Airflow and Precipitation Trajectories Within Severe Lo Right of the Winds

Journals of the Atmospheric Sciences

21, 634-639

DOI: 10.1175/1520-0469(1964)021<0634:aaptws>2.0.co;2

Citation Report

ARTICLE

IF CITATIONS

1	Isolated convective storms. , 0, , 272-321.		0
3	Circulations in large sheared cumulonimbus. Tellus, 1966, 18, 699-713.	0.8	50
4	Updraft Measurements Beneath the Base of Cumulus and Cumulonimbus Clouds. Journal of Applied Meteorology, 1966, 5, 461-466.	1.1	20
5	Features of Transvaal hailstorms. Quarterly Journal of the Royal Meteorological Society, 1966, 92, 290-296.	2.7	8
6	On the critical liquid water concentrations of large hailstones. Quarterly Journal of the Royal Meteorological Society, 1966, 92, 297-300.	2.7	18
7	Circulations in large sheared cumulonimbus. Tellus, 1966, 18, 699-713.	0.8	58
8	Three Dimensional Analysis of a Tropical Cumulonimbus Cloud over the Malayan Peninsula. Journal of the Meteorological Society of Japan, 1967, 45, 326-331.	1.8	1
9	Severe Convective Storms. Advances in Geophysics, 1967, 12, 257-308.	2.8	62
10	Cloud Nuclei Spectra and Updrafts beneath Convective Cloud Bases in the High Plains. Journal of Applied Meteorology, 1968, 7, 449-451.	1.1	0
11	13 Organized Convective Systems in Middle Latitudes. International Geophysics, 1969, 13, 390-425.	0.6	0
12	The Lubbock Tornadoes: A Study of Suction Spots. Weatherwise, 1970, 23, 161-173.	0.1	56
13	On the variation of the 500â€MB wind and its effect on the release of instability in the lee of the Alberta rockies. Atmosphere, 1970, 8, 119-127.	0.9	0
14	The Airflow Within the Weak Echo Region of an Alberta Hailstorm. Journal of Applied Meteorology, 1971, 10, 487-492.	1.1	12
15	Structure and Movement of the Severe Thunderstorms of 3 April 1964 as Revealed from Radar and Surface Mesonetwork Data Analysis. Journal of the Meteorological Society of Japan, 1971, 49, 191-214.	1.8	32
16	Trace substances in rain water: concentration variations during convective rains, and their interpretation. Tellus, 2022, 23, 14.	0.8	32
17	Trace substances in rain water: concentration variations during convective rains, and their interpretation. Tellus, 1971, 23, 14-27.	0.8	50
18	On the Convection in a Conditionally Unstable Atmosphere with Mean Vertical Motion. Journal of the Meteorological Society of Japan, 1972, 50, 243-258.	1.8	8
19	Typhoon-Associated Tornadoes in Japan and New Evidence of Suction Vortices in a Tornado near	1.8	31

#	ARTICLE Further study of the severe storm with a rotating updraft configuration. Tellus, 2022, 24, 216.	IF 0.8	CITATIONS 2
21	Further study of the severe storm with a rotating updraft configuration. Tellus, 1972, 24, 216-229.	0.8	2
22	Model of precipitation and vertical air currents. Tellus, 1974, 26, 519-542.	0.8	7
23	Analysis of a Rare, Westward-Advancing Tornado in Iowa. Weatherwise, 1974, 27, 202-211.	0.1	1
24	Model of precipitation and vertical air currents. Tellus, 1974, 26, 519-542.	0.8	19
26	The Electrical Characteristics of Some Severe Hailstorms in Alberta, Canada. Journal of the Meteorological Society of Japan, 1975, 53, 363-383.	1.8	8
27	Severe storms and storm systems: Scientific background, methods, and critical questions. Pure and Applied Geophysics, 1975, 113, 713-734.	1.9	10
28	Movement and propagation of multicellular convective storms. Pure and Applied Geophysics, 1975, 113, 747-764.	1.9	23
29	Internal airflow of a convective storm from dual-Doppler radar measurements. Pure and Applied Geophysics, 1975, 113, 765-785.	1.9	10
30	On the Behavior of Long-lasting Cellular Echoes. Journal of the Meteorological Society of Japan, 1976, 54, 399-406.	1.8	4
31	Observations in Hailstorms Using the T-28 Aircraft System. Journal of Applied Meteorology, 1976, 15, 641-650.	1.1	18
32	Airflow and hail growth in supercell storms and some implications for hail suppression. Quarterly Journal of the Royal Meteorological Society, 1976, 102, 499-533.	2.7	160
33	An Alberta study to objectively measure hailfall intensity. Atmosphere, 1977, 15, 33-53.	0.9	15
34	The Hampstead storm: A numerical simulation of a quasi-stationary cumulonimbus system. Quarterly Journal of the Royal Meteorological Society, 1978, 104, 413-427.	2.7	45
35	The dynamical structure of two-dimensional steady convection in constant vertical shear. Quarterly Journal of the Royal Meteorological Society, 1978, 104, 543-567.	2.7	75
36	Numerical simulations showing the role of the downdraught in cumulonimbus motion and splitting. Quarterly Journal of the Royal Meteorological Society, 1978, 104, 873-893.	2.7	43
37	Time-resolved hailstone analyses and radar structure of Swiss storms. Quarterly Journal of the Royal Meteorological Society, 1978, 104, 69-90.	2.7	20
38	Meteorological applications of radar. Reports on Progress in Physics, 1978, 41, 761-806.	20.1	25

#	Article	IF	CITATIONS
39	Numerical Experiments of a Convective Cloud with a High Cloud Base in Shear Flows. Journal of the Meteorological Society of Japan, 1978, 56, 387-404.	1.8	5
40	Severe Thunderstorms Their Nature and Their Effects on Society. Interdisciplinary Science Reviews, 1978, 3, 71-85.	1.4	8
41	THE SYDNEY THUNDERSTORMS OF 10 NOVEMBER 1976. Weather, 1979, 34, 25-36.	0.7	2
42	Downdrafts as Linkages in Dynamic Cumulus Seeding Effects. Journal of Applied Meteorology, 1980, 19, 477-487.	1.1	61
43	Environmental conditions and structure of some types of convective mesosystems observed over Venezuela. Archives for Meteorology, Geophysics and Bioclimatology, Series A, 1980, 29, 249-267.	0.4	5
44	Structures of atmospheric precipitation systems: A global survey. Radio Science, 1981, 16, 671-689.	1.6	139
45	Three-Dimensional Distribution of Precipitation Water in a Maritime Cumulus Cloud as Revealed by X-Band Digitized Radar. Journal of the Meteorological Society of Japan, 1981, 59, 844-863.	1.8	1
46	Observed and Numerically Simulated Structure of a Mature Supercell Thunderstorm. Journals of the Atmospheric Sciences, 1981, 38, 1558-1580.	1.7	133
47	Pseudo-cold-fronts in the USA. Pure and Applied Geophysics, 1981, 119, 594-611.	1.9	1
48	Calculations of hailstone growth in a sloping steady updraft. Atmosphere - Ocean, 1982, 20, 76-89.	1.6	3
49	Organization and Structure of Precipitating Cloud Systems. Advances in Geophysics, 1982, 24, 225-315.	2.8	158
50	Case study of Pampa, Texas, multicell storms. Pure and Applied Geophysics, 1983, 121, 1019-1034.	1.9	7
51	Mesoscale meteorology. Reviews of Geophysics, 1983, 21, 1027-1042.	23.0	2
52	Numerical simulations of tornado-like vortices. Part 1: Vortex evolution. Geophysical and Astrophysical Fluid Dynamics, 1983, 27, 253-284.	1.2	10
53	Some facets of the predictability problem for atmospheric mesoscales. AIP Conference Proceedings, 1983, , .	0.4	1
54	Convective cloud downdraft structure: An interpretive survey. Reviews of Geophysics, 1985, 23, 183-215.	23.0	67
55	Microphysical Characteristics of a Well-Developed Weak Echo Region in a High Plains Supercell Thunderstorm. Journal of Climate and Applied Meteorology, 1986, 25, 1037-1051.	1.0	60
56	Dynamics of Tornadic Thunderstorms. Annual Review of Fluid Mechanics, 1987, 19, 369-402.	25.0	291

#	Article	IF	CITATIONS
57	Study of pre-storm environment by using rawinsonde and satellite observations. International Journal of Remote Sensing, 1987, 8, 1123-1150.	2.9	4
58	Mesoscale and severe storm meteorology. Reviews of Geophysics, 1987, 25, 329-356.	23.0	2
59	Fractal dimension of rainbands over Hilly terrain. Meteorology and Atmospheric Physics, 1987, 36, 74-82.	2.0	8
60	Nowcasting of precipitation systems. Reviews of Geophysics, 1989, 27, 345-370.	23.0	84
61	Two Examples of Operational Tornado Warnings Using Doppler Radar Data. Bulletin of the American Meteorological Society, 1990, 71, 145-153.	3.3	6
62	A Study of the Evolution of a Numerically Modeled Severe Storm. The International Journal of Supercomputer Applications, 1990, 4, 20-36.	0.5	24
63	Cloud parametrization at different horizontal resolutions. Quarterly Journal of the Royal Meteorological Society, 1991, 117, 1255-1280.	2.7	7
64	Study of Ardmore, Oklahoma, storm clouds. II. Satellite infrared remote sensing and numerical simulation. International Journal of Remote Sensing, 1991, 12, 863-876.	2.9	0
65	Chapter 9 Cumulonimbus Clouds and Severe Convective Storms. International Geophysics, 1992, 44, 455-592.	0.6	2
66	Numerical Simulations of the 2 August 1981 CCOPE Supercell Storm with and without Ice Microphysics. Journal of Applied Meteorology and Climatology, 1993, 32, 745-759.	1.7	52
68	Supercell thunderstorm modeling and theory. Geophysical Monograph Series, 1993, , 57-73.	0.1	17
69	Tornadoes and toraadic storms: A review of conceptual models. Geophysical Monograph Series, 1993, , 161-172.	0.1	101
70	Single-doppler radar study of a variety of tornado types. Geophysical Monograph Series, 1993, , 223-231.	0.1	9
71	The Use of volumetric radar data to identify supercells: A case study of June 2, 1990. Geophysical Monograph Series, 1993, , 241-250.	0.1	3
72	An Observational Study of the Mobara Tornado. Geophysical Monograph Series, 1993, , 511-519.	0.1	4
73	An examination of a supercell in Mississippi using a tilt sequence. Geophysical Monograph Series, 1993, , 257-264.	0.1	0
74	Tornadic thunderstorm characteristics determined with doppler radar. Geophysical Monograph Series, 1993, , 143-159.	0.1	12
75	The Alabama tornado outbreak of 27 March 1994 — an example of tornado formation. Weather, 1994, 49, 407-411.	0.7	0

#	Article	IF	CITATIONS
76	Extreme-Wind Risk Assessment. , 1995, , 465-509.		2
77	Storm-Relative Winds and Helicity in the Tornadic Thunderstorm Environment. Weather and Forecasting, 1996, 11, 489-505.	1.4	81
78	Initiation of an Elevated Mesoscale Convective System Associated with Heavy Rainfall. Weather and Forecasting, 1996, 11, 443-457.	1.4	35
79	The supercell thunderstorm on 8 June 1990: Mesoscale analysis and radar observations. Meteorology and Atmospheric Physics, 1996, 58, 123-138.	2.0	18
80	Wind-Tunnel Studies of Buildings and Structures. Journal of Aerospace Engineering, 1996, 9, 19-36.	1.4	15
81	Airborne Doppler Radar Analysis of Supercells during COPS-91. Monthly Weather Review, 1997, 125, 365-383.	1.4	21
82	The Arcadia, Oklahoma, Storm of 17 May 1981: Analysis of a Supercell during Tornadogenesis. Monthly Weather Review, 1997, 125, 2562-2582.	1.4	74
83	Satellite data based detection and prediction of hail. Atmospheric Research, 1997, 43, 217-231.	4.1	8
84	Back to basics: Thunderstorms: Part 2 — Storm types and associated weather. Weather, 1997, 52, 2-7.	0.7	7
85	Supercell storms in Switzerland: case studies and implications for nowcasting severe winds with Doppler radar. Meteorological Applications, 1997, 4, 49-67.	2.1	17
86	An observational and numerical study of a mini-supercell storm. Atmospheric Research, 1998, 49, 35-63.	4.1	15
87	Eta Model Storm-Relative Winds Associated with Tornadic and Nontornadic Supercells. Weather and Forecasting, 1998, 13, 125-137.	1.4	42
88	The Garden City, Kansas, Storm during VORTEX 95. Part I: Overview of the Storm's Life Cycle and Mesocyclogenesis. Monthly Weather Review, 1998, 126, 372-392.	1.4	88
89	Long-Distance Debris Transport by Tornadic Thunderstorms.Part I: The 7 May 1995 Supercell Thunderstorm. Monthly Weather Review, 1998, 126, 1430-1449.	1.4	24
90	Variations in Supercell Morphology. Part I: Observations of the Role of Upper-Level Storm-Relative Flow. Monthly Weather Review, 1998, 126, 2406-2421.	1.4	77
91	The Radar "Three-Body Scatter Spike― An Operational Large-Hail Signature. Weather and Forecasting, 1998, 13, 327-340.	1.4	55
92	CSU-CHILL Polarimetric Radar Measurements from a Severe Hail Storm in Eastern Colorado. Journal of Applied Meteorology and Climatology, 1998, 37, 749-775.	1.7	82
95	Meteorological structures shape description and tracking by means of BI-RME matching. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37, 1151-1161.	6.3	15

#	Article	IF	CITATIONS
96	Improved Accuracy in Severe Storm Forecasting by the Severe Local Storms Unit during the Last 25 Years: Then versus Now. Weather and Forecasting, 1999, 14, 526-543.	1.4	11
97	Predicting Supercell Motion Using a New Hodograph Technique. Weather and Forecasting, 2000, 15, 61-79.	1.4	254
98	Tornado-Producing Mini Supercells Associated with Typhoon 9019. Monthly Weather Review, 2000, 128, 1868-1882.	1.4	55
99	The Effect of Small-Scale Moisture Variability on Thunderstorm Initiation. Monthly Weather Review, 2000, 128, 4017-4030.	1.4	145
100	The 18 June 1997 Companion supercells: Multiparametric Doppler radar analysis. Meteorology and Atmospheric Physics, 2000, 75, 101-120.	2.0	8
101	The Use of Vertical Wind Shear versus Helicity in Interpreting Supercell Dynamics. Journals of the Atmospheric Sciences, 2000, 57, 1452-1472.	1.7	165
102	Lightning and precipitation relationship in coastal thunderstorms. Journal of Geophysical Research, 2001, 106, 22801-22816.	3.3	48
103	Using short-range ensemble forecasts for predicting severe weather events. Atmospheric Research, 2001, 56, 3-17.	4.1	12
104	Tornadogenesis and Operational Considerations of the 11 August 1999 Salt Lake City Tornado as Seen from Two Different Doppler Radars. Weather and Forecasting, 2001, 16, 377-398.	1.4	15
105	Kinematic and Thermodynamic Study of a Shallow Hailstorm Sampled by the McGill Bistatic Multiple-Doppler Radar Network. Journals of the Atmospheric Sciences, 2001, 58, 1222-1248.	1.7	8
106	Numerical Simulation of Tornadogenesis in a High-Precipitation Supercell. Part I: Storm Evolution and Transition into a Bow Echo. Journals of the Atmospheric Sciences, 2001, 58, 1597-1629.	1.7	48
107	Reexamining the Cold Conveyor Belt. Monthly Weather Review, 2001, 129, 2205-2225.	1.4	81
108	The Storm-Structure-Severity method for the identification of convective storm characteristics with conventional weather radar. Meteorological Applications, 2001, 8, 1-10.	2.1	6
109	Extratropical Synoptic-Scale Processes and Severe Convection. , 2001, , 27-69.		31
110	Ensemble Cloud Model Applications to Forecasting Thunderstorms. Journal of Applied Meteorology and Climatology, 2002, 41, 363-383.	1.7	20
111	Hook Echoes and Rear-Flank Downdrafts: A Review. Monthly Weather Review, 2002, 130, 852-876.	1.4	142
112	Fractal identification of supercell storms. Geophysical Research Letters, 2002, 29, 31-1-31-4.	4.0	10
113	Close Proximity Soundings within Supercell Environments Obtained from the Rapid Update Cycle. Weather and Forecasting, 2003, 18, 1243-1261.	1.4	477

#	Article	IF	CITATIONS
114	Survey of convective supercell in Slovenia with validation of operational model forecasts. Atmospheric Research, 2003, 67-68, 261-271.	4.1	1
115	A Numerical Study of a Nontornadic Supercell over France. Monthly Weather Review, 2003, 131, 2290-2311.	1.4	4
116	The Severe Thunderstorm Electrification and Precipitation Study. Bulletin of the American Meteorological Society, 2004, 85, 1107-1126.	3.3	175
117	The Impact of Hail Size on Simulated Supercell Storms. Journals of the Atmospheric Sciences, 2004, 61, 1596-1609.	1.7	133
118	Tornadoes from Squall Lines and Bow Echoes. Part I: Climatological Distribution. Weather and Forecasting, 2005, 20, 23-34.	1.4	149
119	A Sensitivity Study of Hodograph-Based Methods for Estimating Supercell Motion. Weather and Forecasting, 2005, 20, 954-970.	1.4	31
120	A Simulation of a Supercell Thunderstorm with Emulated Radiative Cooling beneath the Anvil. Journals of the Atmospheric Sciences, 2005, 62, 2607-2617.	1.7	19
121	The 29 June 2000 Supercell Observed during STEPS. Part I: Kinematics and Microphysics. Journals of the Atmospheric Sciences, 2005, 62, 4127-4150.	1.7	101
122	Progress toward developing a practical societal response to severe convection (2005 EGU Sergei) Tj ETQq0 0 0 r	gB <u>T</u> /Overl	ock 10 Tf 50
123	GOES-R Preparatory Activities: Short-Term Thunderstorm and Lightning Forecasting for Aviation. , 2006, , .		0
124	On the Classification of Vertical Wind Shear as Directional Shear versus Speed Shear. Weather and Forecasting, 2006, 21, 242-247.	1.4	19
125	Low-Level Mesocyclonic Concentration by Nonaxisymmetric Transport. Part I: Supercell and Mesocyclone Evolution. Journals of the Atmospheric Sciences, 2006, 63, 1113-1133.	1.7	11
126	An Observational Examination of Long-Lived Supercells. Part I: Characteristics, Evolution, and Demise. Weather and Forecasting, 2006, 21, 673-688.	1.4	57
127	A review of the initiation of precipitating convection in the United Kingdom. Quarterly Journal of the Royal Meteorological Society, 2006, 132, 1001-1020.	2.7	58
128	The 19 April 1996 Illinois Tornado Outbreak. Part I: Cell Evolution and Supercell Isolation. Weather and Forecasting, 2006, 21, 433-448.	1.4	17
129	Hailstorm in the region of Central Macedonia, Greece: a kinematic study. Meteorologische Zeitschrift, 2006, 15, 317-326.	1.0	11
130	Effective Storm-Relative Helicity and Bulk Shear in Supercell Thunderstorm Environments. Weather and Forecasting, 2007, 22, 102-115.	1.4	218

Review, 2007, 135, 1327-1353.

ARTICLE IF CITATIONS # Anser: Adaptive Neuron Artificial Neural Network System for Estimating Rainfall. International 132 1.3 5 Journal of Computers and Applications, 2007, 29, 215-222. The Motion of Simulated Convective Storms as a Function of Basic Environmental Parameters. 1.4 24 Monthly Weather Review, 2007, 135, 3033-3051. Case study of the 9 May 2003 windstorm in southwestern Slovakia. Atmospheric Research, 2007, 83, 134 4.1 21 162-175. Validation and development of a new hailstone formation theory: Numerical simulations of a strong hailstorm occurring over the Qinghai-Tibetan Plateau. Journal of Geophysical Research, 2007, 112, . Telescoping, multimodel approaches to evaluate extreme convective weather under future climates. 136 3.3 38 Journal of Geophysical Research, 2007, 112, . A theory of organized steady convection and its transport properties. Quarterly Journal of the Royal Meteorological Society, 1981, 107, 29-50. 138 An improved velocity volume processing method. Advances in Atmospheric Sciences, 2007, 24, 893-906. 4.3 10 Revisiting the latent heat nudging scheme for the rainfall assimilation of a simulated convective 2.0 storm. Meteorology and Atmospheric Physics, 2007, 98, 195-215. 140 Severe Deep Moist Convective Storms: Forecasting and Mitigation. Geography Compass, 2008, 2, 30-66. 2.7 7 Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle 141 3.3 effective radius and thermodynamic phase. Journal of Geophysical Research, 2008, 113, A comparison of the midlevel kinematic characteristics of a pair of supercell thunderstorms observed 142 4.1 10 by airborne Doppler radar. Atmospheric Research, 2008, 88, 314-322. Polarimetric Signatures in Supercell Thunderstorms. Journal of Applied Meteorology and 1.5 265 Climatology, 2008, 47, 1940-1961. A Geographic Information Systems–Based Analysis of Supercells across Oklahoma from 1994 to 2003. 144 1.5 21 Journal of Applied Meteorológy and Climatology, 2008, 47, 1518-1538. Surface Analysis of the Rear-Flank Downdraft Outflow in Two Tornadic Supercells. Monthly Weather Review, 2008, 136, 2344-2363. 145 1.4 Structure and Formation Mechanism on the 24 May 2000 Supercell-Like Storm Developing in a Moist 146 22 1.4 Environment over the Kanto Plain, Japan. Monthly Weather Review, 2008, 136, 2389-2407. A Statistical Evaluation of GOES Cloud-Top Properties for Nowcasting Convective Initiation. Monthly 1.4 69 Weather Review, 2008, 136, 4899-4914. A Dual-Polarization-Radar-Based Assessment of the 8 May 2003 Oklahoma City Area Tornadic Supercell. 148 1.4 77 Monthly Weather Review, 2008, 136, 2849-2870. Storm-Relative Helicity Revealed from Polarimetric Radar Measurements. Journals of the Atmospheric 149 Sciences, 2009, 66, 667-685.

#	Article	IF	CITATIONS
150	Comments on "Structure and Formation Mechanism on the 24 May 2000 Supercell-Like Storm Developing in a Moist Environment over the Kanto Plain, Japan― Monthly Weather Review, 2009, 137, 2703-2712.	1.4	2
151	Additive Noise for Storm-Scale Ensemble Data Assimilation. Journal of Atmospheric and Oceanic Technology, 2009, 26, 911-927.	1.3	121
152	Wintertime Supercell Thunderstorms in a Subtropical Environment: A Diagnostic Study. Monthly Weather Review, 2009, 137, 366-390.	1.4	1
153	Descending Reflectivity Cores in Supercell Thunderstorms Observed by Mobile Radars and in a High-Resolution Numerical Simulation. Weather and Forecasting, 2009, 24, 155-186.	1.4	38
154	Wintertime Supercell Thunderstorms in a Subtropical Environment: Numerical Simulation. Monthly Weather Review, 2009, 137, 2175-2202.	1.4	8
155	A heat engine based moist convection parametrization for Jupiter. Planetary and Space Science, 2009, 57, 1525-1537.	1.7	5
156	The interaction of large scale and mesoscale environment leading to formation of intense thunderstorms over Kolkata Part I: Doppler radar and satellite observations. Journal of Earth System Science, 2009, 118, 441-466.	1.3	36
157	Mid-level jet in intense convective environment as seen in the 7.3µm satellite imagery. Atmospheric Research, 2009, 93, 277-285.	4.1	7
158	Assessing sounding-derived parameters as storm predictors in different latitudes. Atmospheric Research, 2009, 93, 446-456.	4.1	33
159	A Numerical Investigation of a Supercell Tornado: Genesis and Vorticity Budget. Journal of the Meteorological Society of Japan, 2010, 88, 135-159.	1.8	22
160	Multiâ€instrumental observations of a positive gigantic jet produced by a winter thunderstorm in Europe. Journal of Geophysical Research, 2010, 115, .	3.3	63
161	Numerical simulation of macro- and micro-structures of intense convective clouds with a spectral bin microphysics model. Advances in Atmospheric Sciences, 2010, 27, 1078-1088.	4.3	7
163	Simulations of Polarimetric Radar Signatures of a Supercell Storm Using a Two-Moment Bulk Microphysics Scheme. Journal of Applied Meteorology and Climatology, 2010, 49, 146-163.	1.5	110
164	Formation of Charge Structures in a Supercell. Monthly Weather Review, 2010, 138, 3740-3761.	1.4	77
165	Rapid-Scan Super-Resolution Observations of a Cyclic Supercell with a Dual-Polarization WSR-88D. Monthly Weather Review, 2010, 138, 3762-3786.	1.4	62
166	The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D dynamic frame. Atmospheric Research, 2011, 99, 129-146.	4.1	120
167	A Mediterranean nocturnal heavy rainfall and tornadic event. Part I: Overview, damage survey and radar analysis. Atmospheric Research, 2011, 100, 621-637.	4.1	30
168	Style, but Substance: An Epistemology of Visual versus Numerical Representation in Scientific Practice. Philosophy of Science, 2011, 78, 774-787.	1.0	3

		CITATION REPORT		
#	Article		IF	CITATIONS
169	Cumulonimbus Clouds and Severe Convective Storms. International Geophysics, 2011,	99, 315-454.	0.6	17
170	Sensitivities of Simulated Convective Storms to Environmental CAPE. Monthly Weather 139, 3514-3532.	Review, 2011,	1.4	33
171	Surface Analysis near and within the Tipton, Kansas, Tornado on 29 May 2008. Monthly Review, 2011, 139, 370-386.	Weather	1.4	20
172	The Characteristics of Numerically Simulated Supercell Storms Situated over Statically S Boundary Layers. Monthly Weather Review, 2011, 139, 3139-3162.	Stable	1.4	42
173	Convective Modes for Significant Severe Thunderstorms in the Contiguous United Stat Storm Classification and Climatology. Weather and Forecasting, 2012, 27, 1114-1135.	es. Part I:	1.4	247
174	Comparison of Objective Supercell Identification Techniques Using an Idealized Cloud N Weather Review, 2012, 140, 2090-2102.	1odel. Monthly	1.4	19
175	The Bowdle, South Dakota, Cyclic Tornadic Supercell of 22 May 2010: Surface Analysis Downdraft Evolution and Multiple Internal Surges. Monthly Weather Review, 2012, 140	of Rear-Flank 1, 3419-3441.	1.4	48
176	A Dual-Wavelength Polarimetric Analysis of the 16 May 2010 Oklahoma City Extreme H Monthly Weather Review, 2012, 140, 1385-1403.	ailstorm.	1.4	70
177	Wind Tunnel Testing for Buildings and Other Structures. , 2012, , .			14
178	Multiple Doppler Radar Analysis for Retrieving the Three-Dimensional Wind Field Within Thunderstorms. , 2012, , .			2
179	A study of rotation in thunderstorms in a weakly- or moderately-sheared environment. A Research, 2013, 123, 93-116.	tmospheric	4.1	7
180	Regional Comparison of GOES Cloud-Top Properties and Radar Characteristics in Advan First-Flash Lightning Initiation. Monthly Weather Review, 2013, 141, 55-74.	ce of	1.4	25
181	Observations of a tornadic supercell over Oxfordshire using a pair of Doppler radars. We 68, 128-134.	eather, 2013,	0.7	6
182	Drop-Size Distributions in Thunderstorms Measured by Optical Disdrometers during VO Monthly Weather Review, 2013, 141, 1182-1203.	RTEX2.	1.4	70
183	Hepatoprotective effect of Curcuma longa against lead induced toxicity in Wistar rats. World, 2013, 6, 664-667.	Jeterinary	1.7	11
184	Observations of Polarimetric Signatures in Supercells by an X-Band Mobile Doppler Rad Weather Review, 2013, 141, 3-29.	ar. Monthly	1.4	59
185	Analysis of the 18 July 2005 Tornadic Supercell over the Lake Geneva Region. Weather a 2013, 28, 1524-1551.	ind Forecasting,	1.4	18
186	Anomaly Detection Algorithm for Localized Abnormal Weather Using Low-Cost Wireles Nodes. , 2014, , .	s Sensor		3

#	Article	IF	CITATIONS
187	Comparison of Next-Day Convection-Allowing Forecasts of Storm motion on 1- and 4-km Grids. Weather and Forecasting, 2014, 29, 878-893.	1.4	24
188	Cumulonimbus and Severe Storms. International Geophysics, 2014, 104, 187-236.	0.6	4
189	Tropical convection: the effects of ambient vertical and horizontal vorticity. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 1756-1770.	2.7	18
190	Comment on "Eliminating the major tornado threat in Tornado Alley". International Journal of Modern Physics B, 2014, 28, 1475004.	2.0	1
191	Diurnal evolution and distribution of warm-season convective storms in different prevailing wind regimes over contiguous North China. Journal of Geophysical Research D: Atmospheres, 2014, 119, 2742-2763.	3.3	30
193	Large charge moment change lightning on 31 May to 1 June 2013, including the El Reno tornadic storm. Journal of Geophysical Research D: Atmospheres, 2015, 120, 3354-3369.	3.3	3
194	Anomaly Weather Information Detection Using Wireless Pressure-sensor Grid. Journal of Information Processing, 2015, 23, 745-752.	0.4	4
195	Changes to the turbulent kinematics of a volcanic plume inferred from lightning data. Geophysical Research Letters, 2015, 42, 4232-4239.	4.0	30
196	Large Hail in Poland in 2012. Quaestiones Geographicae, 2015, 34, 75-84.	1.1	10
198	Observations of the 9 June 2009 Dissipating Supercell from VORTEX2. Weather and Forecasting, 2015, 30, 368-388.	1.4	10
199	Characteristics and predictability of a supercell during HyMeX SOP1. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 2839-2853.	2.7	30
200	Recirculation and growth of raindrops in simulated shallow cumulus. Journal of Advances in Modeling Earth Systems, 2016, 8, 520-537.	3.8	18
202	The Tornadic Supercell on the Kanto Plain on 6 May 2012: Polarimetric Radar and Surface Data Assimilation with EnKF and Ensemble-Based Sensitivity Analysis. Monthly Weather Review, 2016, 144, 3133-3157.	1.4	27
203	Aerial Damage Survey of the 2013 El Reno Tornado Combined with Mobile Radar Data. Monthly Weather Review, 2016, 144, 1749-1776.	1.4	39
204	The Impact of Vertical Wind Shear on Hail Growth in Simulated Supercells. Journals of the Atmospheric Sciences, 2017, 74, 641-663.	1.7	89
205	Impact of Variations in Upper-Level Shear on Simulated Supercells. Monthly Weather Review, 2017, 145, 2659-2681.	1.4	47
206	Improvements in nowcasting capability: analysis of three structurally distinct severe thunderstorms across northern England on 1 July 2015. Weather, 2017, 72, 91-98.	0.7	5
207	How Much Does "Backing Aloft―Actually Impact a Supercell?. Weather and Forecasting, 2017, 32, 1937-1957.	1.4	10

# 208	ARTICLE A long-lived tornado on 7 December 2010 in mainland Portugal. Atmospheric Research, 2017, 185, 202-215.	IF 4.1	CITATIONS 8
209	Tilting of Horizontal Shear Vorticity and the Development of Updraft Rotation in Supercell Thunderstorms. Journals of the Atmospheric Sciences, 2017, 74, 2997-3020.	1.7	19
210	Tornadoes and Their Parent Convective Storms. , 0, , .		2
211	Effects of the Low-Level Wind Profile on Outflow Position and Near-Surface Vertical Vorticity in Simulated Supercell Thunderstorms. Journals of the Atmospheric Sciences, 2018, 75, 731-753.	1.7	22
212	Important Factors for Tornadogenesis as Revealed by High-Resolution Ensemble Forecasts of the Tsukuba Supercell Tornado of 6 May 2012 in Japan. Monthly Weather Review, 2018, 146, 1109-1132.	1.4	32
214	100 Years of Progress in Atmospheric Observing Systems. Meteorological Monographs, 2018, 59, 2.1-2.55.	5.0	22
215	Polarimetric Radar Signatures of a Rare Tornado Event over South Korea. Journal of Atmospheric and Oceanic Technology, 2018, 35, 1977-1997.	1.3	6
216	Evaluation of Supercell Storm Triggering Factors Based on a Cloud Resolving Model Simulation. Asia-Pacific Journal of Atmospheric Sciences, 2019, 55, 439-458.	2.3	7
217	Modeling the Effects of Explicit Urban Canopy Representation on the Development of Thunderstorms above a Tropical Mega City. Atmosphere, 2019, 10, 356.	2.3	0
218	A Century of Progress in Severe Convective Storm Research and Forecasting. Meteorological Monographs, 2019, 59, 18.1-18.41.	5.0	28
219	CHAT: The Colorado Hail Accumulation from Thunderstorms Project. Bulletin of the American Meteorological Society, 2019, 100, 459-471.	3.3	10
220	DCMIP2016: the splitting supercell test case. Geoscientific Model Development, 2019, 12, 879-892.	3.6	11
221	A modified nonhydrostatic moist global spectral dynamical core using a dryâ€mass vertical coordinate. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 2477-2490.	2.7	12
222	Mesoscale Convective Vortex that Causes Tornado-Like Vortices over the Sea: A Potential Risk to Maritime Traffic. Monthly Weather Review, 2019, 147, 1989-2007.	1.4	9
223	Using Operational Radar to Identify Deep Hail Accumulations from Thunderstorms. Weather and Forecasting, 2019, 34, 133-150.	1.4	4
224	Understanding Hail in the Earth System. Reviews of Geophysics, 2020, 58, e2019RG000665.	23.0	58
225	Constructing a Supercell Database in Spain Using Publicly Available Two-Dimensional Radar Images and Citizen Science. Annals of the American Association of Geographers, 2020, , 1-21.	2.2	2
226	Advances in Severe Convection Research and Operation in China. Journal of Meteorological Research, 2020, 34, 189-217.	2.4	22

#	Article	IF	Citations
227	Novel Thunderstorm Alert System (NOTHAS). Asia-Pacific Journal of Atmospheric Sciences, 2021, 57, 479-498.	2.3	2
228	Spatial and temporal variability of hail falls and estimation of maximum diameter from meteorological variables. Atmospheric Research, 2021, 247, 105142.	4.1	8
229	Thunderstorm downbursts: Windstorms and blowdowns. , 2021, , 65-115.		2
230	On the Origin of Rotation Derived from Super Rapid Scan Satellite Imagery at the Cloud-Tops of Severe Deep Convection. Monthly Weather Review, 2021, , .	1.4	0
231	Dynamics of Simulated High-Shear, Low-CAPE Supercells. Journals of the Atmospheric Sciences, 2021, 78, 1389-1410.	1.7	7
232	Examining Relationships between Environmental Conditions and Supercell Motion in Time. Weather and Forecasting, 2021, 36, 737-755.	1.4	3
233	ENTRAINMENT IN A SIMULATED SUPERCELL THUNDERSTORM, PART I: THE EVOLUTION OF DIFFERENT ENTRAINMENT MECHANISMS AND THEIR DILUTIVE EFFECTS. Journals of the Atmospheric Sciences, 2021, , .	1.7	3
234	Evaluating Precursor Signals for QLCS Tornado and Higher Impact Straight-Line Wind Events. Journal of Operational Meteorology, 0, , 62-75.	0.9	2
235	Numerical simulation of a violent supercell tornado over Vienna airport initialized and initiated with a cloud model. Atmospheric Research, 2021, 261, 105758.	4.1	3
236	Synoptic characteristics of an extreme weather event: The tornadic waterspout in Tivat (Montenegro), on June 9, 2018. Geographia Polonica, 2021, 94, 68-90.	1.0	4
237	State of the Science: Radar View of Tropical Cyclones. , 2003, , 33-74.		8
238	Severe Convective Storms—An Overview. , 2001, , 1-26.		41
239	Severe Local Storms Forecasting. , 2001, , 433-480.		26
240	Numerical Modeling of Severe Local Storms. , 2001, , 123-166.		16
241	Tornadoes and Tornadic Storms. , 2001, , 167-221.		67
242	Convectively Driven High Wind Events. , 2001, , 255-298.		37
243	Rain Production in Convective Storms. , 2001, , 299-321.		11
244	Modification of Mesoscale Convective Weather Systems. , 1986, , 77-86.		4

#	Article	IF	Citations
245	Characteristics of Isolated Convective Storms. , 1986, , 331-358.		139
246	Tornadoes and Tornadogenesis. , 1986, , 414-436.		21
247	Atmospheric Sounding Systems. , 1986, , 50-70.		12
248	The Use of Satellite Data for Mesoscale Analyses and Forecasting Applications. , 1986, , 118-150.		17
249	The Structure and Mechanisms of Hailstorms. , 1977, , 1-47.		33
250	On the Distribution and Continuity of Water Substance in Atmospheric Circulations. , 1969, , 1-84.		465
251	A Short History of Radar Meteorology. , 1996, , 57-98.		5
252	The Development and Maintenance of Rotation in Convective Storms. , 1982, , 149-160.		35
253	High Resolution Numerical Simulations of the Tornadic Region Within a Mature Thunderstorm. , 1982, , 191-203.		3
254	A Numerical Simulation of Multiple Vortices. , 1982, , 215-228.		3
255	The Dynamics and Simulation of Organized Deep Convection. , 1983, , 451-495.		18
256	Dynamics of Rotating Thunderstorms. , 1983, , 531-543.		10
258	State of the Science: Radar View of Tropical Cyclones. Meteorological Monographs, 2003, 30, 33-33.	5.0	13
259	Severe Convective Storms—An Overview. Meteorological Monographs, 2001, 50, 1-26.	5.0	59
260	Tornadoes and Tornadic Storms. Meteorological Monographs, 2001, 50, 167-222.	5.0	70
261	Convectively Driven High Wind Events. Meteorological Monographs, 2001, 50, 255-298.	5.0	36
262	Severe Local Storms Forecasting. Meteorological Monographs, 2001, 50, 433-480.	5.0	19
263	Tornadogenesis Resulting from the Transport of Circulation by a Downdraft: Idealized Numerical Simulations. Journals of the Atmospheric Sciences, 2003, 60, 795-823.	1.7	90

#	Article	IF	CITATIONS
264	The 8 June 1995 McLean, Texas, Storm. Part I: Observations of Cyclic Tornadogenesis. Monthly Weather Review, 2002, 130, 2626-2648.	1.4	79
265	A Hail Growth Trajectory Model for Exploring the Environmental Controls on Hail Size: Model Physics and Idealized Tests. Journals of the Atmospheric Sciences, 2020, 77, 2765-2791.	1.7	38
266	Processes Preventing the Development of a Significant Tornado in a Colorado Supercell on 26 May 2010. Monthly Weather Review, 2020, 148, 1753-1778.	1.4	7
267	Insights into Supercells and Their Environments from Three Decades of Targeted Radiosonde Observations. Monthly Weather Review, 2020, 148, 4893-4915.	1.4	21
268	The problem with peaking in the atmospheric magnetohydrodynamics. Limiting cases. Magnetohydrodynamics, 2013, 49, 23-34.	0.3	2
269	Tornadic waterspout event in Split (Croatia) - analysis of meteorological environment. Journal of the Geographical Institute Jovan Cvijic SASA, 2016, 66, 185-202.	1.0	10
270	Forecasting the possible emergence of tornadoes in Poland. Przeglad Geograficzny, 2013, 85, 353-371.	0.2	4
271	Application of Pattern Recognition Techniques to Predict Severe Thunderstorms. International Journal of Computer Theory and Engineering, 2013, , 850-855.	3.4	10
272	ANSER: ADAPTIVE NEURON ARTIFICIAL NEURAL NETWORK SYSTEM FOR ESTIMATING RAINFALL. International Journal of Computers and Applications, 2007, 29, .	1.3	5
273	A High-resolution Numericai Simulation of a Supercell Tornado. Wind Engineers JAWE, 2007, 2007, 357-368.	0.1	0
274	Validation and Development of a New Hailstone Formation Theory–Numerical Simulations of a Strong Hailstorm Occurring Over the Qinghai-Tibetan Plateau. , 2007, , 172-176.		0
275	The Mechanism of Tornadogenesis. Wind Engineers JAWE, 2008, 2008, 91-94.	0.1	0
276	Tornado funnel-shaped cloud as convection in a cloudy layer. Advances in Science and Research, 2009, 3, 17-21.	1.0	1
277	Meteorological environment for tornado outbreak and mechanism of tornadogenesis. Wind Engineers JAWE, 2012, 37, 108-117.	0.1	0
278	Mesocyclone Evolution and Differences between Isolated and Embedded Supercells. Atmospheric and Climate Sciences, 2013, 03, 1-7.	0.3	0
279	Supercells. , 2013, , 165-264.		0
280	Hailstorms in the Kanto-Koshin District (2). J Agricultural Meteorology, 1970, 26, 91-100.	1.5	1
281	Some effects of the moisture distribution in the subcloud layer on the thermal structure of a mature severe thunderstorm. Tellus, 1974, 26, 543-559.	0.8	0

#	Article	IF	Citations
282	Observed and Numerically Simulated Structure of a Mature Supercell Thunderstorm. , 1982, , 379-393.		0
283	An Introduction to Deep Convective Systems. , 1982, , 195-232.		1
285	The Lightning and Dual-Polarization Radar Characteristics of Three Hail-Accumulating Thunderstorms. Weather and Forecasting, 2020, 35, 1583-1603.	1.4	1
286	Multivariate Analysis and Warning of a Tornado Embedded in Tropical Cyclone in Southern China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 11517-11529.	4.9	3
287	Characteristics of Lightning in Supercells. , 2009, , 83-114.		1
288	Real Challenge of Data Assimilation for Tornadogenesis. , 2009, , 97-125.		5
289	A Numerical Investigation of a Supercell Tornado: Genesis and Vorticity Budget. Journal of the Meteorological Society of Japan, 0, 999992, 99135-99159.	1.8	0
290	Machine learning based automated identification of thunderstorms from anemometric records using shapelet transform. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 220, 104856.	3.9	9
291	A Multidisciplinary Method to Support the Evolution of NWS Weather Radar Technology. Weather and Forecasting, 2022, , .	1.4	0
292	WSR-88D Sidelobe Contamination: From a Conceptual Model to Diagnostic Strategies for Improving NWS Warning Performance. Weather and Forecasting, 2022, , .	1.4	1
297	Atmospheric Convection. Atmosphere - Ocean, 2022, 60, 422-476.	1.6	7
298	Supercell Spectrum. Part I: A Review of Research Related to Supercell Precipitation Morphology. , 2008, 3, 1-21.		2
299	Discriminating between Tornadic and Non-Tornadic Supercells: A New Hodograph Technique. , 2008, 3, 1-50.		15
300	Meteorological Analyses of the Tri-State Tornado Event of March 1925. , 2013, 8, 1-27.		2
301	1925 Tri-State Tornado Damage Path and Associated Storm System. , 2013, 8, 1-33.		3
302	Modeling Study of Supercell Development in the Presence of a Preexisting Airmass Boundary. , 2012, 7, 1-29.		0
303	Physical Understanding Necessary for Improving Tornado Forecasts and Warnings. International Journal of Mass Emergencies and Disasters, 2013, 31, 340-349.	0.4	0
305	Spatial distribution and precipitation intensity of supercells: Response to terrain asymmetry in the Western Carpathians, Central Europe. Atmospheric Research, 2023, 292, 106885.	4.1	1

#	Article	IF	CITATIONS
307	Characteristics of hailfall and lightning in a splitting thunderstorm observed on May 4, 2019 in the Tokyo Metropolitan Area, Japan. Journal of Atmospheric Electricity, 2023, 42, 1-14.	0.3	0
308	The Role of Vertical and Horizontal Wind Shear in the Development of Quasi-tropical Cyclones. Russian Meteorology and Hydrology, 2023, 48, 557-566.	1.3	0
309	Characteristics of warm season left-moving supercells over the Highveld of South Africa. Atmospheric Research, 2024, 300, 107234.	4.1	0
310	Numerical Simulation of Tornadoes in a Mini-Supercell Associated with Typhoon Tapah on 22 September 2019. Journal of the Meteorological Society of Japan, 2024, 102, 185-208.	1.8	0