-3777.	2.1	13
292	Mixed-Linker Isoreticular Zn(II) Metal–Organic Frameworks as Brønsted Acid–Base Bifunctional Catalysts for Knoevenagel Condensation Reactions. Inorganic Chemistry, 2022, 61, 8339-8348.	1.9	27
293	3,5-Dibromosalicylaldehyde nicotinoylhydrazone and 4,4′-bipyridine appended new Zn(II) Coordination Polymer: Secnidazole sensing and Rhodamine B photocatalytic degradation properties. Journal of Molecular Structure, 2022, 1264, 133304.	1.8	3
294	Highly efficient removal of glyphosate from water by hierarchical-pore UiO-66: Selectivity and effects of natural water particles. Journal of Environmental Management, 2022, 316, 115301.	3.8	19
295	Chitosan entrapped microporous activated carbon composite as a supersorbent for remazol brilliant blue R. Materials Advances, 2022, 3, 5488-5496.	2.6	9
296	<i>In situ</i> fabrication of porous biochar reinforced W ₁₈ O ₄₉ nanocomposite for methylene blue photodegradation. RSC Advances, 2022, 12, 14902-14911.	1.7	2
297	Covalent triazine framework: Water treatment application. Journal of Water Process Engineering, 2022, 48, 102874.	2.6	19
298	Cross-linked laminar graphene oxide membranes for wastewater treatment and desalination: A review. Journal of Environmental Management, 2022, 317, 115367.	3.8	14
299	Ultrasonic Synthesis of Polyoxovanadate-Based Nanoparticles as Catalyst for Water Remediation. SSRN Electronic Journal, 0, , .	0.4	0
300	Freezing-Induced Chemical Crosslinking to Fabricate Nanocellulose-Based Cryogels for Efficient Bilirubin Removal. SSRN Electronic Journal, 0, , .	0.4	0
301	The potential use of essential oils as natural biocides against plant pathogens., 2022,, 419-435.		0
302	Revisiting Vibrational Spectroscopy to Tackle the Chemistry of Zr ₆ O ₈ Metal-Organic Framework Nodes. ACS Applied Materials & Interfaces, 2022, 14, 27040-27047.	4.0	7
303	In situ Growth of UiO-66 with Its Particle Size Reduced by 90% into Porous Polyacrylate: Experiments and Applications. Industrial & Description (Section 2) and Applications. Industrial & Description (Section 2) and Applications.	1.8	3
304	ZIF-67-based catalysts in persulfate advanced oxidation processes (PS-AOPs) for water remediation. Journal of Environmental Chemical Engineering, 2022, 10, 107997.	3.3	14
305	Recent Progress in the Removal of Legacy and Emerging Organic Contaminants from Wastewater Using Metalâe"Organic Frameworks: An Overview on Adsorption and Catalysis Processes. Materials, 2022, 15, 3850.	1.3	4
306	Transition Metals-Based Metal-Organic Frameworks, Synthesis, and Environmental Applications., 0,,.		1
307	Influence of the Surface Chemistry of Metal–Organic Polyhedra in Their Assembly into Ultrathin Films for Gas Separation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 27495-27506.	4.0	6
308	Supramolecular Isomerism in Cobalt(II) Coordination Polymers Built from 3,5-Bis(trifluoromethyl)benzoate and 4,4′-Bipyridine. Crystal Growth and Design, 2022, 22, 4463-4471.	1.4	1

#	Article	IF	CITATIONS
309	Bioinspired Mesoporous Silica for Cd(II) Removal from Aqueous Solutions. Industrial & Engineering Chemistry Research, 2022, 61, 8188-8203.	1.8	7
310	Dissecting the structure-property relationship of ceramic membrane with asymmetric multilayer structures for maximizing permselectivity. Water Research, 2022, 220, 118658.	5.3	4
311	Metal–organic frameworks (MOFs) for the efficient removal of contaminants from water: Underlying mechanisms, recent advances, challenges, and future prospects. Coordination Chemistry Reviews, 2022, 468, 214595.	9.5	64
312	MIL-100(Fe)@GO composites with superior adsorptive removal of cationic and anionic dyes from aqueous solutions. Journal of Molecular Structure, 2022, 1265, 133365.	1.8	7
313	Metalâ^'Organic Frameworks Based Adsorbents for Aquatic Pollutants Removal. ACS Symposium Series, 0, , 155-170.	0.5	4
314	Construction and application of base-stable MOFs: a critical review. Chemical Society Reviews, 2022, 51, 6417-6441.	18.7	147
315	Multi-functional metal–organic frameworks for detection and removal of water pollutions. Chemical Communications, 2022, 58, 7890-7908.	2.2	25
316	Well-constructed approach of exceptionally water-stable (mesoporous) Tj ETQq1 1 0.784314 rgBT /Overlock 10 T Journal of Chemistry, 2022, 46, 13582-13592.	Tf 50 467 1.4	Td (SiO <sub 6</sub
317	TheÂOrientedÂDesignÂOf Transition Metal Oxide Hollow Multishelled Micro-PolyhedronÂDerived from Bimetal-Organic Frameworks for Electrochemical DetectionÂOfÂMulti-Pesticide Residues. SSRN Electronic Journal, 0, , .	0.4	0
318	MIL-100(Fe)-Hybridized Nanofibers for Adsorption and Visible Light Photocatalytic Degradation of Water Pollutants: Experimental and DFT Approach. ACS Omega, 2022, 7, 21145-21155.	1.6	13
319	Particle-in-Molybdenum Disulfide-Coated Cavity Structure with a Raman Internal Standard for Sensitive Raman Detection of Water Contaminants from Ions to <300 nm Nanoplastics. Journal of Physical Chemistry Letters, 2022, 13, 5815-5823.	2.1	22
320	3D graphene supported p-n heterojunction of Ag3PO4/BiPO4 nanorods for enhanced simulated sunlight irradiated photocatalytic activity. Research on Chemical Intermediates, 2022, 48, 3289-3313.	1.3	3
321	Acridineâ€Peptide Conjugated Nanofiber Assembly Triggers Stimuliâ€Free Immobilization of Crude Oil and Readâ€Out by Turnâ€On Emission. ChemNanoMat, 2022, 8, .	1.5	0
322	Soft Self-Templating Approach-Derived Covalent Triazine Framework with Bimodal Nanoporosity for Efficient Radioactive Iodine Capture for Safe Nuclear Energy. ACS Applied Nano Materials, 2022, 5, 8783-8793.	2.4	8
323	FeOCl Nanoparticles Loaded onto Oxygen-Enriched Carbon Nanotubes and Nickel-Foam-Based Cathodes for the Electro-Fenton Degradation of Pollutants. ACS Applied Nano Materials, 2022, 5, 12095-12106.	2.4	19
324	The nitrogen-doped graphene-like carbon nanosheets: Confined construction and oxygen-limited oxidation for higher removal efficiency toward organic contaminants. Journal of Cleaner Production, 2022, 363, 132604.	4.6	2
325	Acidic pH and thiol-driven homogeneous cathodic electrochemiluminescence strategy for determining the residue of organophosphorus pesticide in Chinese cabbage. Food Chemistry, 2022, 393, 133349.	4.2	8
326	Regulating Defective Sites for Pharmaceuticals Selective Removal: Structure-Dependent Adsorption Over Continuously Tunable Pores. SSRN Electronic Journal, 0, , .	0.4	O

#	Article	IF	CITATIONS
327	Recent advances in bimetallic metal–organic frameworks (BMOFs): synthesis, applications and challenges. New Journal of Chemistry, 2022, 46, 13818-13837.	1.4	61
328	Metal-organic frameworks (MOFs), rare earth MOFs, and rare earth functionalized MOF hybrid materials. , 2022, , 3-40.		0
329	Novel Fe7s8/C Nanocomposites with Accelerating Iron Cycle for Enhanced Heterogeneous Electro-Fenton Degradation of Dyes. SSRN Electronic Journal, 0, , .	0.4	0
330	Intracellular fate and immune response of porphyrin-based nano-sized metal-organic frameworks. Chemosphere, 2022, 307, 135680.	4.2	6
331	Construction of a 3D Metal–Organic Framework and Its Composite for Water Remediation via Selective Adsorption and Photocatalytic Degradation of Hazardous Dye. ACS Omega, 2022, 7, 24438-24451.	1.6	20
332	Effects of High Gamma Doses on the Structural Stability of Metal–Organic Frameworks. Langmuir, 0, ,	1.6	11
333	Oneâ€pot Economic Synthesis to the Functional Copper Mixedâ€triazolate MOF Materials Towards an Enhanced Adsorptive Removal of Diclofenac Sodium. ChemistrySelect, 2022, 7, .	0.7	1
334	Synthesis of metal–organic coordination polymers and their derived nanostructures for organic dye removal and analyte detection. Journal of Environmental Chemical Engineering, 2022, 10, 108215.	3. 3	3
335	Fabrication of poly(maleic acid)-grafted cross-linked chitosan/montmorillonite nanospheres for ultra-high adsorption of anionic acid yellow-17 and cationic brilliant green dyes in single and binary systems. Journal of Hazardous Materials, 2022, 439, 129589.	6.5	27
336	Coordination polymers in adsorptive remediation of environmental contaminants. Coordination Chemistry Reviews, 2022, 470, 214694.	9.5	16
337	Phytoremediation potential of Gossypium hirsutum on abandoned polluted chromium sludge soil with the amalgamation of Streptomyces tritici D5. Chemosphere, 2022, 306, 135526.	4.2	4
338	Performance study of novel PES membrane using electrospray deposition method for organic contaminants separation. Chemical Engineering Research and Design, 2022, 186, 73-81.	2.7	4
339	The chemical stability of metal-organic frameworks in water treatments: Fundamentals, effect of water matrix and judging methods. Chemical Engineering Journal, 2022, 450, 138215.	6.6	39
340	TheÂOrientedÂDesignÂOf Transition Metal Oxide Hollow Multishelled Micro-PolyhedronÂDerived from Bimetal-Organic Frameworks for Electrochemical DetectionÂOfÂMulti-Pesticide Residues. SSRN Electronic Journal, 0, , .	0.4	0
341	Strategies for enhancing peroxymonosulfate activation by heterogenous metal-based catalysis: A review. Chinese Journal of Chemical Engineering, 2022, 50, 12-28.	1.7	12
342	Universal peroxidase-like strategy for sensitive glucose detection in complex matrix. Nano Research, 2023, 16, 1141-1148.	5.8	8
343	Electrobioremediation: Combined Electrokinetics and Bioremediation Technology for Contaminated Site Remediation. Indian Geotechnical Journal, 2022, 52, 1205-1225.	0.7	6
344	Advances in Metal-Organic Frameworks MIL-101(Cr). International Journal of Molecular Sciences, 2022, 23, 9396.	1.8	36

#	Article	IF	CITATIONS
345	Recent Advances in Research on the Effect of Physicochemical Properties on the Cytotoxicity of Metal–Organic Frameworks. Small Science, 2022, 2, .	5.8	20
346	Hydroxyâ€Functionalized Hypercrosslinked Polymers (HCPs) as Dual Phase Radioactive Iodine Scavengers: Synergy of Porosity and Functionality. ChemPlusChem, 2022, 87, .	1.3	3
347	A critical review of covalent organic frameworks-based sorbents in extraction methods. Analytica Chimica Acta, 2022, 1224, 340207.	2.6	50
348	Base-functionalized metalâ^'organic frameworks for highly efficient removal of organic acid pollutants from water. Microporous and Mesoporous Materials, 2022, 343, 112164.	2.2	1
349	Removal of diphenols using pine biochar. Kinetics, equilibrium, thermodynamics, and mechanism of uptake. Journal of Molecular Liquids, 2022, 364, 119979.	2.3	59
350	Dual-modes of ratiometric fluorescent and smartphone-integrated colorimetric detection of glyphosate by carbon dots encapsulated porphyrin metal–organic frameworks. Applied Surface Science, 2022, 602, 154368.	3.1	22
351	Highly efficient peroxymonosulfate activation of single-atom Fe catalysts via integration with Fe ultrafine atomic clusters for the degradation of organic contaminants. Separation and Purification Technology, 2022, 300, 121910.	3.9	13
352	Freezing-induced chemical crosslinking to fabricate nanocellulose-based cryogels for efficient bilirubin removal. Separation and Purification Technology, 2022, 300, 121865.	3.9	4
353	Green synthesis of MOF-808 with modulation of particle sizes and defects for efficient phosphate sequestration. Separation and Purification Technology, 2022, 300, 121825.	3.9	40
354	Coordination polymers-derived core-shell Co@N–C nanostructures as efficient dual functional catalysts for nitrate electroreduction and Fenton-like catalytic dye degradation. Journal of Solid State Chemistry, 2022, 315, 123485.	1.4	2
355	Metal-organic frameworks composed of nitro groups: Preparation and applications in adsorption and catalysis. Chemical Engineering Journal, 2023, 451, 138538.	6.6	39
356	Exploring a metalloligand for construction of an oxamato-based metal-organic framework. Journal of Coordination Chemistry, 0, , 1-11.	0.8	0
357	Single and dual polymeric sponges for emerging pollutants removal. European Polymer Journal, 2022, 179, 111556.	2.6	12
358	Synergistic dicarboxylate sites of natural citric acid modified MOF-808 for the deep removal of Pb2+ in water. Journal of Molecular Liquids, 2022, 366, 120235.	2.3	7
359	Metal-organic frameworks-derived catalysts for contaminant degradation in persulfate-based advanced oxidation processes. Journal of Cleaner Production, 2022, 375, 134118.	4.6	60
360	Selective recovery of glyphosine from glyphosate mother liquor using a modified biosorbent: Competitive substitution adsorption. Environmental Research, 2022, 215, 114394.	3.7	6
361	Two-dimensional metal-organic frameworks: From synthesis to biomedical, environmental, and energy conversion applications. Coordination Chemistry Reviews, 2022, 473, 214817.	9.5	22
362	Nano-modified feather keratin derived green and sustainable biosorbents for the remediation of heavy metals from synthetic wastewater. Chemosphere, 2022, 308, 136339.	4.2	11

#	Article	IF	CITATIONS
363	MIL-100(Fe) a potent adsorbent of Dacarbazine: Experimental and molecular docking simulation. Chemical Engineering Journal, 2023, 452, 138987.	6.6	33
364	Regulating defective sites for pharmaceuticals selective removal: Structure-dependent adsorption over continuously tunable pores. Journal of Hazardous Materials, 2023, 442, 130025.	6.5	13
365	Acridine based metal–organic framework host–guest featuring efficient photoelectrochemical-type photodetector and white LED. Dalton Transactions, 2022, 51, 11231-11235.	1.6	6
366	Enhancing mechanism of arsenic(<scp>iii</scp>) adsorption by MnO ₂ -loaded calcined MgFe layered double hydroxide. RSC Advances, 2022, 12, 25833-25843.	1.7	5
367	Selective Recovery of Glyphosine from Glyphosate Mother Liquor by a Modified Biosorbent: Competitive Substitution Adsorption. SSRN Electronic Journal, 0, , .	0.4	0
368	A rare potassium-rich zirconium fluorophosphonate with high Eu $<$ sup $>3+sup> adsorption capacities from acidic solutions. Dalton Transactions, 0, , .$	1.6	0
369	Porous carbon nanoarchitectonics for the environment: detection and adsorption. CrystEngComm, 2022, 24, 6804-6824.	1.3	17
370	Discriminative fluorescent sensing of nitro-antibiotics at ppb level using N-phenyl-amino-1,8-naphthalimides chemosensors. Results in Chemistry, 2022, 4, 100546.	0.9	5
371	Adsorption and In-Situ Photocatalytic Fenton Multifield Coupled Degradation of Organic Pollutants and Coking Wastewater Via Fe-Biobr Modification of Three-Dimensional Graphene Aerogel. SSRN Electronic Journal, 0, , .	0.4	0
372	Robust and multifunctional natural polyphenolic composites for water remediation. Materials Horizons, 2022, 9, 2496-2517.	6.4	59
373	Efficient removal of polybrominated diphenyl ethers from soil washing effluent by dummy molecular imprinted adsorbents: Selectivity and mechanisms. Journal of Environmental Sciences, 2023, 129, 45-57.	3.2	7
374	Highly Selective Adsorption of Cationic Dye by An Anionic Zincâ€Organic Framework. ChemistrySelect, 2022, 7, .	0.7	1
375	Series of TM-OFs as a Platform for Efficient Catalysis and Multifunctional Luminescence Sensing. Inorganic Chemistry, 2022, 61, 15880-15894.	1.9	6
376	Fabrication of Ce doped Coln2S4 microspheres as efficient photocatalyst for degradation of rhodamine B. Journal of Sol-Gel Science and Technology, 2022, 104, 380-386.	1.1	7
377	Persulfate activation by single-atom catalysts for the removal of organic pollutants: A review. , 2023, 2, 63-79.		0
378	Metal-organic frameworks as platforms for the removal of per- and polyfluoroalkyl substances from contaminated waters. Matter, 2022, 5, 3161-3193.	5.0	13
379	Hydrophobicity and dielectric properties across an isostructural family of MOFs: a duet or a duel?. Chemical Communications, 0, , .	2.2	2
380	Dual-Path Oxidation of Phenolic Organic Contaminants Triggered by the β-MnO ₂ /Bisulfite System. ACS ES&T Water, 2022, 2, 2579-2589.	2.3	5

#	Article	IF	CITATIONS
381	Photothermal Aerogel Beads Based on Polysaccharides: Controlled Fabrication and Hybrid Applications in Solar-Powered Interfacial Evaporation, Water Remediation, and Soil Enrichment. ACS Applied Materials & Diterfaces, 2022, 14, 50266-50279.	4.0	17
382	Piezocatalytic Techniques in Environmental Remediation. Angewandte Chemie, 2023, 135, .	1.6	0
383	Selective and Sensitive Recognition of Specific Types of Toxic Organic Pollutants with a Chemically Stable Highly Luminescent Porous Organic Polymer (POP). ACS Applied Polymer Materials, 2022, 4, 8633-8644.	2.0	10
384	Regulating the Porosity and Iodine Adsorption Properties of Metal–Organic Framework Glass via an Ammonia-Immersion Approach. Inorganic Chemistry, 2022, 61, 16981-16985.	1.9	7
385	Modular Construction of an MIL-101(Fe)@MIL-100(Fe) Dual-Compartment Nanoreactor and Its Boosted Photocatalytic Activity toward Tetracycline. ACS Applied Materials & Interfaces, 2022, 14, 48285-48295.	4.0	31
386	Fabrication of nanocomposite membrane based on post-synthetic modification of two-dimensional metal-organic framework nanosheet. Inorganic Chemistry Communication, 2022, 146, 110137.	1.8	4
387	Metalâ€Organic Frameworks and Electrospinning: A Happy Marriage for Wastewater Treatment. Advanced Functional Materials, 2022, 32, .	7.8	66
388	Bifunctional Self-Penetrating Co(II)-Based 3D MOF for High-Performance Environmental and Energy Storage Applications. Crystal Growth and Design, 2022, 22, 7374-7394.	1.4	15
389	Piezocatalytic Techniques in Environmental Remediation. Angewandte Chemie - International Edition, 2023, 62, .	7.2	33
390	A zinc(II) complex based on 5-(ethylamino)isophthalic acid and <i>trans</i> -1,2-di(4-pyridyl)ethene with a threefold interpenetrated crystal structure: synthesis, crystal structure and room temperature phosphorescence. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2022, .	0.3	1
391	Graphene-Based Metal–Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies. Chemical Reviews, 2022, 122, 17241-17338.	23.0	81
392	Fabrication of \hat{I}^3 -cyclodextrin-Based metal-organic frameworks as a carrier of cinnamaldehyde and its application in fresh-cut cantaloupes. Current Research in Food Science, 2022, 5, 2114-2124.	2.7	12
393	Influence of Functionalized Hematite Nanoparticles as a Reinforcer for Composite PVDF-PEG Membrane for BPF Rejection: Permeability and Anti-fouling Studies. Journal of Polymers and the Environment, 2023, 31, 768-790.	2.4	5
394	Emergent Organic Contaminants. , 2023, , 307-322.		0
395	Metal-organic frameworks (MOFs): A novel platform for laccase immobilization and application. Journal of Environmental Chemical Engineering, 2022, 10, 108795.	3.3	12
396	Photocatalytic reduction of chromium by titanium metal organic frameworks in the presence of low-molecular-weight organic acids under UV and visible light. Journal of Environmental Chemical Engineering, 2022, 10, 108796.	3.3	2
397	Facile fabrication of flower-like Ni-Co-Mn based LDHs and their superior catalytic performance for atenolol, nitrite and methanol. Journal of Environmental Chemical Engineering, 2022, 10, 108721.	3.3	3
398	Novel Fe7S8/C nanocomposites with accelerating iron cycle for enhanced heterogeneous electro-Fenton degradation of dyes. Electrochimica Acta, 2022, 436, 141381.	2.6	5

#	Article	IF	CITATIONS
399	Preparation and applications of metal–organic frameworks composed of sulfonic acid. Coordination Chemistry Reviews, 2023, 474, 214868.	9.5	25
400	A juxtaposed review on adsorptive removal of PFAS by metal-organic frameworks (MOFs) with carbon-based materials, ion exchange resins, and polymer adsorbents. Chemosphere, 2023, 311, 136933.	4.2	19
401	Metal-organic frameworks for the adsorptive removal of pharmaceutically active compounds (PhACs): Comparison to activated carbon. Coordination Chemistry Reviews, 2023, 475, 214877.	9.5	17
402	Sodium alginate/diethyleneamine-triazine-sulfonamide nanocomposite for adsorptive removal of Pb(II) and methyl violet from aqueous solutions. Materials Chemistry and Physics, 2023, 293, 126915.	2.0	27
403	Insights into conduction band flexibility induced by spin polarization in titanium-based metal–organic frameworks for photocatalytic water splitting and pollutants degradation. Journal of Colloid and Interface Science, 2023, 630, 430-442.	5.0	31
404	Defect engineering of Metal-Organic Framework for highly efficient hydrodeoxygenation of lignin derivates in water. Chemical Engineering Journal, 2023, 453, 139711.	6.6	17
405	Nanoconfined catalytic membranes assembled by cobalt-functionalized graphitic carbon nitride nanosheets for rapid degradation of pollutants. Applied Catalysis B: Environmental, 2023, 322, 122098.	10.8	46
406	Ag/Ni–MOF heterostructure with synergistic enrichment and activation properties for electrocatalytic reduction of 4-nitrophenol. Chemical Communications, 2022, 58, 13499-13502.	2.2	10
407	Adsorption and in-situ photocatalytic Fenton multifield coupled degradation of organic pollutants and coking wastewater via Fe BiOBr modification of three-dimensional graphene aerogel. Applied Surface Science, 2023, 610, 155495.	3.1	10
408	Ordered Macro/Microporous Ionic Organic Framework for Efficient Separation of Toxic Pollutants from Water. Angewandte Chemie - International Edition, 2023, 62, .	7.2	11
409	Universal machine-learning algorithm for predicting adsorption performance of organic molecules based on limited data set: Importance of feature description. Science of the Total Environment, 2023, 859, 160228.	3.9	3
410	Pillar-Layered Metal-Organic Frameworks for Sensing Specific Amino Acid and Photocatalyzing Rhodamine B Degradation. Molecules, 2022, 27, 7551.	1.7	8
411	Transformation of Organonitrogenâ€Encapsulated MOFs into Nâ€Doped Fe ₃ O ₄ @C Nanopolyhedron via CVD Superâ€Assembly for Photochemical Oxidation. Advanced Functional Materials, 2023, 33, .	7.8	4
412	Fast and simultaneous removal of microplastics and plastic-derived endocrine disruptors using a magnetic ZIF-8 nanocomposite. Chemical Engineering Journal, 2023, 455, 140405.	6.6	21
413	Ordered Macro/Microporous Ionic Organic Framework for Efficient Separation of Toxic Pollutants from Water. Angewandte Chemie, 0, , .	1.6	1
414	Compressible metal-organic framework-nanofibrous reinforced chitosan aerogel for efficient removal of Pb(II) ions. Materials Today Communications, 2022, 33, 104917.	0.9	1
415	Highly Water-Stable Zn ₅ Cluster-Based Metal–Organic Framework for Efficient Gas Storage and Organic Dye Adsorption. Inorganic Chemistry, 2022, 61, 19642-19648.	1.9	7
416	<i>In situ</i> formation of Cu ₂ 0 decorated CuZnAl-layered double hydroxide heterostructured photocatalysts for enhancing the degradation of tetracycline under visible light. New Journal of Chemistry, 2023, 47, 2914-2923.	1.4	3

#	ARTICLE	IF	CITATIONS
417	Porphyrinic metal–organic frameworks as molybdenum adsorbents for the ⁹⁹ Mo/ ^{99m} Tc generator. Inorganic Chemistry Frontiers, 2023, 10, 2239-2249.	3.0	5
418	Coupling of carboxymethyl starch with 2-carboxyethyl acrylate: A new sorbent for the wastewater remediation of methylene blue. Environmental Research, 2023, 219, 115091.	3.7	9
419	Synthesis of porphyrin porous organic polymers and their application of water pollution treatment: A review. Environmental Technology and Innovation, 2023, 29, 102972.	3.0	22
420	Efficient removal of persistent and emerging organic pollutants by biosorption using abundant biomass wastes. Chemosphere, 2023, 313, 137307.	4.2	8
421	Adsorption of Geosmin and 2-MIB to Porous Coordination Polymer MIL-53(Al). Journal of Water and Environment Technology, 2022, 20, 212-218.	0.3	0
422	Magnetic nanomaterials for preconcentration and removal of emerging contaminants in the water environment. Nanotechnology for Environmental Engineering, 2023, 8, 297-315.	2.0	5
423	Facile and green synthesis of ZnO nanoparticles for effective photocatalytic degradation of organic dyes and real textile wastewater. International Journal of Phytoremediation, 2023, 25, 1306-1317.	1.7	4
424	Enhanced Activity of Enzyme Immobilized on Hydrophobic ZIFâ€8 Modified by Ni ²⁺ Ions. Angewandte Chemie, 2023, 135, .	1.6	1
425	A cationic nanotubular metal-organic framework for the removal of Cr2O72â^ and iodine. , 2023, 42, 100005.		2
426	Synergistic Adsorption–Photocatalysis based on Magnetic Metal–Organic Framework Nanoplatforms for Organic Pollutant Removal. ACS Applied Nano Materials, 2022, 5, 18930-18939.	2.4	4
427	Porous Materials for Water Purification. Angewandte Chemie - International Edition, 2023, 62, .	7.2	38
428	Hierarchical self-assembly of polyphenolic functionalized magnetic superstructure for enhanced removal of organic dyes. Chemical Engineering Journal, 2023, 457, 141142.	6.6	6
429	Porous Materials for Water Purification. Angewandte Chemie, 2023, 135, .	1.6	0
430	Enhanced Activity of Enzyme Immobilized on Hydrophobic ZIFâ€8 Modified by Ni ²⁺ Ions. Angewandte Chemie - International Edition, 2023, 62, .	7.2	28
431	Removal of Toxic Dyes and Paraquat by a Dualâ€Functional Metalâ€Organic Framework. ChemistrySelect, 2022, 7, .	0.7	1
432	Green Synthesis of Silver Nanoparticles (Ag-NPs) Using Debregeasia Salicifolia for Biological Applications. Materials, 2023, 16, 129.	1.3	6
433	Functionally decorated metal–organic frameworks in environmental remediation. Chemical Engineering Journal, 2023, 455, 140741.	6.6	14
434	In Situ Electrospun Porous MIL-88A/PAN Nanofibrous Membranes for Efficient Removal of Organic Dyes. Molecules, 2023, 28, 760.	1.7	5

#	Article	IF	CITATIONS
435	Metal–organic framework-based materials: emerging high-efficiency catalysts for the heterogeneous photocatalytic degradation of pollutants in water. Environmental Science: Water Research and Technology, 2023, 9, 669-695.	1.2	9
436	Multifunctional Eu ³⁺ â€coordination polymer for highly selective recognition of Fe ³⁺ and MnO ₄ ^{â^²} ions in water and efficient catalytic fixation of carbon dioxide. Applied Organometallic Chemistry, 0, , .	1.7	O
437	Interfacial phenomena in nanotechnological applications for water remediation., 2024,, 465-484.		1
438	(Multivariate)-Metal–Organic Framework for Highly Efficient Antibiotic Capture from Aquatic Environmental Matrices. ACS Applied Materials & Samp; Interfaces, 2023, 15, 3069-3076.	4.0	5
439	PEG promoted anti-fouling adsorptive membranes with excellent adsorption performance for removal of pharmaceuticals from water. Journal of Environmental Chemical Engineering, 2023, 11, 109263.	3.3	0
440	Electrospun nanofibers of chitosan/polyvinyl alcohol/UiO-66/nanodiamond: Versatile adsorbents for wastewater remediation and organic dye removal. Chemical Engineering Journal, 2023, 457, 141176.	6.6	30
441	Highly efficient removal of aromatic diamines from the polyurethane bio-hydrolysate by MIL-53 series MOFs. Chemical Engineering Journal, 2023, 457, 141326.	6.6	6
442	Surface-active nonionic conjugated zirconium metal–organic frameworks and their applications; Broad spectrum anti-microbial, anti-SRB biofilm, anti-microbial corrosion. Environmental Technology and Innovation, 2023, 29, 103001.	3.0	5
443	Metal–Organic Cage Extended Amorphous Network via Anionic Organic Linkers for Cr ₂ O ₇ ^{2–} and Iodine Adsorption on Nanopores. ACS Applied Nano Materials, 2023, 6, 656-663.	2.4	5
444	Special Wettable Membranes for Oil/Water Separations: A Brief Overview of Properties, Types, and Recent Progress. Colloids and Interfaces, 2023, 7, 11.	0.9	2
445	Synthesis and Characterization of Terbium-Based Metal Organic Framework for Environmental Remediation Application. Catalysts, 2023, 13, 241.	1.6	2
446	Oriented Design of Transition-Metal-Oxide Hollow Multishelled Micropolyhedron Derived from Bimetal–Organic Frameworks for the Electrochemical Detection of Multipesticide Residues. Journal of Agricultural and Food Chemistry, 2023, 71, 2600-2609.	2.4	9
447	Post Engineering of a Chemically Stable MOF for Selective and Sensitive Sensing of Nitric Oxide. Molecular Systems Design and Engineering, 0, , .	1.7	2
448	Aspartic acid derivative-based MOFs: A promising green material for simultaneous removal of phosphorus and arsenic(V) in contaminated spring water. Journal of Water Process Engineering, 2023, 52, 103547.	2.6	11
449	Quantitatively Visualizing the Thermal Dehydration Process and Isotope Effect in Single HKUST-1 Metal–Organic Framework Particles. Journal of Physical Chemistry Letters, 2023, 14, 2099-2105.	2.1	2
450	Multifunctional Metal–Organic Framework (MOF)-Based Nanoplatforms for Crop Protection and Growth Promotion. Journal of Agricultural and Food Chemistry, 0, , .	2.4	6
451	A review on covalent organic frameworks as adsorbents for organic pollutants. Journal of Cleaner Production, 2023, 400, 136737.	4.6	28
452	MOF-gold core-satellite nanostructure based SERS platform for fentanyl detection in multiple complex samples. Sensors and Actuators B: Chemical, 2023, 385, 133710.	4.0	2

#	Article	IF	CITATIONS
453	Synthesis and photocatalytic performance of CoMoO4/MoO3 composite for wastewater treatment. Materials Today Communications, 2023, 35, 105816.	0.9	1
454	Novel graphene quantum dots modified NH2-MIL-125 photocatalytic composites for effective antibacterial property and mechanism insight. Separation and Purification Technology, 2023, 312, 123433.	3.9	11
455	Selective adsorptive removal of anionic dyes from aqueous solutions using MIL-101@GO: Effect of GO. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 667, 131364.	2.3	2
456	Smart multifunctional direct Z-scheme In2S3@PCN-224 heterojunction for simultaneous detection and photodegradation towards antibiotic pollutants. Applied Catalysis B: Environmental, 2023, 328, 122517.	10.8	38
457	Preparation of auto-suspending hollow silica microfiber derived from biotemplate and its highly selective adsorption for organic dyes. Materials Today Communications, 2023, 34, 105437.	0.9	1
458	Single-Atom iron catalyst activating peroxydisulfate for efficient organic contaminant degradation relying on electron transfer. Chemical Engineering Journal, 2023, 458, 141513.	6.6	12
459	Insight into the adsorption of magnetic microspheres with large mesopores: Tailoring mesoporous structure and ethylenediamine functionalization for ultrahigh Congo red removal. Separation and Purification Technology, 2023, 311, 123265.	3.9	12
460	Rapid photocatalytic degradation of tetrabromobisphenol A using synergistic p-n/Z-scheme dual heterojunction of black phosphorus nanosheets/FeSe2/g-C3N4. Separation and Purification Technology, 2023, 311, 123359.	3.9	7
461	Advances in the on-line solid-phase extraction-liquid chromatography-mass spectrometry analysis of emerging organic contaminants. TrAC - Trends in Analytical Chemistry, 2023, 160, 116976.	5.8	9
462	MOF composites as high potential materials for hazardous organic contaminants removal in aqueous environments. Journal of Environmental Chemical Engineering, 2023, 11, 109469.	3.3	8
463	Unveiling Spin Stateâ€Dependent Micropollutant Removal using Singleâ€Atom Covalent Triazine Framework. Advanced Functional Materials, 2023, 33, .	7.8	9
465	Construction of MOFs-based nanocomposite membranes for emerging organic contaminants abatement in water. Frontiers of Environmental Science and Engineering, 2023, 17, .	3.3	7
466	ZIF-8@Rhodamine B as a Self-Reporting Material for Pollutant Extraction Applications. Nanomaterials, 2023, 13, 842.	1.9	1
467	Morphology control through the synthesis of metal-organic frameworks. Advances in Colloid and Interface Science, 2023, 314, 102864.	7.0	14
468	MOF-templated fabrication of Ni@C/g-C3N4 catalyst with high-dense accessible active sites achieving dicyclopentadiene hydrogenation at ambient conditions and comprehensive mechanism insight. Chemical Engineering Journal, 2023, 462, 142141.	6.6	2
469	Degradation of methyl orange by dielectric films based on contact-electro-catalysis. Nanoscale, 2023, 15, 6243-6251.	2.8	5
470	Metal–Organic Framework-Based Materials for Wastewater Treatment: Superior Adsorbent Materials for the Removal of Hazardous Pollutants. ACS Omega, 2023, 8, 9004-9030.	1.6	23
471	Synthesis, characterization, and activation of metal organic frameworks (MOFs) for the removal of emerging organic contaminants through the adsorption-oriented process: A review. Results in Chemistry, 2023, 5, 100866.	0.9	9

#	Article	IF	CITATIONS
472	Nanoconfined MXene-MOF Nanolaminate Film for Molecular Removal/Collection and Multiple Sieving. ACS Applied Materials & Samp; Interfaces, 2023, 15, 17222-17232.	4.0	9
473	Sulfur-modulated metal–organic framework MIL-101(Fe) with CQDs anchored as an efficient light-driven photocatalyst: photocatalytic performance and mechanism investigation. New Journal of Chemistry, 2023, 47, 6804-6821.	1.4	1
474	Covalent Organic Framework as a Metal-Free Photocatalyst for Dye Degradation and Radioactive lodine Adsorption. Langmuir, 2023, 39, 4071-4081.	1.6	13
475	A monolithic composite based on zeolite-like metal-organic framework@divinylbenzene polymer separates azeotropic fluorocarbon mixture efficiently. Journal of Chromatography A, 2023, 1694, 463922.	1.8	3
476	g-C ₃ N ₄ /Nitrogen-Doped Carbon Dot/Silver Nanoparticle-Based Ternary Photocatalyst for Water Pollutant Treatment. ACS Applied Nano Materials, 2023, 6, 5747-5758.	2.4	1
477	Porous Boron Nitride Nanoarchitectonics for Environment: Adsorption in Water. Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33, 637-662.	1.9	5
478	Eco-Friendly Synthesis of TiO2/ZIF-8 Composites: Characterization and Application for the Removal of Imidacloprid from Wastewater. Processes, 2023, $11,963$.	1.3	0
479	Hierarchical 3D Flowerâ€like Metal Oxides Micro/Nanostructures: Fabrication, Surface Modification, Their Crucial Role in Environmental Decontamination, Mechanistic Insights, and Future Perspectives. Small, 2023, 19, .	5.2	8
480	A sulfonate-functionalized covalent organic framework for record-high adsorption and effective separation of organic dyes. Chemical Engineering Journal, 2023, 464, 142706.	6.6	30
481	Progresses on metal-organic framework materials for bacterial infection treatment. Chinese Science Bulletin, 2023, , .	0.4	0
482	Synthesis and modification methods of metal-organic frameworks and their application in modification of polymeric ultrafiltration membranes: A review. Journal of Environmental Chemical Engineering, 2023, 11, 109954.	3.3	10
483	Two novel metal-organic frameworks constructed by pyridinyl-derived and carboxylate mixed ligands for photocatalytic dye degradation. New Journal of Chemistry, 0, , .	1.4	0
484	Atomic regulations of single atom from metal-organic framework derived carbon for advanced water treatment. Nano Research, 2023, 16, 10326-10341.	5.8	3
485	Twoâ€Dimensional Interlayer Space Induced Horizontal Transformation of Metal–Organic Framework Nanosheets for Highly Permeable Nanofiltration Membranes. Small, 2023, 19, .	5.2	1
486	Advancements in nanomaterial-based aptasensors for the detection of emerging organic pollutants in environmental and biological samples. Biotechnology Advances, 2023, 66, 108156.	6.0	10
487	Recent advances in g-C3N4/Metal organic frameworks heterojunctions for high-performance photocatalytic environmental remediation and energy production. Journal of Molecular Liquids, 2023, 382, 121890.	2.3	10
490	Bioconjugated 2D-nanomaterials for environmental monitoring. Comprehensive Analytical Chemistry, 2023, , 163-201.	0.7	0
499	State of the art and prospectives of heterogeneous photocatalysts based on metal–organic frameworks (MOFs): design, modification strategies, and their applications and mechanisms in photodegradation, water splitting, and CO ₂ reduction. Catalysis Science and Technology, 2023. 13. 4285-4347.	2.1	5

#	Article	IF	CITATIONS
523	Porous organic polymers (POPs) for environmental remediation. Materials Horizons, 2023, 10, 4083-4138.	6.4	13
524	Ionic Liquids Functionalized MOFs for Adsorption. Chemical Reviews, 2023, 123, 10432-10467.	23.0	31
546	Tröger's base-containing fluorenone organic polymer for discriminative fluorescence sensing of sulfamethazine antibiotic at ppb level in the water medium. Polymer Chemistry, 2023, 14, 4153-4159.	1.9	2
572	Removal of Micropollutants and Pathogens from Water using Nanomaterials., 2023,, 129-143.		0
623	Pollution mitigation utilizing biosurfactants. , 2024, , 121-149.		0
624	Metal organic framework adsorbents for the removal of emerging pollutants and their adsorption mechanisms., 2024,, 111-135.		0
626	Challenges and remediation of emerging organic pollutants from water., 2024,, 237-247.		0
627	Prospects for the application of nanostructures of bismuth oxychloride (BiOCl) towards the degradation of organic compounds in an aqueous solution. , 2024, , 311-336.		0
628	Activated carbon adsorbents for the removal of emerging pollutants and its adsorption mechanisms. , 2024, , 79-109.		0
630	A porous and photoactive Ti-MOF based on a novel tetranuclear [Ti ₂ Tb ₂] cluster. Chemical Communications, 2024, 60, 2188-2191.	2.2	0
633	Quantum chemical modeling of hydrogen binding in metal–organic frameworks: validation, insight, predictions and challenges. Physical Chemistry Chemical Physics, 2024, 26, 6490-6511.	1.3	0
636	Role of porous coordination polymers as chemical and bio-sensors in the remediation of environmental contaminants., 2024, 65-99.		0