In vitro prototyping of limonene biosynthesis using cell

Metabolic Engineering 61, 251-260 DOI: 10.1016/j.ymben.2020.05.006

Citation Report

#	Article	IF	CITATIONS
1	Microbial production of limonene and its derivatives: Achievements and perspectives. Biotechnology Advances, 2020, 44, 107628.	6.0	55
2	Cell-free systems for accelerating glycoprotein expression and biomanufacturing. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 977-991.	1.4	33
3	Tuning the Cell-Free Protein Synthesis System for Biomanufacturing of Monomeric Human Filaggrin. Frontiers in Bioengineering and Biotechnology, 2020, 8, 590341.	2.0	7
4	Cell-Free Biocatalysis for the Production of Platform Chemicals. Frontiers in Energy Research, 2020, 8, .	1.2	31
5	Synthetic biology, combinatorial biosynthesis, and chemo‑enzymatic synthesis of isoprenoids. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 675-702.	1.4	12
6	Recent Development of Extremophilic Bacteria and Their Application in Biorefinery. Frontiers in Bioengineering and Biotechnology, 2020, 8, 483.	2.0	84
7	Cellâ€Free Exploration of the Natural Product Chemical Space. ChemBioChem, 2021, 22, 84-91.	1.3	32
8	Harnessing in vitro platforms for natural product research: in vitro driven rational engineering and mining (iDREAM). Current Opinion in Biotechnology, 2021, 69, 1-9.	3.3	15
9	Optimising protein synthesis in cellâ€free systems, a review. Engineering Biology, 2021, 5, 10-19.	0.8	7
11	Complex natural product production methods and options. Synthetic and Systems Biotechnology, 2021, 6, 1-11.	1.8	10
12	Bio-synthesis of food additives and colorants-a growing trend in future food. Biotechnology Advances, 2021, 47, 107694.	6.0	47
13	The Nonribosomal Peptide Valinomycin: From Discovery to Bioactivity and Biosynthesis. Microorganisms, 2021, 9, 780.	1.6	18
14	Impact of Porous Matrices and Concentration by Lyophilization on Cell-Free Expression. ACS Synthetic Biology, 2021, 10, 1116-1131.	1.9	10
15	Improving cell-free glycoprotein synthesis by characterizing and enriching native membrane vesicles. Nature Communications, 2021, 12, 2363.	5.8	40
16	A Modular Inâ€Vitro Platform for the Production of Terpenes and Polyketides from CO ₂ . Angewandte Chemie - International Edition, 2021, 60, 16420-16425.	7.2	37
17	Eine modulare Inâ€vitroâ€Plattform für die Produktion von Terpenen und Polyketiden aus CO 2. Angewandte Chemie, 2021, 133, 16556-16561.	1.6	2
18	Cell-free gene expression. Nature Reviews Methods Primers, 2021, 1, .	11.8	71
19	Designing Modular Cell-free Systems for Tunable Biotransformation of l-phenylalanine to Aromatic Compounds. Frontiers in Bioengineering and Biotechnology, 2021, 9, 730663.	2.0	11

#	Article	IF	Citations
20	Cell-free Biosynthesis of Chlorogenic Acid Using a Mixture of Chassis Cell Extracts and Purified Spy-Cyclized Enzymes. Journal of Agricultural and Food Chemistry, 2021, 69, 7938-7947.	2.4	7
22	High-yield â€~one-pot' biosynthesis of raspberry ketone, a high-value fine chemical. Synthetic Biology, 2021, 6, ysab021.	1.2	3
23	An integrated in vivo/in vitro framework to enhance cell-free biosynthesis with metabolically rewired yeast extracts. Nature Communications, 2021, 12, 5139.	5.8	16
24	Removing the Obstacle to (â^')â€Menthol Biosynthesis by Building a Microbial Cell Factory of (+)â€ <i>cis</i> â€Isopulegone from (â^')â€Limonene. ChemSusChem, 2022, 15, .	3.6	4
25	Biofoundry-assisted expression and characterization of plant proteins. Synthetic Biology, 2021, 6, ysab029.	1.2	14
26	Cell-Free Biosynthesis System: Methodology and Perspective of in Vitro Efficient Platform for Pyruvate Biosynthesis and Transformation. ACS Synthetic Biology, 2021, 10, 2417-2433.	1.9	6
27	Cell-free synthesis of industrial chemicals and biofuels from carbon feedstocks. Current Opinion in Biotechnology, 2022, 73, 158-163.	3.3	11
28	Industrial Biotechnology—An Industry at an Inflection Point. Industrial Biotechnology, 2020, 16, 321-332.	0.5	7
29	Modular cell-free expression plasmids to accelerate biological design in cells. Synthetic Biology, 2020, 5, ysaa019.	1.2	10
31	Dataâ€driven enzyme immobilisation: a case study using DNA to immobilise galactose oxidase. Engineering Biology, 2020, 4, 43-46.	0.8	0
32	Synthesis of C2-C4 diols from bioresources: Pathways and metabolic intervention strategies. Bioresource Technology, 2022, 346, 126410.	4.8	1
33	Cell-free synthetic biology as an emerging biotechnology. , 2022, , 397-414.		2
34	White biotechnology and the production of bio-products. Systems Microbiology and Biomanufacturing, 2022, 2, 413-429.	1.5	9
35	Plant-Derived Cell-Free Biofactories for the Production of Secondary Metabolites. Frontiers in Plant Science, 2021, 12, 794999.	1.7	5
36	Toward improved terpenoids biosynthesis: strategies to enhance the capabilities of cell factories. Bioresources and Bioprocessing, 2022, 9, .	2.0	21
37	Synthetic minimal cells and their applications. , 2022, , 83-101.		2
39	Recent advances in applying cell-free systems for high-value and complex natural product biosynthesis. Current Opinion in Microbiology, 2022, 67, 102142.	2.3	21
40	Cell-free expression of NO synthase and P450 enzyme for the biosynthesis of an unnatural amino acid L-4-nitrotryptophan. Synthetic and Systems Biotechnology, 2022, 7, 775-783.	1.8	15

CITATION REPORT

#	Article	IF	CITATIONS
42	Improving Thermostability and Catalytic Activity of Glycosyltransferase From Panax ginseng by Semi-Rational Design for Rebaudioside D Synthesis. Frontiers in Bioengineering and Biotechnology, 2022, 10, 884898.	2.0	6
43	High-Throughput Regulatory Part Prototyping and Analysis by Cell-Free Protein Synthesis and Droplet Microfluidics. ACS Synthetic Biology, 2022, 11, 2108-2120.	1.9	6
44	An efficient cellâ€free protein synthesis platform for producing proteins with pyrrolysineâ€based noncanonical amino acids. Biotechnology Journal, 2022, 17, e2200096.	1.8	9
45	Metabolic engineering: tools for pathway rewiring and value creation. , 2022, , 3-26.		0
46	Transcriptional Tuning of Mevalonate Pathway Enzymes to Identify the Impact on Limonene Production in <i>Escherichia coli</i> . ACS Omega, 2022, 7, 18331-18338.	1.6	6
47	Cell-free prototyping enables implementation of optimized reverse β-oxidation pathways in heterotrophic and autotrophic bacteria. Nature Communications, 2022, 13, .	5.8	27
48	A microfluidic optimal experimental design platform for forward design of cell-free genetic networks. Nature Communications, 2022, 13, .	5.8	12
49	Research progress on the application of cell-free synthesis systems for enzymatic processes. Critical Reviews in Biotechnology, 2023, 43, 938-955.	5.1	0
50	Chemical-triggered artificial cell based on metal-organic framework. Chemical Engineering Journal, 2022, 450, 138480.	6.6	6
51	Variability in cell-free expression reactions can impact qualitative genetic circuit characterization. Synthetic Biology, 2022, 7, .	1.2	7
52	Programmable Synthesis of Biobased Materials Using Cellâ€Free Systems. Advanced Materials, 2023, 35, .	11.1	3
53	Reconstitution of monoterpene indole alkaloid biosynthesis in genome engineered Nicotiana benthamiana. Communications Biology, 2022, 5, .	2.0	27
54	A ubiquitous amino acid source for prokaryotic and eukaryotic cell-free transcription-translation systems. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	5
56	Striving for sustainable biosynthesis: discovery, diversification, and production of antimicrobial drugs in <i>Escherichia coli</i> . Biochemical Society Transactions, 0, , .	1.6	4
57	Achievements and perspectives of synthetic biology in botanical insecticides. Journal of Cellular Physiology, 0, , .	2.0	6
58	Opportunities and Challenges of in vitro Synthetic Biosystem for Terpenoids Production. Biotechnology and Bioprocess Engineering, 2022, 27, 697-705.	1.4	1
59	Microbial Production of Limonene. , 2022, , 1-29.		0
60	Cell-free metabolic engineering enables selective biotransformation of fatty acids to value-added chemicals. Metabolic Engineering Communications, 2023, 16, e00217.	1.9	9

#	Article	IF	CITATIONS
61	Rapid prototyping enzyme homologs to improve titer of nicotinamide mononucleotide using a strategy combining cellâ€free protein synthesis with split GFP. Biotechnology and Bioengineering, 2023, 120, 1133-1146.	1.7	1
62	Cell-Free Systems for Sustainable Production of Biofuels. , 2023, , 331-348.		Ο
63	Investigating ethanol production using the Zymomonas mobilis crude extract. Scientific Reports, 2023, 13, .	1.6	0
64	Biosynthesis of monoterpenoid and sesquiterpenoid as natural flavors and fragrances. Biotechnology Advances, 2023, 65, 108151.	6.0	10
65	Mechanistic Insights into Cell-Free Gene Expression through an Integrated -Omics Analysis of Extract Processing Methods. ACS Synthetic Biology, 2023, 12, 405-418.	1.9	5
66	A dynamic kinetic model captures cell-free metabolism for improved butanol production. Metabolic Engineering, 2023, 76, 133-145.	3.6	7
67	Cell Extracts from Bacteria and Yeast Retain Metabolic Activity after Extended Storage and Repeated Thawing. ACS Synthetic Biology, 2023, 12, 904-908.	1.9	2