Antifungal Drug Resistance: Molecular Mechanisms in <

Chemical Reviews 121, 3390-3411

DOI: 10.1021/acs.chemrev.0c00199

Citation Report

#	Article	IF	CITATIONS
1	Recent Progress in the Discovery of Antifungal Agents Targeting the Cell Wall. Journal of Medicinal Chemistry, 2020, 63, 12429-12459.	2.9	37
2	Elevated Vacuolar Uptake of Fluorescently Labeled Antifungal Drug Caspofungin Predicts Echinocandin Resistance in Pathogenic Yeast. ACS Central Science, 2020, 6, 1698-1712.	5.3	15
3	Flow Cytometric Measurement of Efflux in <i>Candida</i> Species. Current Protocols in Microbiology, 2020, 59, e121.	6.5	2
4	Plasmonic nano-antimicrobials: properties, mechanisms and applications in microbe inactivation and sensing. Nanoscale, 2021, 13, 3374-3411.	2.8	19
5	CRISPR-Based Genetic Manipulation of Candida Species: Historical Perspectives and Current Approaches. Frontiers in Genome Editing, 2020, 2, 606281.	2.7	22
6	HPLC-MS identification and expression of <i>Candida</i> drug-resistance proteins from African HIV-infected patients. AIMS Microbiology, 2021, 7, 320-335.	1.0	1
7	Mechanisms of Antifungal Drug Resistance. Updates in Clinical Dermatology, 2021, , 133-142.	0.1	0
8	Current and promising pharmacotherapeutic options for candidiasis. Expert Opinion on Pharmacotherapy, 2021, 22, 887-888.	0.9	12
9	Discovery of Piperidol Derivatives for Combinational Treatment of Azole-Resistant Candidiasis. ACS Infectious Diseases, 2021, 7, 650-660.	1.8	13
10	Treatment strategies for cryptococcal infection: challenges, advances and future outlook. Nature Reviews Microbiology, 2021, 19, 454-466.	13.6	142
12	Mechanisms of CandidaÂResistance to Antimycotics and Promising Ways to Overcome It: The Role of Probiotics. Probiotics and Antimicrobial Proteins, 2021, 13, 926-948.	1.9	11
14	Design, Ultrasonic-assisted Synthesis and Evaluation In vitro Antimicrobial Activity of Bis-isoxazole Derivatives Bearing Chloro-pyridinyl Group. Chemical Research in Chinese Universities, 2021, 37, 668-673.	1.3	4
15	Balancing Positive and Negative Selection: <i>In Vivo</i> Evolution of Candida lusitaniae <i>MRR1</i> . MBio, 2021, 12, .	1.8	8
16	Unraveling Caspofungin Resistance in Cryptococcus neoformans. MBio, 2021, 12, .	1.8	3
17	Effects of Hsp90 Inhibitor Ganetespib on Inhibition of Azole-Resistant Candida albicans. Frontiers in Microbiology, 2021, 12, 680382.	1.5	11
18	Germination of a Field: Women in Candida albicans Research. Current Clinical Microbiology Reports, 2021, 8, 139-151.	1.8	0
19	Herbal Products and Their Active Constituents Used Alone and in Combination with Antifungal Drugs against Drug-Resistant Candida sp Antibiotics, 2021, 10, 655.	1.5	10
20	Genetic Manipulation as a Tool to Unravel Candida parapsilosis Species Complex Virulence and Drug Resistance: State of the Art. Journal of Fungi (Basel, Switzerland), 2021, 7, 459.	1.5	6

#	Article	IF	CITATIONS
21	Mitochondrial perturbation reduces susceptibility to xenobiotics through altered efflux in <i>Candida albicans</i> . Genetics, 2021, 219, .	1.2	11
22	A Comparative Transcriptome Between Anti-drug Sensitive and Resistant Candida auris in China. Frontiers in Microbiology, 2021, 12, 708009.	1.5	4
23	New Biological Targets in Fungi and Novel Molecule under Development: A Review. Chemical Science International Journal, 0, , 10-21.	0.3	0
24	Mechanisms of Azole Resistance and Trailing in Candida tropicalis Bloodstream Isolates. Journal of Fungi (Basel, Switzerland), 2021, 7, 612.	1.5	20
25	Suppression of hyphal formation and virulence of <i>Candida albicans</i> by natural and synthetic compounds. Biofouling, 2021, 37, 626-655.	0.8	13
26	Histatin 5 Metallopeptides and Their Potential against Candida albicans Pathogenicity and Drug Resistance. Biomolecules, 2021, 11, 1209.	1.8	11
27	Recent progress on anti-Candida natural products. Chinese Journal of Natural Medicines, 2021, 19, 561-579.	0.7	5
28	The Antimicrobial Activity of Omiganan Alone and In Combination against Candida Isolated from Vulvovaginal Candidiasis and Bloodstream Infections. Antibiotics, 2021, 10, 1001.	1.5	8
29	The SAGA and NuA4 component Tra1 regulates <i>Candida albicans</i> drug resistance and pathogenesis. Genetics, 2021, 219, .	1.2	7
30	Multifunctional Parachute-like Nanomotors for Enhanced Skin Penetration and Synergistic Antifungal Therapy. ACS Nano, 2021, 15, 14218-14228.	7.3	45
31	Design, Synthesis and Antifungal Activity of Stapled Aurein1.2 Peptides. Antibiotics, 2021, 10, 956.	1.5	7
32	Fungal Biofilms as a Valuable Target for the Discovery of Natural Products That Cope with the Resistance of Medically Important Fungi—Latest Findings. Antibiotics, 2021, 10, 1053.	1.5	16
33	Fungal Lysine Deacetylases in Virulence, Resistance, and Production of Small Bioactive Compounds. Genes, 2021, 12, 1470.	1.0	5
34	Design, Synthesis, and <i>In Vitro</i> and <i>In Vivo</i> Evaluation of Novel Fluconazole-Based Compounds with Promising Antifungal Activities. ACS Omega, 2021, 6, 24981-25001.	1.6	11
35	Preparation and Characterization of Nanoliposomes Loaded with the Antimicrobial Peptide CGA-N9. International Journal of Peptide Research and Therapeutics, 2021, 27, 2727-2734.	0.9	2
36	Species-Specific Differences in C-5 Sterol Desaturase Function Influence the Outcome of Azole Antifungal Exposure. Antimicrobial Agents and Chemotherapy, 2021, 65, e0104421.	1.4	1
37	Chicory Extracts and Sesquiterpene Lactones Show Potent Activity against Bacterial and Fungal Pathogens. Pharmaceuticals, 2021, 14, 941.	1.7	22
38	Antifungal Activity of Extracts, Fractions, and Constituents from Coccoloba cowellii Leaves. Pharmaceuticals, 2021, 14, 917.	1.7	3

		CITATION REPORT	
#	Article	IF	CITATIONS
39	Discovery of novel purinylthiazolylethanone derivatives as anti-Candida albicans agents throug possible multifaceted mechanisms. European Journal of Medicinal Chemistry, 2021, 221, 1135.	h 2.6	38
40	Gibbosolide A, a highly functionalized 20-membered macrolide with a terminal cis-fused 2-methylhexahydro-2H-furo[3,2-b]pyran motif: insights into late-stage cyclization of marine macrolides. Organic Chemistry Frontiers, 0, , .	2.3	1
41	<i>In vivo</i> active organometallic-containing antimycotic agents. RSC Chemical Biology, 202 1263-1273.	2.0	10
43	Azoles Used in Agriculture as Possible Cause of Azole-Resistance in Clinical Candida Isolates. Biosciences, Biotechnology Research Asia, 2021, 17, 789-799.	0.2	1
44	Molecular Dynamics Investigations of Binding Mechanism for Triazoles Inhibitors to CYP51. Fro in Molecular Biosciences, 2020, 7, 586540.	ntiers 1.6	13
45	Pathogen Infection-Responsive Nanoplatform Targeting Macrophage Endoplasmic Reticulum fo Alleviating Sepsis. SSRN Electronic Journal, 0, , .	or 0.4	Ο
46	Cell Wall Integrity Pathway Involved in Morphogenesis, Virulence and Antifungal Susceptibility Cryptococcus neoformans. Journal of Fungi (Basel, Switzerland), 2021, 7, 831.	in 1.5	12
47	A small molecule produced by Lactobacillus species blocks Candida albicans filamentation by inhibiting a DYRK1-family kinase. Nature Communications, 2021, 12, 6151.	5.8	50
48	Genetic analysis of Hsp90 function in <i>Cryptococcus neoformans</i> highlights key roles in stolerance and virulence. Genetics, 2022, 220, .	stress 1.2	12
49	An Nâ€Trifluoromethylation/Cyclization Strategy for Accessing Diverse Nâ€Trifluoromethyl Azc Nitriles and 1,3â€Dipoles. Angewandte Chemie, 0, , .	les from 1.6	6
50	An <i>N</i> â€Trifluoromethylation/Cyclization Strategy for Accessing Diverse <i>N</i> â€Triflu Azoles from Nitriles and 1,3â€Dipoles. Angewandte Chemie - International Edition, 2022, 61, .	oromethyl 7.2	23
51	Heat shock protein 90 (Hsp90)/Histone deacetylase (HDAC) dual inhibitors for the treatment c azoles-resistant Candida albicans. European Journal of Medicinal Chemistry, 2022, 227, 11396	f 2.6 1.	22
52	Photodynamic disinfection and its role in controlling infectious diseases. Photochemical and Photobiological Sciences, 2021, 20, 1497-1545.	1.6	37
53	How do terminal modifications of short designed IIKK peptide amphiphiles affect their antifung activity and biocompatibility?. Journal of Colloid and Interface Science, 2022, 608, 193-206.	al 5.0	4
54	Toxicological Parameters of a Formulation Containing Cinnamaldehyde for Use in Treatment of Fungal Infections: An In Vivo Study. BioMed Research International, 2021, 2021, 1-13.	Oral 0.9	4
55	Drug resistance in Candida albicans isolates and related changes in the structural domain of M protein. Journal of Infection and Public Health, 2021, 14, 1848-1853.	dr1 1.9	8
56	Leveraging machine learning essentiality predictions and chemogenomic interactions to identif antifungal targets. Nature Communications, 2021, 12, 6497.	ў 5.8	33
57	Inhibitory Effect of (-)-myrtenol alone and in combination with antifungal agents on Candida sp Research, Society and Development, 2021, 10, e35101522434.	р 0.0	1

#	Article	IF	CITATIONS
58	Synthesis and antifungal screening of tetramethyl hexahydro-1 <i>H</i> -xanthene-1,8(2 <i>H</i>)-dione derivatives as potential inhibitors of morphogenesis and biofilm formation in <i>Candida albicans</i> . New Journal of Chemistry, 2022, 46, 2128-2139.	1.4	5
59	Natural and synthetic β-carboline as a privileged antifungal scaffolds. European Journal of Medicinal Chemistry, 2022, 229, 114057.	2.6	14
60	Exploring the solid form landscape of the antifungal drug isavuconazole: crystal structure analysis, phase transformation behavior and dissolution performance. CrystEngComm, 2021, 23, 8513-8526.	1.3	6
62	Fluconazole-COX Inhibitor Hybrids: A Dual-Acting Class of Antifungal Azoles. Journal of Medicinal Chemistry, 2022, 65, 2361-2373.	2.9	13
63	Photosensitizers with Aggregation-induced Emission and Their Biomedical Applications. Engineered Regeneration, 2022, , .	3.0	8
64	Candida albicans biofilm formation and growth optimization for functional studies using response surface methodology. Journal of Applied Microbiology, 2022, 132, 3277-3292.	1.4	7
65	Emerging and future strategies in the management of recalcitrant <i>Candida auris</i> . Medical Mycology, 2022, 60, .	0.3	22
66	Repurposing pantoprazole and haloperidol as efflux pump inhibitors in azole resistant clinical Candida albicans and non-albicans isolates. Saudi Pharmaceutical Journal, 2022, 30, 245-255.	1.2	11
67	Eradication of Fungi Using MoSe ₂ /Chitosan Nanosheets. ACS Applied Nano Materials, 2022, 5, 133-148.	2.4	8
68	Green synthesis of selenium nanoparticles and evaluate their effect on the expression of ERC3, ERG11 and FKS1 antifungal resistance genes in Candida albicans and Candida glabrata. Letters in Applied Microbiology, 2022, 74, 809-819.	1.0	9
69	Antifungal drug resistance: Deciphering the mechanisms governing multidrug resistance in the fungal pathogen Candida glabrata. Current Biology, 2021, 31, R1520-R1523.	1.8	11
70	S Ynthesis, Characterization, L Ipophilicity and a Ntifungal Properties of Three New C Omplexes of Sulfamerazine (Hsmr) with Ag(I): [Agsmr], [Ag2(Smr)Scn] and [Ag(Smr)O- Phenanthroline]. SSRN Electronic Journal, 0, , .	0.4	0
71	Short Guanidiniumâ€Functionalized Poly(2â€oxazoline)s Displaying Potent Therapeutic Efficacy on Drugâ€Resistant Fungal Infections. Angewandte Chemie, 2022, 134, .	1.6	3
72	Short Guanidiniumâ€Functionalized Poly(2â€oxazoline)s Displaying Potent Therapeutic Efficacy on Drugâ€Resistant Fungal Infections. Angewandte Chemie - International Edition, 2022, 61, e202200778.	7.2	37
73	The role of Candida albicans stress response pathways in antifungal tolerance and resistance. IScience, 2022, 25, 103953.	1.9	29
74	Benzylic Dehydroxylation of Echinocandin Antifungal Drugs Restores Efficacy against Resistance Conferred by Mutated Glucan Synthase. Journal of the American Chemical Society, 2022, 144, 5965-5975.	6.6	8
75	Synthesis and Evaluation of the Antifungal and Toxicological Activity of Nitrofuran Derivatives. Pharmaceutics, 2022, 14, 593.	2.0	3
76	Microbial Metabolite Inspired <i>β</i> â€Peptide Polymers Displaying Potent and Selective Antifungal Activity. Advanced Science, 2022, 9, e2104871.	5.6	19

#	Article	IF	CITATIONS
77	Synthesis, Biological Activity and Molecular Docking Studies of Novel Nicotinic Acid Derivatives. International Journal of Molecular Sciences, 2022, 23, 2823.	1.8	5
78	Call for Papers: Drug Resistance in Infectious Diseases and Beyond. ACS Infectious Diseases, 2022, 8, 665-666.	1.8	0
79	A Proteomic Landscape of Candida albicans in the Stepwise Evolution to Fluconazole Resistance. Antimicrobial Agents and Chemotherapy, 2022, 66, e0210521.	1.4	3
81	Discovery of Novel Sertraline Derivatives as Potent Anti- <i>Cryptococcus</i> Agents. Journal of Medicinal Chemistry, 2022, 65, 6541-6554.	2.9	8
82	Safety and tolerability of cinnamaldehyde in orabase for oral candidiasis treatment: phase I clinical trial. Clinical Oral Investigations, 2022, , 1.	1.4	2
83	Comparison of Six Antifungal Susceptibilities of 11 <i>Candida</i> Species Using the VITEK2 AST–YS08 Card and Broth Microdilution Method. Microbiology Spectrum, 2022, 10, e0125321.	1.2	5
84	Pathogen infection-responsive nanoplatform targeting macrophage endoplasmic reticulum for treating life-threatening systemic infection. Nano Research, 2022, 15, 6243-6255.	5.8	8
85	A data library of <i>Candida albicans</i> functional genomic screens. FEMS Yeast Research, 2021, 21, .	1.1	5
86	Antifungal Resistance in Clinical Isolates of Candida glabrata in Ibero-America. Journal of Fungi (Basel,) Tj ETQqO	0 0 rgBT /0 1.5	Overlock 10 T
87	A Time-Kill Assay Study on the Synergistic Bactericidal Activity of Pomegranate Rind Extract and Zn (II) against Methicillin-Resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis,ÂEscherichia coli, and Pseudomonas aeruginosa. Biomolecules, 2021, 11, 1889.	1.8	3
88	Echinocandins Localized to the Target-Harboring Cell Surface Are Not Degraded but Those Entering the Vacuole Are. ACS Chemical Biology, 2022, 17, 1155-1163.	1.6	5
89	An Experimental Study of Photoactivated Disinfection in the Treatment of Acute Pseudomembranous Stomatitis. Photochemistry and Photobiology, 2022, 98, 1418-1425.	1.3	1
90	In silico and in vitro studies on the inhibition of laccase activity by Ellagic acid: Implications in drug designing for the treatment of Cryptococcal infections. International Journal of Biological Macromolecules, 2022, 209, 642-654.	3.6	7
93	Large-scale preparation of a versatile bioinspired sponge with physic-mechanochemical robustness for multitasking separation. Journal of Hazardous Materials, 2022, 435, 128902.	6.5	10
94	Modulatory Effects of Lncrnas on the Candida Albicans-Induced Innate Immune Response in Caenorhabditis Elegans. SSRN Electronic Journal, 0, , .	0.4	0
95	Anti-fungal Effects and Mechanisms of Action of Wasp Venom-Derived Peptide Mastoparan-VT1 Against Candida albicans. International Journal of Peptide Research and Therapeutics, 2022, 28, 1.	0.9	5
96	Molecular analysis and essentiality of Aro1 shikimate biosynthesis multi-enzyme in <i>Candida albicans</i> . Life Science Alliance, 2022, 5, e202101358.	1.3	1
97	Role of Azole Drugs in Promoting Fungal Cell Autophagy Revealed by an NIR Fluorescence-Based Theranostic Probe. Analytical Chemistry, 2022, 94, 7092-7099.	3.2	8

#	Article	IF	CITATIONS
98	High-Throughput Chemical Screen Identifies a 2,5-Disubstituted Pyridine as an Inhibitor of Candida albicans Erg11. MSphere, 2022, 7, e0007522.	1.3	3
99	Antimicrobial Mechanisms of Enterocin CHQS Against Candida albicans. Current Microbiology, 2022, 79, 191.	1.0	3
100	Natural Compound 2-Chloro-1,3-dimethoxy-5-methylbenzene, Isolated from <i>Hericium Erinaceus</i> , Inhibits Fungal Growth by Disrupting Membranes and Triggering Apoptosis. Journal of Agricultural and Food Chemistry, 2022, 70, 6444-6454.	2.4	1
101	Facile Green Synthesis of Zinc Oxide Nanoparticles with Potential Synergistic Activity with Common Antifungal Agents against Multidrug-Resistant Candidal Strains. Crystals, 2022, 12, 774.	1.0	23
102	Development of Lipo-Î ³ -AA Peptides as Potent Antifungal Agents. Journal of Medicinal Chemistry, 2022, 65, 8029-8039.	2.9	12
103	Genomic Approaches to Antifungal Drug Target Identification and Validation. Annual Review of Microbiology, 2022, 76, .	2.9	1
104	Rapid and high-throughput testing of antifungal susceptibility using an AlEgen-based analytical system. Biomaterials, 2022, 287, 121618.	5.7	4
105	Functional analysis of the Candida albicans kinome reveals Hrr25 as a regulator of antifungal susceptibility. IScience, 2022, 25, 104432.	1.9	4
106	Modulatory Effects of LncRNAs on the Candida Albicans-Induced Innate Immune Response in Caenorhabditis Elegans. SSRN Electronic Journal, 0, , .	0.4	0
107	Molecular investigations on <i>Candida glabrata</i> clinical isolates for pharmacological targeting. RSC Advances, 2022, 12, 17570-17584.	1.7	3
108	Synergistic Antifungal Efficiency of Biogenic Silver Nanoparticles with Itraconazole against Multidrug-Resistant Candidal Strains. Crystals, 2022, 12, 816.	1.0	9
109	Antifungal Activities of Phytochemically Characterized Hydroethanolic Extracts of Sclerocarya birrea Leaves and Stem Bark against Fluconazole-Resistant Candida albicans Strains. BioMed Research International, 2022, 2022, 1-11.	0.9	1
110	Novel Promising Antifungal Target Proteins for Conquering Invasive Fungal Infections. Frontiers in Microbiology, 0, 13, .	1.5	14
111	Genomic Variation-Mediating Fluconazole Resistance in Yeast. Biomolecules, 2022, 12, 845.	1.8	5
112	Pan- and isoform-specific inhibition of Hsp90: Design strategy and recent advances. European Journal of Medicinal Chemistry, 2022, 238, 114516.	2.6	13
113	Synthesis, characterization, lipophilicity and antifungal properties of three new complexes of sulfamerazine (HSMR) with Ag(I): [Ag(SMR)], [Ag2(SMR)SCN] and [Ag(SMR)o-phenanthroline]. Polyhedron, 2022, 223, 115979.	1.0	2
114	Porous organic polymers for drug delivery: hierarchical pore structures, variable morphologies, and biological properties. Biomaterials Science, 2022, 10, 5369-5390.	2.6	74
115	Emergence of Candida auris - A Human Isolate with Atorvastatin as a Growth Promoter. International Journal of Pharmacology, 2022, 18, 1079-1083.	0.1	1

#	Article	IF	CITATIONS
116	N-Phenacyldibromobenzimidazoles—Synthesis Optimization and Evaluation of Their Cytotoxic Activity. Molecules, 2022, 27, 4349.	1.7	1
117	Drug design strategies for the treatment azole-resistant candidiasis. Expert Opinion on Drug Discovery, 0, , 1-17.	2.5	1
118	Evaluation of Anti-Candida Potential of Piper nigrum Extract in Inhibiting Growth, Yeast-Hyphal Transition, Virulent Enzymes, and Biofilm Formation. Journal of Fungi (Basel, Switzerland), 2022, 8, 784.	1.5	8
119	Current Progress on Epidemiology, Diagnosis, and Treatment of Sporotrichosis and Their Future Trends. Journal of Fungi (Basel, Switzerland), 2022, 8, 776.	1.5	37
120	Acquisition of cross-azole tolerance and aneuploidy in <i>Candida albicans</i> strains evolved to posaconazole. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	17
121	Candidacidal and Antibiofilm Activity of PS1-3 Peptide against Drug-Resistant Candida albicans on Contact Lenses. Pharmaceutics, 2022, 14, 1602.	2.0	5
122	Adherence of <i>Candida albicans</i> on Cellulose and Polyethylene Terephthalate after 60 Days of Incubation Observed by Scanning Electron Microscopy. Microscopy and Microanalysis, 2022, 28, 1404-1405.	0.2	0
123	Lycosin-II Exhibits Antifungal Activity and Inhibits Dual-Species Biofilm by Candida albicans and Staphylococcus aureus. Journal of Fungi (Basel, Switzerland), 2022, 8, 901.	1.5	2
124	Fungal resilience and host–pathogen interactions: Future perspectives and opportunities. Parasite Immunology, 2023, 45, .	0.7	6
125	Advance and Designing Strategies in Polymeric Antifungal Agents Inspired by Membraneâ€Active Peptides. Chemistry - A European Journal, 2022, 28, .	1.7	5
126	Effectiveness of front line and emerging fungal disease prevention and control interventions and opportunities to address appropriate eco-sustainable solutions. Science of the Total Environment, 2022, 851, 158284.	3.9	8
127	Ethanolic extract of Caesalpinia bonduc seeds triggers yeast metacaspase-dependent apoptotic pathway mediated by mitochondrial dysfunction through enhanced production of calcium and reactive oxygen species (ROS) in Candida albicans. Frontiers in Cellular and Infection Microbiology, 0, 12.	1.8	2
128	The emerging role of neutrophil extracellular traps in fungal infection. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	5
129	Inhibitory effect of ficin on Candida albicans biofilm formation and pre-formed biofilms. BMC Oral Health, 2022, 22, .	0.8	3
130	Biopolymer composites for removal of toxic organic compounds in pharmaceutical effluents – a review. Carbohydrate Polymer Technologies and Applications, 2022, 4, 100239.	1.6	5
131	Vaccines against candidiasis: Status, challenges and emerging opportunity. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	13
132	The prophylactic effects of monoclonal antibodies targeting the cell wall Pmt4 protein epitopes of Candida albicans in a murine model of invasive candidiasis. Frontiers in Microbiology, 0, 13, .	1.5	4
133	Antibiofilm Activity of Essential Fatty Acids Against Candida albicans from Vulvovaginal Candidiasis and Bloodstream Infections. Infection and Drug Resistance, 0, Volume 15, 4181-4193.	1.1	3

#	Article	IF	CITATIONS
134	Antifungal discovery. Current Opinion in Microbiology, 2022, 69, 102198.	2.3	5
135	Experimental evolution of drug resistance in human fungal pathogens. Current Opinion in Genetics and Development, 2022, 76, 101965.	1.5	3
136	Application of Reactive Oxygen Species in Dental Treatment. Journal of Personalized Medicine, 2022, 12, 1531.	1.1	4
137	HDAC11 negatively regulates antifungal immunity by inhibiting Nos2 expression via binding with transcriptional repressor STAT3. Redox Biology, 2022, 56, 102461.	3.9	5
138	Spiro[benzoxazine-piperidin]-one derivatives as chitin synthase inhibitors and antifungal agents: Design, synthesis and biological evaluation. European Journal of Medicinal Chemistry, 2022, 243, 114723.	2.6	3
139	Antifungal activity of vitamin D3 against Candida albicans in vitro and in vivo. Microbiological Research, 2022, 265, 127200.	2.5	7
140	Mixed Fungal Biofilms: From Mycobiota to Devices, a New Challenge on Clinical Practice. Microorganisms, 2022, 10, 1721.	1.6	8
141	Expression pattern of drug-resistance genes ERG11 and TAC1 in Candida albicans Clinical isolates. Molecular Biology Reports, 2022, 49, 11625-11633.	1.0	4
142	Recent advances in pomegranate peel extract mediated nanoparticles for clinical and biomedical applications. Biotechnology and Genetic Engineering Reviews, 0, , 1-29.	2.4	17
143	Phytochemical profiling of Piper crocatum and its antifungal activity as Lanosterol 14Âalpha demethylase CYP51 inhibitor: a review. F1000Research, 0, 11, 1115.	0.8	3
144	Chelerythrine reverses the drug resistance of resistant <i>Candida albicans</i> and the biofilm to fluconazole. Future Microbiology, 2022, 17, 1325-1333.	1.0	2
145	Correlation between SAP2 and CAP1 in clinical strains of Candida albicans at planktonic and biofilm states. Canadian Journal of Microbiology, 0, , .	0.8	0
146	Metal Complexes as Antifungals? From a Crowd-Sourced Compound Library to the First <i>In Vivo</i> Experiments. Jacs Au, 2022, 2, 2277-2294.	3.6	28
147	Activity of arginine-phenylalanine and arginine-tryptophan-based surfactants against <i>Staphylococcus aureus</i> . Future Microbiology, 0, , 00-00.	1.0	2
148	The importance of antimicrobial resistance in medical mycology. Nature Communications, 2022, 13, .	5.8	82
149	Identification and functional characterization of ORF19.5274, a novel gene involved in both azoles susceptibility and hypha development in Candida albicans. Frontiers in Microbiology, 0, 13, .	1.5	0
150	Cinnamaldehyde for the Treatment of Microbial Infections: Evidence Obtained from Experimental Models. Current Medicinal Chemistry, 2023, 30, 3506-3526.	1.2	2
151	Extracts from Argentinian native plants reverse fluconazole resistance in Candida species by inhibiting the efflux transporters Mdr1 and Cdr1. BMC Complementary Medicine and Therapies, 2022, 22, .	1.2	4

	CI	tation Report	
#	Article	IF	CITATIONS
152	In Vitro Activity of Essential Oils Distilled from Colombian Plants against Candidaauris and Other Candida Species with Different Antifungal Susceptibility Profiles. Molecules, 2022, 27, 6837.	1.7	7
153	The Antimicrobial Peptide AMP-17 Derived from Musca domestica Inhibits Biofilm Formation and Eradicates Mature Biofilm in Candida albicans. Antibiotics, 2022, 11, 1474.	1.5	4
154	The Trisubstituted Isoxazole MMV688766 Exerts Broad-Spectrum Activity against Drug-Resistant Fung Pathogens through Inhibition of Lipid Homeostasis. MBio, 2022, 13, .	gal 1.8	4
155	Antifungal Drug Resistance in Candida Species. , 0, , .		0
156	Antifungals and Drug Resistance. Encyclopedia, 2022, 2, 1722-1737.	2.4	20
157	Lipid Transport by <i>Candida albicans</i> Dnf2 Is Required for Hyphal Growth and Virulence. Infection and Immunity, 2022, 90, .	1.0	5
158	Determination of antifungal activity and action mechanism of the modified Aurein 1.2 peptide derivatives. Microbial Pathogenesis, 2022, 173, 105866.	1.3	3
159	Virulence is one of the mechanisms of vulvovaginal candidiasis recurrence, rather than drug resistance. Medical Mycology, 0, , .	0.3	1
160	Potential dual inhibition of SE and CYP51 by eugenol conferring inhibition of Candida albicans: Computationally curated study with experimental validation. Computers in Biology and Medicine, 2022, 151, 106237.	3.9	7
161	The Role of ERG11 Point Mutations in the Resistance of Candida albicans to Fluconazole in the Presence of Lactate. Pathogens, 2022, 11, 1289.	1.2	1
162	Multiple Genes of Candida albicans Influencing Echinocandin Susceptibility in Caspofungin-Adapted Mutants. Antimicrobial Agents and Chemotherapy, 0, , .	1.4	5
163	Secondary metabolites isolated from <i>Penicillium christenseniae</i> SD.84 and their antimicrobial resistance effects. Natural Product Research, 0, , 1-9.	1.0	1
164	Nanoparticles for Antimicrobial Agents Delivery—An Up-to-Date Review. International Journal of Molecular Sciences, 2022, 23, 13862.	1.8	13
165	Dynamic nitric oxide/drug codelivery system based on polyrotaxane architecture for effective treatment of Candida albicans infection. Acta Biomaterialia, 2023, 155, 618-634.	4.1	5
166	Rosemary essential oil and its components 1,8-cineole and α-pinene induce ROS-dependent lethality a ROS-independent virulence inhibition in Candida albicans. PLoS ONE, 2022, 17, e0277097.	and 1.1	10
167	Nanomaterials-mediated photodynamic therapy and its applications in treating oral diseases. , 2023, 1 213218.	.44,	7
168	Antifungal drug-resistance mechanisms in Candida biofilms. Current Opinion in Microbiology, 2023, 7 102237.	1, 2.3	44
169	Features of the <i>Candida</i> genus community pattern in the intestinal biotope of patier with tuberculosis. Russian Journal of Infection and Immunity, 2022, 12, 1169-1174.	nts 0.2	0

#	Article	IF	CITATIONS
170	Autophagy regulation of <i>ATG13</i> and <i>ATG27</i> on biofilm formation and antifungal resistance in <i>Candida albicans</i> . Biofouling, 2022, 38, 926-939.	0.8	5
171	<i>CDR1, CDR2, MDR1</i> and <i>ERG11</i> expression in azole resistant <i>Сandida albicans</i> isolated from HIV-infected patients in city of Moscow. Russian Journal of Infection and Immunity, 2022, 12, 929-937.	0.2	0
172	Metabolite profiling, antifungal, biofilm formation prevention and disruption of mature biofilm activities of Erythrina senegalensis stem bark extract against Candida albicans and Candida glabrata. PLoS ONE, 2022, 17, e0278096.	1.1	3
173	Extracellular vesicles of Candida albicans regulate its own growth through the l-arginine/nitric oxide pathway. Applied Microbiology and Biotechnology, 2023, 107, 355-367.	1.7	7
174	Correlation Between Drug Resistance and Virulence of Candida Isolates from Patients with Candidiasis. Infection and Drug Resistance, 0, Volume 15, 7459-7473.	1.1	2
175	Candida albicans Strains Adapted to Caspofungin Due to Aneuploidy Become Highly Tolerant under Continued Drug Pressure. Microorganisms, 2023, 11, 23.	1.6	4
176	Mechanisms of Antifungal Properties of Metal Nanoparticles. Nanomaterials, 2022, 12, 4470.	1.9	20
177	Characterizations of the Gut Bacteriome, Mycobiome, and Virome in Patients with Osteoarthritis. Microbiology Spectrum, 0, , .	1.2	10
178	Could the Lung Be a Gateway for Amphotericin B to Attack the Army of Fungi?. Pharmaceutics, 2022, 14, 2707.	2.0	0
179	The Tricalbin-Family Endoplasmic Reticulum-Plasma Membrane Tethering Proteins Attenuate ROS-Involved Caspofungin Sensitivity in Candida albicans. Microbiology Spectrum, 2022, 10, .	1.2	0
180	Facile synthesis, antimicrobial screening and docking studies of pyrrole-triazole hybrids as potential antimicrobial agents. Research on Chemical Intermediates, 2023, 49, 1311-1326.	1.3	3
181	Cecropin D-derived synthetic peptides in the fight against Candida albicans cell filamentation and biofilm formation. Frontiers in Microbiology, 0, 13, .	1.5	4
182	Riboflavin Targets the Cellular Metabolic and Ribosomal Pathways of Candida albicans <i>In Vitro</i> and Exhibits Efficacy against Oropharyngeal Candidiasis. Microbiology Spectrum, 2023, 11, .	1.2	4
183	Antifungal Activity of Mycogenic Silver Nanoparticles on Clinical Yeasts and Phytopathogens. Antibiotics, 2023, 12, 91.	1.5	4
184	Bioprospecting of the antifungal activity of Patchouli essential oil (Pogostemon cablin Benth) against strains of the genus Candida. Journal of Medicinal Plants Research, 2023, 17, 1-7.	0.2	0
185	Combating increased antifungal drug resistance in <italic>Cryptococcus</italic> , what should we do in the future?. Acta Biochimica Et Biophysica Sinica, 2023, 55, 540-547.	0.9	1
186	Polyphyllin I Effects Candida albicans via Inhibition of Virulence Factors. Evidence-based Complementary and Alternative Medicine, 2023, 2023, 1-13.	0.5	1
187	Evaluation of citrus pectin capped copper sulfide nanoparticles against Candidiasis causing Candida biofilms. Environmental Research, 2023, 225, 115599.	3.7	8

#	Article	IF	CITATIONS
188	Unearth the ultrapotent intrinsic fungicidal efficacy of the surface-piercing CuFeSe2-PVP nano-blade. Chemical Engineering Journal, 2023, 464, 142603.	6.6	1
189	Recombinant hemagglutinin protein and DNA-RNA-combined nucleic acid vaccines harbored by yeast elicit protective immunity against H9N2 avian influenza infection. Poultry Science, 2023, 102, 102662.	1.5	5
190	Candida tropicalis oligopeptide transporters assist in the transmembrane transport of the antimicrobial peptide CGA-N9. Biochemical and Biophysical Research Communications, 2023, 649, 101-109.	1.0	0
191	Addressing Microbial Resistance Worldwide: Challenges over Controlling Life-Threatening Fungal Infections. Pathogens, 2023, 12, 293.	1.2	8
192	Polyfunctional Drugs: Search, Development, Use in Medical Practice, and Environmental Aspects of Preparation and Application (A Review). Russian Journal of General Chemistry, 2022, 92, 3030-3055.	0.3	1
193	A Multifunctional Trypsin Protease Inhibitor from Yellow Bell Pepper Seeds: Uncovering Its Dual Antifungal and Hypoglycemic Properties. Pharmaceutics, 2023, 15, 781.	2.0	1
194	Arthrocolins Synergizing with Fluconazole Inhibit Fluconazole-Resistant Candida albicans by Increasing Riboflavin Metabolism and Causing Mitochondrial Dysfunction and Autophagy. Microbiology Spectrum, 2023, 11, .	1.2	2
196	Cryptococcus neoformans, a global threat to human health. Infectious Diseases of Poverty, 2023, 12, .	1.5	26
197	Phytochemical profiling of Piper crocatum and its antifungal mechanism action as Lanosterol 14Âalpha demethylase CYP51 inhibitor: a review. F1000Research, 0, 11, 1115.	0.8	0
198	Structural Characterization, Cytotoxicity, and the Antifungal Mechanism of a Novel Peptide Extracted from Garlic (Allium sativa L.). Molecules, 2023, 28, 3098.	1.7	4
199	Synthesis and Characterization of Sulfur Nanoparticles of Citrus limon Extract Embedded in Nanohydrogel Formulation: In Vitro and In Vivo Studies. Gels, 2023, 9, 284.	2.1	2
200	Prescribing patterns of echinocandins in adult patients in a private hospital in Gauteng, South Africa. Southern African Journal of Infectious Diseases, 2023, 38, .	0.3	0
201	Biosensor-Enabled Discovery of CaERG6 Inhibitors and Their Antifungal Mode of Action against <i>Candida albicans</i> . ACS Infectious Diseases, 2023, 9, 785-800.	1.8	1
202	A new approach to overcoming antibiotic-resistant bacteria: Traditional Chinese medicine therapy based on the gut microbiota. Frontiers in Cellular and Infection Microbiology, 0, 13, .	1.8	2
203	Evaluation of Anti-Candida albicans Activities of Herbal Preparations Sold at the Kumasi Central Market in the Ashanti Region of Ghana. Evidence-based Complementary and Alternative Medicine, 2023, 2023, 1-7.	0.5	1
205	Discovery of novel thiosemicarbazone derivatives with potent and selective anti- <i>Candida glabrata</i> activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 2023, 38, .	2.5	1
206	Relationships between Secreted Aspartyl Proteinase 2 and General Control Nonderepressible 4 gene in the Candida albicans resistant to itraconazole under planktonic and biofilm conditions. Brazilian Journal of Microbiology, 2023, 54, 619-627.	0.8	0
223	Secondary fungal infections in SARS-CoV-2 patients: pathological whereabouts, cautionary measures, and steadfast treatments. Pharmacological Reports, 0, , .	1.5	0

#	Article	IF	CITATIONS
255	Antimicrobial lipopeptides: Multifaceted designs to curb antimicrobial resistance. , 2023, , 203-232.		0
263	Systemic Antifungal Agents. , 2023, , 125-147.		0
276	A Hybrid Approach for Classifying Drug-Resistant Microscopic Species. , 2023, , .		0
303	Exploring therapeutic avenues: mesenchymal stem/stromal cells and exosomes in confronting enigmatic biofilm-producing fungi. Archives of Microbiology, 2024, 206, .	1.0	0
307	Neuro-Infections Caused By Candida Species. , 2023, , 249-262.		0
313	Modulators of Candida albicans Membrane Drug Transporters: A LucrativeÂPortfolio for the Development of Effective Antifungals. Molecular Biotechnology, 0, , .	1.3	0