The role of structure defects in the deformation of anth macromolecular structure

Fuel 206, 1-9 DOI: 10.1016/j.fuel.2017.05.085

Citation Report

#	Article	IF	CITATIONS
1	The impacts of stress on the chemical structure of coals: a mini-review based on the recent development of mechanochemistry. Science Bulletin, 2017, 62, 965-970.	4.3	47
2	Mechanisms of methane generation from anthracite at low temperatures: Insights from quantum chemistry calculations. International Journal of Hydrogen Energy, 2017, 42, 18922-18929.	3.8	20
3	Structural Characteristics of Deformed Coals with Different Deformation Degrees and Their Effects on Gas Adsorption. Energy & amp; Fuels, 2017, 31, 13374-13381.	2.5	34
4	A study of the relationships between coal structures and combustion characteristics: The insights from micro-Raman spectroscopy based on 32 kinds of Chinese coals. Applied Energy, 2018, 212, 46-56.	5.1	102
5	Changes in the anisotropic permeability of low-rank coal under varying effective stress in Fukang mining area, China. Fuel, 2018, 234, 1481-1497.	3.4	74
6	Macromolecular response to tectonic deformation in low-rank tectonically deformed coals (TDCs). Fuel, 2018, 219, 279-287.	3.4	39
7	The evolutionary characteristics and mechanisms of coal chemical structure in micro deformed domains under sub-high temperatures and high pressures. Fuel, 2018, 222, 258-268.	3.4	26
8	Petrographic and Raman spectroscopic characterization of coal from Himalayan fold-thrust belts of Sikkim, India. International Journal of Coal Geology, 2018, 196, 246-259.	1.9	17
9	Microcrystalline Characterization and Morphological Structure of Tectonic Anthracite Using XRD, Liquid Nitrogen Adsorption, Mercury Porosimetry, and Micro-CT. Energy & Fuels, 2019, 33, 10844-10851.	2.5	37
10	Stress response of noncovalent bonds in molecular networks of tectonically deformed coals. Fuel, 2019, 255, 115785.	3.4	15
11	Study of Cu–Ni–Ca Composite Catalysts in Catalytic Hydrogasification of Char. Energy & Fuels, 2019, 33, 9661-9670.	2.5	6
12	Mechanolysis mechanisms of the fused aromatic rings of anthracite coal under shear stress. Fuel, 2019, 253, 1247-1255.	3.4	33
13	Coal-Derived Graphene Quantum Dots Produced by Ultrasonic Physical Tailoring and Their Capacity for Cu(II) Detection. ACS Sustainable Chemistry and Engineering, 2019, 7, 9793-9799.	3.2	73
14	Insight into the macromolecular structural differences between hard coal and deformed soft coal. Fuel, 2019, 245, 188-197.	3.4	102
15	Microstructure of Coal before and after Gas-Dynamic Phenomena. Journal of Mining Science, 2019, 55, 701-707.	0.1	5
16	Mesozoic tectonic regime and evolution of eastern China: A mini-review based on the recent development. Solid Earth Sciences, 2019, 4, 159-165.	0.8	11
17	Impact of tectonic deformation on coal methane adsorption capacity. Adsorption Science and Technology, 2019, 37, 698-708.	1.5	9
18	The tectonic stress–driving alteration and evolution of chemical structure for low- to medium-rank coals—by molecular simulation method. Arabian Journal of Geosciences, 2019, 12, 1.	0.6	6

#	Article	IF	Citations
19	Macromolecular evolution and structural defects in tectonically deformed coals. Fuel, 2019, 236, 1432-1445.	3.4	38
20	Geological Control of Fold Structure on Gas Occurrence and Its Implication for Coalbed Gas Outburst: Case Study in the Qinan Coal Mine, Huaibei Coalfield, China. Natural Resources Research, 2020, 29, 1375-1395.	2.2	24
21	Macromolecular structural response of Wender coal under tensile stress via molecular dynamics. Fuel, 2020, 265, 116938.	3.4	16
22	Macromolecular transformations for tectonically-deformed high volatile bituminous via HRTEM and XRD analyses. Fuel, 2020, 263, 116756.	3.4	42
23	Spectral manifestations of coal metamorphism: Insights from coal microstructural framework. International Journal of Coal Geology, 2020, 228, 103549.	1.9	16
24	Molecular Model Construction and Evaluation of Jincheng Anthracite. ACS Omega, 2020, 5, 10663-10670.	1.6	15
25	Potential impact of CO2 injection into coal matrix in molecular terms. Chemical Engineering Journal, 2020, 401, 126071.	6.6	46
26	Effects of adding cyclohexane, n-hexane, ethanol, and 2,5-dimethylfuran to fuel on soot formation in laminar coflow n-heptane/iso-octane diffusion flame. Combustion and Flame, 2021, 225, 120-135.	2.8	80
27	Characterization of the Heterogeneous Evolution of the Nanostructure of Coal-Based Graphite. Journal of Nanoscience and Nanotechnology, 2021, 21, 670-681.	0.9	6
28	Stress Sensitivity for the Occurrence of Coalbed Gas Outbursts: A Reactive Force Field Molecular Dynamics Study. Energy & Fuels, 2021, 35, 5801-5807.	2.5	9
29	Macromolecular Structure Changes of Tectonically Deformed Coal: Evidence from Coal Pyrolysis, ¹³ C NMR, and XRD Experiments. Energy & Fuels, 2021, 35, 8711-8722.	2.5	5
30	A large-scale molecular model of Fenghuangshan anthracite coal. Fuel, 2021, 295, 120616.	3.4	29
31	Gas generation mechanisms of bituminous coal under shear stress based on ReaxFF molecular dynamics simulation. Fuel, 2021, 298, 120240.	3.4	20
32	Molecular Modeling and Reactivity of Thermally Altered Coals by Molecular Simulation Techniques. Energy & Fuels, 0, , .	2.5	10
33	Effect of different deformation on the order degree of coal-based graphite. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-12.	1.2	2
34	Stress degradation mechanism of coal macromolecular structure: Insights from molecular dynamics simulation and quantum chemistry calculations. Fuel, 2021, 303, 121258.	3.4	18
35	A composite microstructural and geochemical approach to quench the quest for hydrocarbon from Barren Measures shales of Jharia Basin, India. Journal of Natural Gas Science and Engineering, 2020, 78, 103310.	2.1	12
36	Raman Spectroscopy as a Versatile Tool for Investigating Thermochemical Processing of Coal, Biomass, and Wastes: Recent Advances and Future Perspectives. Energy & Fuels, 2021, 35, 2870-2913.	2.5	48

CITATION REPORT

#	Article	IF	CITATIONS
37	Structural and Fractal Characterizations of Nanopores in Middle-Rank Tectonically Deformed Coals – Case Study in Panguan Syncline. ACS Omega, 2020, 5, 26023-26037.	1.6	4
38	Specific Features of the Structure of Various Coal Ranks at the Nano Level. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2020, , 80-92.	0.2	0
39	The impact of tectonic stress chemistry on mineralization processes: A review. Solid Earth Sciences, 2022, 7, 151-166.	0.8	2
40	Effect of the Coal Molecular Structure on the Micropore Volume and the Coalbed Methane Content. Energy & Fuels, 2021, 35, 19437-19447.	2.5	11
41	Using Raman spectroscopy to evaluate coal maturity: The problem. Fuel, 2022, 312, 122811.	3.4	9
42	Morphological Characterization of the Microcrystalline Structure of Tectonic Coal and Its Intrinsic Connection with Ultra-micropore Evolution. Energy & amp; Fuels, 2022, 36, 1482-1494.	2.5	10
43	Molecular Dynamics Simulation of the Nanoindentation of Coal Vitrinite. Frontiers in Earth Science, 2022, 10, .	0.8	1
44	Micro-deformation and fracture evolution of in-situ coal affected by temperature, confining pressure, and differential stress. Journal of Natural Gas Science and Engineering, 2022, 100, 104455.	2.1	8
45	Deformation-related coalification: Significance for deformation within shallow crust. International Journal of Coal Geology, 2022, 256, 103999.	1.9	13
46	Influence of sub-supercritical CO2 on pore structure and fractal characteristics of anthracite: An experimental study. Energy, 2022, 261, 125115.	4.5	9
47	The Role of Non-Covalent Bonds in the Deformation Process of Coal: An Experimental Study on Bituminous Coal. Processes, 2022, 10, 1875.	1.3	1
48	Evolution of the Hierarchical Molecular Structures of Tectonically Deformed Coals: Insights from First-Order Raman Spectra. ACS Omega, 0, , .	1.6	0
49	The impacts of stress on the macromolecular structure of anthracites: Implications for the mechanochemical effects. International Journal of Coal Geology, 2022, 264, 104151.	1.9	2
50	The characteristics of methane adsorption capacity and behavior of tectonic coal. Frontiers in Earth Science, 0, 10, .	0.8	0
51	Molecular dynamics simulation of shear friction process in tectonically deformed coal. Frontiers in Earth Science, 0, 10, .	0.8	0
52	Effects of coals microscale structural features on their mechanical properties, propensity to crushing and fine dust formation. International Journal of Coal Science and Technology, 2023, 10, .	2.7	2