Soft-Matter Nanotubes: A Platform for Diverse Function

Chemical Reviews 120, 2347-2407 DOI: 10.1021/acs.chemrev.9b00509

Citation Report

#	Article	IF	CITATIONS
1	Co-solvent polarity tuned thermochromic nanotubes of cyclic dipeptide–polydiacetylene supramolecular system. RSC Advances, 2020, 10, 35389-35396.	1.7	5
2	Self-Assembly and Aggregation Studies of Simple Structural Derivatives of Stearic Acid. ACS Symposium Series, 2020, , 31-45.	0.5	1
3	Structural diversification of bola-amphiphilic glycolipid-type supramolecular hydrogelators exhibiting colour changes along with the gel–sol transition. Soft Matter, 2020, 16, 7274-7278.	1.2	9
4	Effect of temperature on the coupling transport of water and ions through a carbon nanotube in an electric field. Journal of Chemical Physics, 2020, 153, 184503.	1.2	24
5	Highly Robust 3s–3d {CaZn}–Organic Framework for Excellent Catalytic Performance on Chemical Fixation of CO ₂ and Knoevenagel Condensation Reaction. ACS Applied Materials & Interfaces, 2020, 12, 54884-54892.	4.0	85
6	Refined RGB Strategy for the Synthesis of Polymerâ€Based Full Organic Luminescent Nanotubes with Broad Emission Bands. ChemPhotoChem, 2020, 4, 5376-5382.	1.5	0
7	Supramolecular organogels fabricated with dicarboxylic acids and primary alkyl amines: controllable self-assembled structures. RSC Advances, 2020, 10, 29129-29138.	1.7	17
8	Application of a quantum genetic algorithm and QTAIM analysis in the study of structural and electronic properties of neutral bimetallic clusters NaxLiy (4â€‰â‰æ€‰x + yâ€‰â‰æ€‰10). Journal Modeling, 2020, 26, 317.	ത്. 810lecu	ılar
9	Selfâ€Assembly of Hollow Organic Nanotubes Driven by Arene Regioisomerism. ChemPlusChem, 2020, 85, 2372-2375.	1.3	4
10	Poly(ethylene glycol) based nanotubes for tuneable drug delivery to glioblastoma multiforme. Nanoscale Advances, 2020, 2, 4498-4509.	2.2	8
11	Supramolecular Assembly and Mesophase Behavior of Glycopyranose-Derived Single-Chain Amphiphiles. ACS Symposium Series, 2020, , 15-30.	0.5	0
12	Low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, wound healing, anticancer, drug delivery, bioimaging and 3D bioprinting applications. Soft Matter, 2020, 16, 10065-10095.	1.2	62
13	Recent Progress in Ionic Coassembly of Cationic Peptides and Anionic Species. Macromolecular Rapid Communications, 2020, 41, e2000534.	2.0	11
14	Hierarchical self-assembly of an azobenzene dyad with inverted amide connection into toroidal and tubular nanostructures. Organic and Biomolecular Chemistry, 2020, 18, 3996-3999.	1.5	15
15	Influences of Hydrogen Bonding-Based Stabilization of Bolaamphiphile Layers on Molecular Diffusion within Organic Nanotubes Having Inner Carboxyl Groups. Langmuir, 2020, 36, 6145-6153.	1.6	11
16	Protein-based Smart Microtubes and Nanotubes as Ultrasmall Biomaterials. Chemistry Letters, 2020, 49, 1245-1255.	0.7	14
17	Anthracene based photo-tunable polymers with excimer emission. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 406, 112990.	2.0	2
18	Nanoarchitectonics Revolution and Evolution: From Small Science to Big Technology. Small Science, 2021, 1, 2000032.	5.8	58

ARTICLE IF CITATIONS # Glycolipid nanotube templates for the production of hydrophilic/hydrophobic and left/right-handed 19 2.2 8 hélical polydiacetylene nanotubes. Chemical Communications, 2021, 57, 464-467. Stacking of nanorings to generate nanotubes for acceleration of protein refolding. Nanoscale, 2021, 2.8 13, 1629-1638. Ultalong nanowires self-assembled from a [b]-bisphenanthrene-fused azadipyrromethene. Chinese 21 4.8 21 Chemical Letters, 2021, 32, 1249-1252. Controlling the length of self-assembled microtubes through mechanical stress-induced scission. 2.2 Chemical Communications, 2021, 57, 468-471. Efficient Artificial Light-Harvesting System Based on Supramolecular Peptide Nanotubes in Water. 23 111 6.6 Journal of the American Chemical Society, 2021, 143, 382-389. Self-Assembly of Bolaamphiphiles into 2D Nanosheets <i>via</i> Synergistic and Meticulous Tailoring of Multiple Noncovalent Interactions. ACS Nano, 2021, 15, 3152-3160. 7.3 25 Bolaamphiphile-Based Nanotubes. Nanostructure Science and Technology, 2021, , 97-149. 0.1 0 A new Zn(<scp>ii</scp>) complex-composite material: piezo-enhanced photomineralization of organic pollutants and wastewater from the lubricant industry. Environmental Science: Water Research and 26 . Technology, 2021, 7, 1737-1747. Terminal Trialkylsilyl Substituent Effect of Janus-type Molecular Tubes on the Inclusion of 27 1.6 1 Unsaturated Fátty Acid Esters. ACS Omega, 2021, 6, 3227-3231. General Remarks of Soft-Matter Nanotubes. Nanostructure Science and Technology, 2021, , 1-58. 0.1 Fluorescence Microscopic Investigations of Molecular Dynamics in Selfâ€Assembled Nanostructures. 29 4 2.9 Chemical Record, 2021, 21, 1417-1429. Self-assembled Viral Nanoparticles as Targeted Anticancer Vehicles. Biotechnology and Bioprocess 1.4 Engineering, 2021, 26, 25-38. Permeability of Vesicles for Imidazolium-Based Ionic Liquids in Aqueous Solution: A Molecular $\mathbf{31}$ 1.8 12 Dynamic Simulation Study. Industrial & amp; Engineering Chemistry Research, 2021, 60, 3174-3183. Effect of Aminated Chitosan-Coated Fe3O4 Nanoparticles with Applicational Potential in Nanomedicine on DPPG, DSPC, and POPC Langmuir Monolayers as Cell Membrane Models. International Journal of Molecular Sciences, 2021, 22, 2467. 1.8 Reviewâ€"Novel Carbon Nanomaterials Based Flexible Electrochemical Biosensors. Journal of the 33 1.3 10 Electrochemical Society, 2021, 168, 027504. Target-Dependent Gating of Nanopores Integrated with H-Cell: Toward A General Platform for 3.2 Photoelectrochemical Bioanalysis. Analytical Chemistry, 2021, 93, 5001-5004. Polymerization-Induced Self-Assembly Driven by the Synergistic Effects of Aromatic and Solvophobic 35 2.222 Interactions. Macromolecules, 2021, 54, 2729-2739. Biocatalysts Based on Peptide and Peptide Conjugate Nanostructures. Biomacromolecules, 2021, 22, 1835-1855.

CITATION REPORT

#	Article	IF	CITATIONS
37	A case study of monomer design for controlled/living supramolecular polymerization. Polymer Journal, 2021, 53, 865-875.	1.3	5
38	Effect of Glycine Position on the Inner Diameter of Supramolecular Nanotubes Consisting of Glycolipid Monolayer Membranes. Bulletin of the Chemical Society of Japan, 2021, 94, 1172-1178.	2.0	6
39	Fluorescent supramolecular self-assembly gels and their application as sensors: A review. Coordination Chemistry Reviews, 2021, 434, 213792.	9.5	97
40	Diverse Proton-Conducting Nanotubes via a Tandem Macrocyclization and Assembly Strategy. Journal of the American Chemical Society, 2021, 143, 8145-8153.	6.6	7
41	Molecular Self-Assembly and Supramolecular Chemistry of Cyclic Peptides. Chemical Reviews, 2021, 121, 13936-13995.	23.0	82
42	Bambooâ€like Ï€â€Nanotubes with Tunable Helicity and Circularly Polarized Luminescence. Angewandte Chemie - International Edition, 2021, 60, 16615-16621.	7.2	37
43	Mesenchymal Stem Cells Engineered by Nonviral Vectors: A Powerful Tool in Cancer Gene Therapy. Pharmaceutics, 2021, 13, 913.	2.0	9
44	Bambooâ€like Ï€â€Nanotubes with Tunable Helicity and Circularly Polarized Luminescence. Angewandte Chemie, 2021, 133, 16751-16757.	1.6	15
45	Challenges and Potential Solutions for 100% Recycling of Medical Textiles. Materials Circular Economy, 2021, 3, 1.	1.6	7
46	2D Layered Dipeptide Crystals for Piezoelectric Applications. Advanced Functional Materials, 2021, 31, 2102524.	7.8	21
47	Selfâ€Assembly of a Pyridineâ€Based Amphiphile Complexed with Regioisomeric Dihydroxy Naphthalenes into Supramolecular Nanotubes with Different Inner Diameters. Chemistry - A European Journal, 2021, 27, 12566-12573.	1.7	1
48	Stimuli-Responsive Supramolecular Nanotube Capsules. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 730-742.	0.0	0
49	Nanoarchitectonics for Hierarchical Fullerene Nanomaterials. Nanomaterials, 2021, 11, 2146.	1.9	21
50	Hierarchical Nanomaterials Assembled from Peptoids and Other Sequence-Defined Synthetic Polymers. Chemical Reviews, 2021, 121, 14031-14087.	23.0	61
51	Functionalized organic nanotubes with highly tunable crosslinking site density for mechanical enhancement and pH-controlled drug release of nanocomposite hydrogels. Polymer Journal, 2022, 54, 67-78.	1.3	7
52	Reactive Oxygen Species (ROS)-responsive Organic Nanotubes. Chemistry Letters, 2021, 50, 1743-1746.	0.7	1
53	Alpha helical surfactant-like peptides self-assemble into pH-dependent nanostructures. Soft Matter, 2021, 17, 3096-3104.	1.2	13
54	Protein-Based Nanotubes. Nanostructure Science and Technology, 2021, , 241-263.	0.1	0

#	Article	IF	CITATIONS
56	Higher-order interfiber interactions in the self-assembly of benzene-1,3,5-tricarboxamide-based peptides in water. Polymer Chemistry, 2021, 12, 3478-3487.	1.9	8
57	Nano-architectonics for coordination assemblies at interfacial media. Advances in Inorganic Chemistry, 2020, 76, 199-228.	0.4	4
58	Chiral nanotubes self-assembled from discrete non-covalent macrocycles. Chemical Communications, 2021, 57, 12712-12724.	2.2	8
59	Polyelectrolyte/Gold Nanoparticle Nanotubes Incorporating Doxorubicin‣oaded Liposomes. Chemistry - an Asian Journal, 2021, 16, 4057-4061.	1.7	4
60	Layer or Tube? Uncovering Key Factors Determining the Rolling-up of Layered Coordination Polymers. Journal of the American Chemical Society, 2021, 143, 17587-17598.	6.6	10
61	Post-bifurcation behaviour of elasto-capillary necking and bulging in soft tubes. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, .	1.0	8
62	Smart Peptide Assembly Architectures to Mimic Biology's Adaptive Properties and Applications. Nanostructure Science and Technology, 2022, , 233-255.	0.1	0
63	Supramolecular fibrillation of peptide amphiphiles induces environmental responses in aqueous droplets. Nature Communications, 2021, 12, 6421.	5.8	15
64	Molecular self-assembly under nanoconfinement: indigo carmine scroll structures entrapped within polymeric capsules. Nanoscale, 2021, 13, 20462-20470.	2.8	4
65	Phthalocyanineâ€Triggered Helical Dipeptide Nanotubes with Intense Circularly Polarized Luminescence. Small, 2022, 18, e2104438.	5.2	9
66	Reshaping Membrane Polymorphism of Polymer Vesicles through Dynamic Gas Exchange. Journal of the American Chemical Society, 2021, 143, 20183-20191.	6.6	6
67	Light-driven dissipative self-assembly of a peptide hydrogel. Chemical Communications, 2021, 57, 13776-13779.	2.2	21
68	Recent Advances in Organic and Organic–Inorganic Hybrid Materials for Piezoelectric Mechanical Energy Harvesting. Advanced Functional Materials, 2022, 32, .	7.8	124
69	1D alignment of proteins and other nanoparticles by using reversible covalent bonds on cyclic peptide nanotubes. Organic Chemistry Frontiers, 2022, 9, 1226-1233.	2.3	6
70	Selfâ€Assembled Polymeric Materials: Design, Morphology, and Functionalâ€Oriented Applications. Macromolecular Rapid Communications, 2022, 43, e2100791.	2.0	9
71	Arene–perfluoroarene interactions confer enhanced mechanical properties to synthetic nanotubes. Chemical Science, 2022, 13, 2475-2480.	3.7	12
72	Photo-responsive hole formation in the monolayer membrane wall of a supramolecular nanotube for quick recovery of encapsulated protein. Nanoscale Advances, 0, , .	2.2	1
73	Photo-modulation of supramolecular polymorphism in the self-assembly of a scissor-shaped azobenzene dyad into nanotoroids and fibers. Chemical Science, 2022, 13, 3249-3255.	3.7	10

#	Article	IF	CITATIONS
74	Biomimetic and Biological Nanoarchitectonics. International Journal of Molecular Sciences, 2022, 23, 3577.	1.8	9
75	Small symmetry-breaking triggering large chiroptical responses of Ag70 nanoclusters. Nature Communications, 2022, 13, 1177.	5.8	31
76	Stimuliâ€Responsive Transformable Supramolecular Nanotubes. Chemical Record, 2022, 22, e202200025.	2.9	3
77	Supramolecular organic nanotubes for drug delivery. Materials Today Advances, 2022, 14, 100239.	2.5	17
78	Environmentâ€tolerant conductive and superhydrophobic poly(mâ€phenylene isophthalamide) fabric prepared via γâ€ray activation and reduced graphene oxide/nano <scp>SiO₂</scp> modification. Journal of Applied Polymer Science, 2022, 139, .	1.3	3
79	Solvent-Modulated Chiral Self-Assembly: Selective Formation of Helical Nanotubes, Nanotwists, and Energy Transfer. ACS Applied Materials & Interfaces, 2022, 14, 1765-1773.	4.0	24
80	Organic nanotubes for smart anticorrosion and antibiofouling coatings. Npj Materials Degradation, 2022, 6, .	2.6	7
81	"On/Off―Switchable Sequential Light-Harvesting Systems Based on Controllable Protein Nanosheets for Regulation of Photocatalysis. ACS Nano, 2022, 16, 8012-8021.	7.3	23
82	Phenol-soluble modulins PSMα3 and PSMβ2 form nanotubes that are cross-α amyloids. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121586119.	3.3	16
83	Are nanohedgehogs thirsty? Toward new superhydrophobic and anti-icing carbon nanohorn-polymer hybrid surfaces. Chemical Engineering Journal, 2022, 446, 137126.	6.6	11
84	How Softness Matters in Soft Nanogels and Nanogel Assemblies. Chemical Reviews, 2022, 122, 11675-11700.	23.0	48
85	Stearoylamidoâ€Dâ€Glucamine Hydrogelators for Thixotropic Molecular Gels with Tunable Softness by Chemical Modification. Chemistry - an Asian Journal, 2022, 17, .	1.7	3
86	Co-assembled Coiled-Coil Peptide Nanotubes with Enhanced Stability and Metal-Dependent Cargo Loading. ACS Omega, 2022, 7, 20945-20951.	1.6	2
87	Polymeric partners breathe together: using gas to direct polymer self-assembly via gas-bridging chemistry. Science China Chemistry, 2022, 65, 1401-1410.	4.2	3
88	Light-Responsive Hexagonal Assemblies of Triangular Azo Dyes. Molecules, 2022, 27, 4380.	1.7	0
89	Facile synthesis of monocyclic, dumbbell-shaped and jellyfish-like copolymers using a telechelic multisite hexablock copolymer. Polymer Chemistry, 2022, 13, 4953-4965.	1.9	7
90	Divergent Nanotube Synthesis through Reversible Macrocycle Assembly. Accounts of Materials Research, 2022, 3, 935-947.	5.9	2
91	Self-assembled liquid crystal architectures for soft matter photonics. Light: Science and Applications, 2022, 11, .	7.7	44

#	Article	IF	CITATIONS
92	Fabrication, modification and application of lipid nanotubes. Chemistry and Physics of Lipids, 2022, 248, 105242.	1.5	0
93	Porphyrin nanotubes based on a hydrogen-bonded organic framework. Nanoscale, 2022, 14, 14630-14635.	2.8	4
94	A supramolecular nanotube used as a water-degradable template for the production of protein nanotubes with high thermal/chemical stabilities. Materials Chemistry Frontiers, 0, , .	3.2	1
95	Luminescent assemblies of pyrene-containing bent-core mesogens: liquid crystals, π-gels and nanotubes. Journal of Materials Chemistry C, 2022, 10, 12012-12021.	2.7	7
96	Selfâ€Assembly of Peapodâ€like Micrometer Tubes from a Planetâ€Satelliteâ€type Supramolecular Megamer. Angewandte Chemie - International Edition, 2022, 61, .	7.2	0
97	Selfâ€Assembly of Peapodâ€like Micron Tubes from a Planetâ€Satelliteâ€type Supramolecular Megamer. Angewandte Chemie, 0, , .	1.6	0
98	High-Resolution Cryo-Electron Microscopy Reveals the Unique Striated Hollow Structure of Photocatalytic Macrocyclic Polydiacetylene Nanotubes. Journal of the American Chemical Society, 2022, 144, 17889-17896.	6.6	6
99	Recent Developments in Organic Nanotubes for Drug Delivery Applications. Current Nanoscience, 2023, 19, 621-635.	0.7	1
100	Engineered Hybrid Nanoparticles for Multimodal Medical Imaging and Diagnosis. , 2022, , 331-363.		0
101	Thermally responsive morphological changes of layered coordination polymers induced by disordering/ordering of flexible alkyl chains. Dalton Transactions, 2022, 51, 17967-17972.	1.6	0
102	Supramolecular Nanotubes Functioning as Morphology Regulators for Fluid-State Molecular Assemblies. Chemistry of Materials, 2022, 34, 9425-9436.	3.2	1
103	Hierarchical Materials from High Information Content Macromolecular Building Blocks: Construction, Dynamic Interventions, and Prediction. Chemical Reviews, 2022, 122, 17397-17478.	23.0	23
104	Dibenzo-18-crown-6-functionalized organic nanotubes for the synergistic adsorption of dyes and phenols from aqueous solutions. Journal of Water Process Engineering, 2022, 50, 103213.	2.6	5
105	Understanding the rod-to-tube transformation of self-assembled ascorbyl dipalmitate lipid nanoparticles stabilized with PEGylated lipids. Nanoscale, 2023, 15, 2602-2613.	2.8	1
106	Formation and Structure of Nanotubes in Imidazolium-Based Ionic Liquid Aqueous Solution. ACS Omega, 2022, 7, 45598-45608.	1.6	0
107	Triple Thorpe–Ingold Effect in the Synthesis of 18â€Membered <i>C</i> ₃ Symmetric Lactams Stacking as Endless Supramolecular Tubes. Chemistry - A European Journal, 2023, 29, .	1.7	3
108	Discrete chiral organic nanotubes by stacking pillar[5]arenes using covalent linkages. Cell Reports Physical Science, 2022, 3, 101173.	2.8	10
109	Self-assembly of bent-core amphiphiles joining the ethylene-oxide/lithium ion tandem. Journal of Molecular Liquids, 2023, 381, 121825.	2.3	1

#	Article	IF	CITATIONS
110	Synthesis of covalent organic pillars as molecular nanotubes with precise length, diameter and chirality. , 2023, 2, 395-402.		24
111	Acquiring preferred mode of aggregation through positional antagonism for saponification triggered gelation. New Journal of Chemistry, 2023, 47, 6135-6143.	1.4	0
112	Peptide-based nanomaterials: Building back better & beyond. Current Opinion in Solid State and Materials Science, 2023, 27, 101066.	5.6	4
113	Materials Nanoarchitectonics: Collaboration between Chem, Nano and Mat. ChemNanoMat, 2023, 9, .	1.5	6
114	Pronounced Chirality Effect on the Ferroelectricity of Hydrogen-Bonded Supramolecular Assemblies of Ambipolar Chromophoric Systems. Journal of Physical Chemistry C, 2023, 127, 7852-7859.	1.5	2
116	Self-Assembled Crystalline Bundles in Soluble Metal–Organic Nanotubes. Journal of the American Chemical Society, 2023, 145, 9454-9458.	6.6	2
124	Single-Molecule Fluorescence Investigations of Solute Transport Dynamics in Nanostructured Membrane Separation Materials. Journal of Physical Chemistry B, 2023, 127, 5733-5741.	1.2	0
129	Perspectives on recent advancements in energy harvesting, sensing and bio-medical applications of piezoelectric gels. Chemical Society Reviews, 2023, 52, 6191-6220.	18.7	12

130 Soft Nanomaterials and Their Applications. , 2023, , 27-68.