Distinct Populations of Immune-Suppressive Macropha Myeloid-Derived Suppressor Cells in Cancer

Cell Reports 33, 108571 DOI: 10.1016/j.celrep.2020.108571

Citation Report

#	Article	IF	CITATIONS
1	Tumor-Associated Macrophages—Implications for Molecular Oncology and Imaging. Biomedicines, 2021, 9, 374.	1.4	10
2	Inflammation-Induced Tumorigenesis and Metastasis. International Journal of Molecular Sciences, 2021, 22, 5421.	1.8	88
3	Immunosuppressive Effects of Myeloid-Derived Suppressor Cells in Cancer and Immunotherapy. Cells, 2021, 10, 1170.	1.8	31
4	Turning enemies into allies—reprogramming tumor-associated macrophages for cancer therapy. Med, 2021, 2, 666-681.	2.2	17
5	Single-Cell Cloning of Breast Cancer Cells Secreting Specific Subsets of Extracellular Vesicles. Cancers, 2021, 13, 4397.	1.7	19
6	<i>Bundibugyo ebolavirus</i> Survival Is Associated with Early Activation of Adaptive Immunity and Reduced Myeloid-Derived Suppressor Cell Signaling. MBio, 2021, 12, e0151721.	1.8	12
8	Myeloid-Derived Suppressor Cells: A Propitious Road to Clinic. Cancer Discovery, 2021, 11, 2693-2706.	7.7	89
9	Response to FEC Chemotherapy and Oncolytic HSV-1 Is Associated with Macrophage Polarization and Increased Expression of S100A8/A9 in Triple Negative Breast Cancer. Cancers, 2021, 13, 5590.	1.7	0
10	TGF-β orchestrates the phenotype and function of monocytic myeloid-derived suppressor cells in colorectal cancer. Cancer Immunology, Immunotherapy, 2022, 71, 1583-1596.	2.0	12
11	Myeloid Cell–Derived Oxidized Lipids and Regulation of the Tumor Microenvironment. Cancer Research, 2022, 82, 187-194.	0.4	14
12	Comprehensive Molecular Analyses of a Macrophages-Related Gene Signature With Regard to Prognosis, Immune Features, and Biomarkers for Immunotherapy in Hepatocellular Carcinoma Based on WGCNA and LASSO Algorithm. SSRN Electronic Journal, 0, , .	0.4	0
13	Myeloid Diagnostic and Prognostic Markers of Immune Suppression in the Blood of Glioma Patients. Frontiers in Immunology, 2021, 12, 809826.	2.2	8
14	Cellular architecture of human brain metastases. Cell, 2022, 185, 729-745.e20.	13.5	69
15	Evolution and Targeting of Myeloid Suppressor Cells in Cancer: A Translational Perspective. Cancers, 2022, 14, 510.	1.7	7
16	Targeting myeloid-derived suppressor cells to enhance natural killer cell-based immunotherapy. , 2022, 235, 108114.		13
17	Emerging Roles of Myeloid-Derived Suppressor Cells in Diabetes. Frontiers in Pharmacology, 2021, 12, 798320.	1.6	18
18	Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies. Journal of Experimental and Clinical Cancer Research, 2022, 41, 68.	3.5	115
19	Therapeutic Approaches Targeting Proteins in Tumor-Associated Macrophages and Their Applications in Cancers. Biomolecules, 2022, 12, 392.	1.8	6

#	Article	IF	CITATIONS
20	S100A8/A9 Induced by Interaction with Macrophages in Esophageal Squamous Cell Carcinoma Promotes the Migration and Invasion of Cancer Cells via Akt and p38 MAPK Pathways. American Journal of Pathology, 2022, 192, 536-552.	1.9	14
22	Specific inflammatory osteoclast precursors induced during chronic inflammation give rise to highly active osteoclasts associated with inflammatory bone loss. Bone Research, 2022, 10, 36.	5.4	15
23	In vivo imaging of microenvironmental and anti-PD-L1-mediated dynamics in cancer using S100A8/S100A9 as an imaging biomarker. Neoplasia, 2022, 28, 100792.	2.3	2
24	PD-1H Expression Associated With CD68 Macrophage Marker Confers an Immune-Activated Microenvironment and Favorable Overall Survival in Human Esophageal Squamous Cell Carcinoma. Frontiers in Molecular Biosciences, 2021, 8, 777370.	1.6	2
25	Epigenetic editing and tumor‑dependent immunosuppressive signaling in head and neck malignancies (Review). Oncology Letters, 2022, 23, 196.	0.8	4
27	The possible drug for cancer and metastasis prevention. Future Drug Discovery, 0, , .	0.8	Ο
28	Comprehensive Molecular Analyses of a Macrophage-Related Gene Signature With Regard to Prognosis, Immune Features, and Biomarkers for Immunotherapy in Hepatocellular Carcinoma Based on WGCNA and the LASSO Algorithm. Frontiers in Immunology, 0, 13, .	2.2	23
29	<scp>Gâ€CSF</scp> / <scp>GMâ€CSF</scp> â€induced hematopoietic dysregulation in the progression of solid tumors. FEBS Open Bio, 2022, 12, 1268-1285.	1.0	13
30	Workflow for high-dimensional flow cytometry analysis of T cells from tumor metastases. Life Science Alliance, 2022, 5, e202101316.	1.3	2
31	The Good and the Bad: Monocytes' and Macrophages' Diverse Functions in Inflammation. Cells, 2022, 11, 1979.	1.8	39
32	Dysregulated metabolism: A friend-to-foe skewer of macrophages. International Reviews of Immunology, 2023, 42, 287-303.	1.5	11
34	Immunotherapy: Reshape the Tumor Immune Microenvironment. Frontiers in Immunology, 0, 13, .	2.2	77
35	Distinct Cell Adhesion Signature Defines Glioblastoma Myeloid-Derived Suppressor Cell Subsets. Cancer Research, 2022, 82, 4274-4287.	0.4	11
36	IL-4-activated C/EBPÎ ² is involved in alveolar macrophage polarization towards the M2 phenotype during pulmonary fibrosis induced by single-walled carbon nanotubes. Environmental Science: Nano, 2022, 9, 4233-4248.	2.2	3
37	Targeting tumour-reprogrammed myeloid cells: the new battleground in cancer immunotherapy. Seminars in Immunopathology, 2023, 45, 163-186.	2.8	14
38	Interleukin-22 protects from endotoxemia by inducing suppressive F4/80+Ly6GhiLy6Chi cells population. BMC Immunology, 2022, 23, .	0.9	1
39	Systematic evaluation of tumor microenvironment and construction of a machine learning model to predict prognosis and immunotherapy efficacy in triple-negative breast cancer based on data mining and sequencing validation. Frontiers in Pharmacology, 0, 13, .	1.6	3
40	Development of a Molecular Blood-Based Immune Signature Classifier as Biomarker for Risks Assessment in Lung Cancer Screening. Cancer Epidemiology Biomarkers and Prevention, 0, , OF1-OF10.	1.1	0

#	Article	IF	CITATIONS
41	Construction of a tumor immune infiltration macrophage signature for predicting prognosis and immunotherapy response in liver cancer. Frontiers in Molecular Biosciences, 0, 9, .	1.6	1
42	Integration of local and systemic immunity in ovarian cancer: Implications for immunotherapy. Frontiers in Immunology, 0, 13, .	2.2	8
43	Lysophosphatidylcholines modulate immunoregulatory checkpoints in peripheral monocytes and are associated with mortality in people with acute liver failure. Journal of Hepatology, 2023, 78, 558-573.	1.8	15
44	Protein kinase Cî ¹ mediates immunosuppression in lung adenocarcinoma. Science Translational Medicine, 2022, 14, .	5.8	6
45	Comparison of monocytic cell lines U937 and THP-1 as macrophage models for in vitro studies. Biochemistry and Biophysics Reports, 2022, 32, 101383.	0.7	8
46	Tumor associated macrophage in HPV+ tumors: Between immunosuppression and inflammation. Seminars in Immunology, 2023, 65, 101671.	2.7	9
47	Improving head and neck cancer therapies by immunomodulation of the tumour microenvironment. Nature Reviews Cancer, 2023, 23, 173-188.	12.8	37
48	Radiotherapy induced immunogenic cell death by remodeling tumor immune microenvironment. Frontiers in Immunology, 0, 13, .	2.2	8
49	Inflammation driven metabolic regulation and adaptation in macrophages. Clinical Immunology, 2023, 246, 109216.	1.4	7
50	Targeting macrophages: a novel treatment strategy in solid tumors. Journal of Translational Medicine, 2022, 20, .	1.8	14
51	Glioma-derived CCL2 and CCL7 mediate migration of immune suppressive CCR2+/CX3CR1+ M-MDSCs into the tumor microenvironment in a redundant manner. Frontiers in Immunology, 0, 13, .	2.2	8
52	Screening and identifying a novel M-MDSCs-related gene signature for predicting prognostic risk and immunotherapeutic responses in patients with lung adenocarcinoma. Frontiers in Genetics, 0, 13, .	1.1	1
53	Cabozantinib plus durvalumab in advanced gastroesophageal cancer and other gastrointestinal malignancies: Phase Ib CAMILLA trial results. Cell Reports Medicine, 2023, 4, 100916.	3.3	10
54	Myeloid-Derived Suppressor Cells in Cancer and COVID-19 as Associated with Oxidative Stress. Vaccines, 2023, 11, 218.	2.1	4
55	Myeloid cells in the era of cancer immunotherapy: Top 3 unanswered questions. , 2023, 244, 108370.		2
56	Redox phospholipidomics discovers pro-ferroptotic death signals in A375 melanoma cells in vitro and in vivo. Redox Biology, 2023, 61, 102650.	3.9	8
57	S100A8 and S100A9 in Cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2023, 1878, 188891.	3.3	10
59	Therapeutic targeting of tumour myeloid cells. Nature Reviews Cancer, 2023, 23, 216-237.	12.8	49

CITATION REPORT

#	Article	IF	CITATIONS
60	Beta glucan as an immune stimulant in tumor microenvironment — Insight into lessons and promises from past decade. International Journal of Biological Macromolecules, 2023, 234, 123617.	3.6	7
61	Reprogramming the tumor microenvironment leverages CD8+ TÂcell responses to a shared tumor/self antigen in ovarian cancer. Molecular Therapy - Oncolytics, 2023, 28, 230-248.	2.0	4
62	Single-cell RNA sequencing reveals the effects of chemotherapy on human pancreatic adenocarcinoma and its tumor microenvironment. Nature Communications, 2023, 14, .	5.8	29
63	S100A8/S100A9 Promote Progression of Multiple Myeloma via Expansion of Megakaryocytes. Cancer Research Communications, 2023, 3, 420-430.	0.7	3
64	<scp>S100A9</scp> promotes tumorâ€associated macrophage for <scp>M2</scp> macrophage polarization to drive human liver cancer progression: An in vitro study. Kaohsiung Journal of Medical Sciences, 2023, 39, 345-353.	0.8	3
65	Functional states of myeloid cells in cancer. Cancer Cell, 2023, 41, 490-504.	7.7	29
66	The role of myeloid derived suppressor cells in musculoskeletal disorders. Frontiers in Immunology, O, 14, .	2.2	3
67	The role of myeloid-derived immunosuppressive cells in cardiovascular disease. International Immunopharmacology, 2023, 117, 109955.	1.7	1
68	Chronic adrenergic stress and generation of <scp>myeloidâ€derived</scp> suppressor cells: Implications for cancer immunotherapy in dogs. Veterinary and Comparative Oncology, 2023, 21, 159-165.	0.8	2
69	Deciphering the roles of myeloid derived suppressor cells in viral oncogenesis. Frontiers in Immunology, 0, 14, .	2.2	2
70	Here, There, and Everywhere: Myeloid-Derived Suppressor Cells in Immunology. Journal of Immunology, 2023, 210, 1183-1197.	0.4	8
73	Cancer and the science of innate immunity. , 2024, , 61-90.e11.		0
89	In vitro generation of murine myeloid-derived suppressor cells from hematopoietic progenitor cells. Methods in Cell Biology, 2024, , 159-172.	0.5	0
91	Myeloid-derived suppressor cells in cancer and cancer therapy. Nature Reviews Clinical Oncology, 2024, 21, 147-164.	12.5	1

CITATION REPORT