Plant Immunity: Danger Perception and Signaling

Cell 181, 978-989 DOI: 10.1016/j.cell.2020.04.028

Citation Report

#	Article	IF	CITATIONS
1	Diverse Roles of the Salicylic Acid Receptors NPR1 and NPR3/NPR4 in Plant Immunity. Plant Cell, 2020, 32, 4002-4016.	3.1	87
2	Plant Immune Mechanisms: From Reductionistic to Holistic Points of View. Molecular Plant, 2020, 13, 1358-1378.	3.9	82
3	Enzyme formation by immune receptors. Science, 2020, 370, 1163-1164.	6.0	10
4	Update on Cuticular Wax Biosynthesis and Its Roles in Plant Disease Resistance. International Journal of Molecular Sciences, 2020, 21, 5514.	1.8	51
5	Precision transcriptomics of viral foci reveals the spatial regulation of immuneâ€signaling genes and identifies <i>RBOHD</i> as an important player in the incompatible interaction between potato virus Y and potato. Plant Journal, 2020, 104, 645-661.	2.8	33
6	Molecular mechanism of nanochitin whisker elicits plant resistance against Phytophthora and the receptors in plants. International Journal of Biological Macromolecules, 2020, 165, 2660-2667.	3.6	12
7	A plant surface receptor for sensing insect herbivory. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32839-32841.	3.3	4
8	SARS-CoV-2 and mitochondrial health: implications of lifestyle and ageing. Immunity and Ageing, 2020, 17, 33.	1.8	46
9	RALF–FERONIA Signaling: Linking Plant Immune Response with Cell Growth. Plant Communications, 2020, 1, 100084.	3.6	68
10	JAcked Responses Go Viral: Hormonal Regulation of Antiviral RNAi. Cell Host and Microbe, 2020, 28, 7-9.	5.1	7
11	Short―and longâ€distance signaling in plant defense. Plant Journal, 2021, 105, 505-517.	2.8	34
12	Genetics of autoimmunity in plants: an evolutionary genetics perspective. New Phytologist, 2021, 229, 1215-1233.	3.5	32
13	Hypersensitive response: From <scp>NLR</scp> pathogen recognition to cell death response. Annals of Applied Biology, 2021, 178, 268-280.	1.3	28
14	ANNEXIN 8 negatively regulates RPW8.1â€mediated cell death and disease resistance in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2021, 63, 378-392.	4.1	17
15	Intimate Association of PRR- and NLR-Mediated Signaling in Plant Immunity. Molecular Plant-Microbe Interactions, 2021, 34, 3-14.	1.4	105
16	Plant Defense Networks against Insect-Borne Pathogens. Trends in Plant Science, 2021, 26, 272-287.	4.3	30
17	Diversity, structure and function of the coiled oil domains of plant NLR immune receptors. Journal of Integrative Plant Biology, 2021, 63, 283-296.	4.1	15
18	Efficient expression and function of a receptorâ€like kinase in wheat powdery mildew defence require an intronâ€located MYB binding site. Plant Biotechnology Journal, 2021, 19, 897-909.	4.1	11

ARTICLE IF CITATIONS # High CO₂â€and pathogenâ€driven expression of the carbonic anhydrase Î²CA3 confers basal 19 3.5 26 immunity in tomato. New Phytologist, 2021, 229, 2827-2843. Hormones as goâ€betweens in plant microbiome assembly. Plant Journal, 2021, 105, 518-541. 2.8 21 Structural biology of plant defence. New Phytologist, 2021, 229, 692-711. 3.5 29 Transcriptomic Analysis of Wheat Seedling Responses to the Systemic Acquired Resistance Inducer 24 N-Hydroxypipecolic Ácid. Frontiers in Microbiology, 2021, 12, 621336. Heat shock protein 90 co-chaperone modules fine-tune the antagonistic interaction between salicylic 27 2.9 28 acid and auxin biosynthesis in cassava. Cell Reports, 2021, 34, 108717. Hybrid Incompatibility of the Plant Immune System: An Opposite Force to Heterosis Equilibrating Hybrid Performances. Frontiers in Plant Science, 2020, 11, 576796. 1.7 The receptor-like cytoplasmic kinase CDG1 negatively regulates Arabidopsis pattern-triggered immunity 30 3.1 15 and is involved in AvrRpm1-induced RIN4 phosphorylation. Plant Cell, 2021, 33, 1341-1360. Dual Roles of GSNOR1 in Cell Death and Immunity in Tetraploid Nicotiana tabacum. Frontiers in Plant 1.7 Science, 2021, 12, 596234. A Phytophthora sojae CRN effector mediates phosphorylation and degradation of plant aquaporin 34 2.1 40 protéins to suppress host immune signaling. PLoS Pathogens, 2021, 17, e1009388. GTP binding by Arabidopsis extra-large G protein 2 is not essential for its functions. Plant Physiology, 2.3 2021, 186, 1240-1253. Reduction of OsMPK6 activity by a R89K mutation induces cell death and bacterial blight resistance in 38 7 2.8 rice. Plant Cell Reports, 2021, 40, 835-850. The chromatin-remodeling protein BAF60/SWP73A regulates the plant immune receptor NLRs. Cell Host and Microbe, 2021, 29, 425-434.e4. 5.1 The comprehensive changes in soil properties are continuous cropping obstacles associated with 40 1.6 37 American ginseng (Panax quinquefolius) cultivation. Scientific Reports, 2021, 11, 5068. Gene expression evolution in pattern-triggered immunity within <i>Arabidopsis thaliana</i> and across Brassicaceae species. Plant Cell, 2021, 33, 1863-1887. 3.1 Arabidopsis CBP60b is a central transcriptional activator of immunity. Plant Physiology, 2021, 186, 42 2.330 1645-1659. A complex immune response to flagellin epitope variation in commensal communities. Cell Host and 5.1 Microbe, 2021, 29, 635-649.e9. Metatranscriptomic Comparison of Endophytic and Pathogenic <i>Fusarium</i>â€"Arabidopsis Interactions Reveals Plant Transcriptional Plasticity. Molecular Plant-Microbe Interactions, 2021, 34, 44 1.4 25 1071-1083. A Truncated TIR-NBS Protein TN10 Pairs with Two Clustered TIR-NBS-LRR Immune Receptors and Contributes to Plant Immunity in Arabidopsis. International Journal of Molecular Sciences, 2021, 22, 1.8 4004.

#	Article	IF	CITATIONS
46	Reactive Oxygen Species Link Gene Regulatory Networks During Arabidopsis Root Development. Frontiers in Plant Science, 2021, 12, 660274.	1.7	49
48	Genome-Wide Investigation of the NF-X1 Gene Family in Populus trichocarpa Expression Profiles during Development and Stress. International Journal of Molecular Sciences, 2021, 22, 4664.	1.8	6
49	Physiological, Ecological and Genetic Interactions of Rice with Harmful Microbes. , 0, , .		2
50	A rhomboidâ€like protease gene from an interspecies translocation confers resistance to cyst nematodes. New Phytologist, 2021, 231, 801-813.	3.5	8
51	Role of non-coding RNAs in plant immunity. Plant Communications, 2021, 2, 100180.	3.6	67
52	Transcriptome analysis of rice response to blast fungus identified core genes involved in immunity. Plant, Cell and Environment, 2021, 44, 3103-3121.	2.8	23
53	<i>Phytophthora sojae </i> apoplastic effector AEP1 mediates sugar uptake by mutarotation of extracellular aldose and is recognized as a MAMP. Plant Physiology, 2021, 187, 321-335.	2.3	15
54	Geminivirus–Host Interactions: Action and Reaction in Receptor-Mediated Antiviral Immunity. Viruses, 2021, 13, 840.	1.5	5
55	BRS1 mediates plant redox regulation and cold responses. BMC Plant Biology, 2021, 21, 268.	1.6	4
56	Salicylic Acid: Biosynthesis and Signaling. Annual Review of Plant Biology, 2021, 72, 761-791.	8.6	193
57	Calcium channels at the center of nucleotide-binding leucine-rich repeat receptor-mediated plant immunity. Journal of Genetics and Genomics, 2021, 48, 429-432.	1.7	0
58	Temperature regulation of plant hormone signaling during stress and development. Journal of Experimental Botany, 2021, , .	2.4	29
59	A karyopherin constrains nuclear activity of the NLR protein SNC1 and is essential to prevent autoimmunity in Arabidopsis. Molecular Plant, 2021, 14, 1733-1744.	3.9	18
60	Transcriptome Analysis of Resistance to Fusarium Wilt in Mung Bean (Vigna radiata L.). Frontiers in Plant Science, 2021, 12, 679629.	1.7	11
61	Exploiting Epigenetic Variations for Crop Disease Resistance Improvement. Frontiers in Plant Science, 2021, 12, 692328.	1.7	28
62	The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell, 2021, 184, 3528-3541.e12.	13.5	308
63	Arabidopsis CALMODULIN-BINDING PROTEIN 60b plays dual roles in plant immunity. Plant Communications, 2021, 2, 100213.	3.6	25
64	A methyl esterase 1 (PvMES1) promotes the salicylic acid pathway and enhances Fusarium wilt resistance in common beans. Theoretical and Applied Genetics, 2021, 134, 2379-2398.	1.8	6

#	Article	IF	CITATIONS
65	<i>In Planta</i> Nanosensors: Understanding Biocorona Formation for Functional Design. ACS Sensors, 2021, 6, 2802-2814.	4.0	22
66	Efficiency of chitosan application against Phytophthora infestans and the activation of defence mechanisms in potato. International Journal of Biological Macromolecules, 2021, 182, 1670-1680.	3.6	20
67	A <i>Phytophthora capsici</i> RXLR effector targets and inhibits the central immune kinases to suppress plant immunity. New Phytologist, 2021, 232, 264-278.	3.5	24
68	Phytophthora sojae leucine-rich repeat receptor-like kinases: diverse and essential roles in development and pathogenicity. IScience, 2021, 24, 102725.	1.9	13
69	Avoidance of detrimental defense responses in beneficial plant–microbe interactions. Current Opinion in Biotechnology, 2021, 70, 266-272.	3.3	8
70	Coding of plant immune signals by surface receptors. Current Opinion in Plant Biology, 2021, 62, 102044.	3.5	20
71	Roles of small RNAs in crop disease resistance. Stress Biology, 2021, 1, 1.	1.5	8
72	The flavin monooxygenase Bs3 triggers cell death in plants, impairs growth in yeast and produces H2O2 in vitro. PLoS ONE, 2021, 16, e0256217.	1.1	3
73	PTI-ETI crosstalk: an integrative view of plant immunity. Current Opinion in Plant Biology, 2021, 62, 102030.	3.5	373
74	How to win a tug-of-war: the adaptive evolution of Phytophthora effectors. Current Opinion in Plant Biology, 2021, 62, 102027.	3.5	22
75	An angiosperm NLR Atlas reveals that NLR gene reduction is associated with ecological specialization and signal transduction component deletion. Molecular Plant, 2021, 14, 2015-2031.	3.9	57
76	An ABHD17-like hydrolase screening system to identify de-S-acylation enzymes of protein substrates in plant cells. Plant Cell, 2021, 33, 3235-3249.	3.1	11
77	Signaling Pathways and Downstream Effectors of Host Innate Immunity in Plants. International Journal of Molecular Sciences, 2021, 22, 9022.	1.8	21
78	Small RNAs in Plant Immunity and Virulence of Filamentous Pathogens. Annual Review of Phytopathology, 2021, 59, 265-288.	3.5	27
79	Receptor kinases in plant responses to herbivory. Current Opinion in Biotechnology, 2021, 70, 143-150.	3.3	24
80	Comparative Transcriptome Profiling of Resistant and Susceptible Taxodium Trees in Responding to the Infection by Pestalotiopsis maculans. Forests, 2021, 12, 1090.	0.9	2
81	Plant pathogens convergently evolved to counteract redundant nodes of an NLR immune receptor network. PLoS Biology, 2021, 19, e3001136.	2.6	69
82	The truncated TNL receptor TN2â€mediated immune responses require ADR1 function. Plant Journal, 2021, 108, 672-689.	2.8	9

#	Article	IF	CITATIONS
83	Multi-Omics Analyses Reveal the Regulatory Network and the Function of ZmUGTs in Maize Defense Response. Frontiers in Plant Science, 2021, 12, 738261.	1.7	8
84	Parasite effectors target helper NLRs in plants to suppress immunity-related cell death. PLoS Biology, 2021, 19, e3001395.	2.6	2
85	ONAC066, A Stress-Responsive NAC Transcription Activator, Positively Contributes to Rice Immunity Against Magnaprothe oryzae Through Modulating Expression of OsWRKY62 and Three Cytochrome P450 Genes. Frontiers in Plant Science, 2021, 12, 749186.	1.7	6
86	Noncanonical mono(ADP-ribosyl)ation of zinc finger SZF proteins counteracts ubiquitination for protein homeostasis in plant immunity. Molecular Cell, 2021, 81, 4591-4604.e8.	4.5	17
87	The Arabidopsis MIK2 receptor elicits immunity by sensing a conserved signature from phytocytokines and microbes. Nature Communications, 2021, 12, 5494.	5.8	54
88	Can bacterial type <scp>III</scp> effectors mediate pathogen–plant–microbiota ternary interactions?. Plant, Cell and Environment, 2022, 45, 5-11.	2.8	4
89	<i>Verticillium dahliae</i> effector VDAL protects MYB6 from degradation by interacting with PUB25 and PUB26 E3 ligases to enhance Verticillium wilt resistance. Plant Cell, 2021, 33, 3675-3699.	3.1	39
90	Cytochrome P450 Superfamily: Evolutionary and Functional Divergence in Sorghum (<i>Sorghum) Tj ETQq1 1 0.</i>	.784314 rg	gBT_/Overlock
91	Transcriptomic and metabolomic profiling revealed the role of succinoglycan Riclin octaose in eliciting the defense response of Solanum tuberosum. Applied Microbiology and Biotechnology, 2021, 105, 7439-7450.	1.7	4
92	Activation of TIR signalling boosts pattern-triggered immunity. Nature, 2021, 598, 500-503.	13.7	176
93	CsMYB96 enhances citrus fruit resistance against fungal pathogen by activating salicylic acid biosynthesis and facilitating defense metabolite accumulation. Journal of Plant Physiology, 2021, 264, 153472.	1.6	21
94	Phytocytokines function as immunological modulators of plant immunity. Stress Biology, 2021, 1, 8.	1.5	37
95	Insect eggs trigger systemic acquired resistance against a fungal and an oomycete pathogen. New Phytologist, 2021, 232, 2491-2505.	3.5	9
96	More than an on-and-off switch: Post-translational modifications of plant pattern recognition receptor complexes. Current Opinion in Plant Biology, 2021, 63, 102051.	3.5	18
97	Pathogen- and plant-derived peptides trigger plant immunity. Peptides, 2021, 144, 170611.	1.2	6
98	PERK13 modulates phosphate deficiency-induced root hair elongation in Arabidopsis. Plant Science, 2021, 312, 111060.	1.7	6
99	Multifunctional efficacy of the nodule endophyte Pseudomonas fragi in stimulating tomato immune response against Meloidogyne incognita. Biological Control, 2021, 164, 104773.	1.4	4
100	Exportin-4 coordinates nuclear shuttling of TOPLESS family transcription corepressors to regulate plant immunity. Plant Cell, 2021, 33, 697-713.	3.1	33

#	Article	IF	CITATIONS
101	Silent control: microbial plant pathogens evade host immunity without coding sequence changes. FEMS Microbiology Reviews, 2021, 45, .	3.9	12
102	Ubiquitylome analysis reveals a central role for the ubiquitin-proteasome system in plant innate immunity. Plant Physiology, 2021, 185, 1943-1965.	2.3	30
106	Genome-wide investigation and expression profiling of polyphenol oxidase (PPO) family genes uncover likely functions in organ development and stress responses in Populus trichocarpa. BMC Genomics, 2021, 22, 731.	1.2	26
107	How activated NLRs induce anti-microbial defenses in plants. Biochemical Society Transactions, 2021, 49, 2177-2188.	1.6	14
108	Protoplast: A Valuable Toolbox to Investigate Plant Stress Perception and Response. Frontiers in Plant Science, 2021, 12, 749581.	1.7	12
109	Comparison of the Distinct, Host-Specific Response of Three Solanaceae Hosts Induced by Phytophthora infestans. International Journal of Molecular Sciences, 2021, 22, 11000.	1.8	6
110	High-throughput molecular technologies for unraveling the mystery of soil microbial community: challenges and future prospects. Heliyon, 2021, 7, e08142.	1.4	24
111	Cell-to-Cell Communication During Plant-Pathogen Interaction. Molecular Plant-Microbe Interactions, 2022, 35, 98-108.	1.4	7
112	Expression of an Antiviral Gene GmRUN1 from Soybean Is Regulated via Intron-Mediated Enhancement (IME). Viruses, 2021, 13, 2032.	1.5	3
113	Integrated Transcriptomics and Metabolomics Analyses Provide Insights Into the Response of Chongyi Wild Mandarin to Candidatus Liberibacter Asiaticus Infection. Frontiers in Plant Science, 2021, 12, 748209.	1.7	4
114	Emerging roles of pathogen-secreted host mimics in plant disease development. Trends in Parasitology, 2021, 37, 1082-1095.	1.5	8
115	Disclosure of salicylic acid and jasmonic acid-responsive genes provides a molecular tool for deciphering stress responses in soybean. Scientific Reports, 2021, 11, 20600.	1.6	11
116	Salicylic acid: A key regulator of redox signalling and plant immunity. Plant Physiology and Biochemistry, 2021, 168, 381-397.	2.8	78
118	Different epitopes of <i>Ralstonia solanacearum</i> effector RipAW are recognized by two <i>Nicotiana</i> species and trigger immune responses. Molecular Plant Pathology, 2022, 23, 188-203.	2.0	9
119	LC–MS Based Draft Map of the Arabidopsis thaliana Nuclear Proteome and Protein Import in Pattern Triggered Immunity. Frontiers in Plant Science, 2021, 12, 744103.	1.7	8
124	The Mechanosensitive Ion Channel MSL10 Modulates Susceptibility to <i>Pseudomonas syringae</i> in <i>Arabidopsis thaliana</i> . Molecular Plant-Microbe Interactions, 2022, 35, 567-582.	1.4	7
125	Deciphering the role of plant plasma membrane lipids in response to invasion patterns: how could biology and biophysics help?. Journal of Experimental Botany, 2022, 73, 2765-2784.	2.4	8
126	Solanaceous plants switch to cytokininâ€mediated immunity against <i>Ralstonia solanacearum</i> under high temperature and high humidity. Plant, Cell and Environment, 2022, 45, 459-478.	2.8	12

#	Article	IF	CITATIONS
127	Symbiotic responses of <i>Lotus japonicus</i> to two isogenic lines of a mycorrhizal fungus differing in the presence/absence of an endobacterium. Plant Journal, 2021, 108, 1547-1564.	2.8	15
128	Tryptophan metabolism and bacterial commensals prevent fungal dysbiosis in <i>Arabidopsis</i> roots. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	38
129	Fighting salt or enemies: shared perception and signaling strategies. Current Opinion in Plant Biology, 2021, 64, 102120.	3.5	9
130	Mitogenâ€activated protein kinase cascades in plant signaling. Journal of Integrative Plant Biology, 2022, 64, 301-341.	4.1	149
131	ERF Transcription Factor OsBIERF3 Positively Contributes to Immunity against Fungal and Bacterial Diseases but Negatively Regulates Cold Tolerance in Rice. International Journal of Molecular Sciences, 2022, 23, 606.	1.8	14
132	Coordinated Epigenetic Regulation in Plants: A Potent Managerial Tool to Conquer Biotic Stress. Frontiers in Plant Science, 2021, 12, 795274.	1.7	14
133	Potential epigenetic regulation of RNA 5'-terminal NAD decapping associated with cellular energy status of postharvest Fragaria × ananassa in response to Botrytis cinerea invasion. Postharvest Biology and Technology, 2022, 186, 111840.	2.9	16
134	Plant immunity inducers: from discovery to agricultural application. Stress Biology, 2022, 2, 1.	1.5	15
135	A <i>Ralstonia solanacearum</i> effector targets TGA transcription factors to subvert salicylic acid signaling. Plant Cell, 2022, 34, 1666-1683.	3.1	39
136	A tale of many families: calcium channels in plant immunity. Plant Cell, 2022, 34, 1551-1567.	3.1	45
137	Composition identification and functional verification of bacterial community in diseaseâ€suppressive soils by machine learning. Environmental Microbiology, 2022, 24, 3405-3419.	1.8	35
138	Plant Executor Genes. International Journal of Molecular Sciences, 2022, 23, 1524.	1.8	13
139	MAP kinase cascades in plant development and immune signaling. EMBO Reports, 2022, 23, e53817.	2.0	41
140	Identification and Characterization of WRKY41, a Gene Conferring Resistance to Powdery Mildew in Wild Tomato (Solanum habrochaites) LA1777. International Journal of Molecular Sciences, 2022, 23, 1267.	1.8	7
141	A SA-regulated lincRNA promotes Arabidopsis disease resistance by modulating pre-rRNA processing. Plant Science, 2022, 316, 111178.	1.7	3
142	Plant–microbe interactions in the apoplast: Communication at the plant cell wall. Plant Cell, 2022, 34, 1532-1550.	3.1	28
143	The origin and evolution of a plant resistosome. Plant Cell, 2022, 34, 1600-1620.	3.1	22
144	Genome-wide analysis and expression profiling of Cation/H+ exchanger (CAX) family genes reveal likely functions in cadmium stress responses in poplar. International Journal of Biological Macromolecules, 2022, 204, 76-88.	3.6	16

#	Article	IF	CITATIONS
145	Insights into soybean with high photosynthetic efficiency. Advances in Botanical Research, 2022, , 121-151.	0.5	1
146	Tackling multiple bacterial diseases of Solanaceae with a handful of immune receptors. Horticulture Environment and Biotechnology, 2022, 63, 149-160.	0.7	3
147	Plant elicitor peptide 1 fortifies root cell walls and triggers a systemic root-to-shoot immune signaling in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2022, 17, 2034270.	1.2	7
149	Light-Engineering Technology for Enhancing Plant Disease Resistance. Frontiers in Plant Science, 2021, 12, 805614.	1.7	11
150	Small RNA and Degradome Sequencing Reveal Important MicroRNA Function in Nicotiana tabacum Response to Bemisia tabaci. Genes, 2022, 13, 361.	1.0	5
151	Transcriptome Analysis of the Molecular Patterns of Pear Plants Infected by Two Colletotrichum fructicola Pathogenic Strains Causing Contrasting Sets of Leaf Symptoms. Frontiers in Plant Science, 2022, 13, 761133.	1.7	7
153	Multiomics Reveals the Effect of Root Rot on Polygonati Rhizome and Identifies Pathogens and Biocontrol Strain. Microbiology Spectrum, 2022, 10, e0238521.	1.2	16
154	The Protein Phosphatase GhAP2C1 Interacts Together with GhMPK4 to Synergistically Regulate the Immune Response to Fusarium oxysporum in Cotton. International Journal of Molecular Sciences, 2022, 23, 2014.	1.8	6
156	Effector-mediated plant–virus–vector interactions. Plant Cell, 2022, 34, 1514-1531.	3.1	43
157	Response of Tomato-Pseudomonas Pathosystem to Mild Heat Stress. Horticulturae, 2022, 8, 174.	1.2	2
158	Hypersensitive response-like cell death and its key related genes in the lmd lesion mimic mutant of birch. Botany, 0, , .	0.5	0
159	Nitric oxide negatively regulates gibberellin signaling to coordinate growth and salt tolerance in Arabidopsis. Journal of Genetics and Genomics, 2022, 49, 756-765.	1.7	26
160	<scp>OsSLA1</scp> functions in leaf angle regulation by enhancing the interaction between <scp>OsBRI1</scp> and <scp>OsBAK1</scp> in rice. Plant Journal, 2022, 110, 1111-1127.	2.8	6
161	Evasion of plant immunity by microbial pathogens. Nature Reviews Microbiology, 2022, 20, 449-464.	13.6	129
162	Genotyping-by-sequencing-based identification of Arabidopsis pattern recognition receptor RLP32 recognizing proteobacterial translation initiation factor IF1. Nature Communications, 2022, 13, 1294.	5.8	20
164	An MKP-MAPK protein phosphorylation cascade controls vascular immunity in plants. Science Advances, 2022, 8, eabg8723.	4.7	35
165	Defense Mechanism of <i>Capsicum annuum</i> L. Infected with Pepper Mild Mottle Virus Induced by Vanisulfane. Journal of Agricultural and Food Chemistry, 2022, 70, 3618-3632.	2.4	13
166	The Pathogen-Induced MATE Gene TaPIMA1 Is Required for Defense Responses to Rhizoctonia cerealis in Wheat. International Journal of Molecular Sciences, 2022, 23, 3377.	1.8	4

#	ARTICLE	IF	Citations
167	Brassinosteroids Positively Regulate Plant Immunity via BRI1-EMS-SUPPRESSOR 1-Mediated GLUCAN SYNTHASE-LIKE 8 Transcription. Frontiers in Plant Science, 2022, 13, 854899.	1.7	7
168	Toward understanding the genetic bases underlying plantâ€mediated "cry for help―to the microbiota. , 2022, 1, .		29
169	Ubiquitination of Receptorsomes, Frontline of Plant Immunity. International Journal of Molecular Sciences, 2022, 23, 2937.	1.8	12
170	Methoxyacrylate Fungicide Candidate CL-15C Also Functions as a Plant Elicitor in <i>Arabidopsis thaliana</i> and <i>Oryza sativa</i> L. Journal of Agricultural and Food Chemistry, 2022, 70, 3142-3150.	2.4	10
171	Rooting Out the Mechanisms of Root-Knot Nematode–Plant Interactions. Annual Review of Phytopathology, 2022, 60, 43-76.	3.5	15
172	Salicylic Acid and N-Hydroxypipecolic Acid at the Fulcrum of the Plant Immunity-Growth Equilibrium. Frontiers in Plant Science, 2022, 13, 841688.	1.7	17
173	Three highly conserved hydrophobic residues in the predicted α2â€helix of rice NLR protein Pit contribute to its localization and immune induction. Plant, Cell and Environment, 2022, , .	2.8	2
174	The necrotroph Botrytis cinerea promotes disease development in Panax ginseng by manipulating plant defense signals and antifungal metabolites degradation. Journal of Ginseng Research, 2022, , .	3.0	7
175	Knowing me, knowing you: Self and non-self recognition in plant immunity. Essays in Biochemistry, 2022, 66, 447-458.	2.1	12
176	Nematode RALF-Like 1 Targets Soybean Malectin-Like Receptor Kinase to Facilitate Parasitism. Frontiers in Plant Science, 2021, 12, 775508.	1.7	9
177	A Pathogen-Inducible Rice NAC Transcription Factor ONAC096 Contributes to Immunity Against Magnaprothe oryzae and Xanthomonas oryzae pv. oryzae by Direct Binding to the Promoters of OsRap2.6, OsWRKY62, and OsPAL1. Frontiers in Plant Science, 2021, 12, 802758.	1.7	8
178	Plant autoimmunity—fresh insights into an old phenomenon. Plant Physiology, 2022, 188, 1419-1434.	2.3	15
179	Diverse Effect of Two Cytokinins, Kinetin and Benzyladenine, on Plant Development, Biotic Stress Tolerance, and Gene Expression. Life, 2021, 11, 1404.	1.1	3
180	Regulation of Plant Immunity by Nuclear Membrane-Associated Mechanisms. Frontiers in Immunology, 2021, 12, 771065.	2.2	5
181	Malectin-like receptor kinases as protector deities in plant immunity. Nature Plants, 2022, 8, 27-37.	4.7	24
182	Effector-mediated relocalization of a maize lipoxygenase protein triggers susceptibility to <i>Ustilago maydis</i> . Plant Cell, 2022, 34, 2785-2805.	3.1	17
183	APIP5 functions as a transcription factor and an RNA-binding protein to modulate cell death and immunity in rice. Nucleic Acids Research, 2022, 50, 5064-5079.	6.5	16
184	PERKing up our understanding of the prolineâ€rich extensinâ€like receptor kinases, a forgotten plant receptor kinase family. New Phytologist, 2022, 235, 875-884.	3.5	3

#	Article	IF	CITATIONS
185	Molug4 is a novel secreted effector promoting rice blast by counteracting host OsAHL1â€regulated ethylene gene transcription. New Phytologist, 2022, 235, 1163-1178.	3.5	7
186	Plant Defense Responses to a Novel Plant Elicitor Candidate LY5-24-2. International Journal of Molecular Sciences, 2022, 23, 5348.	1.8	3
187	EWR1 as a SCOOP peptide activates MIK2-dependent immunity in <i>Arabidopsis</i> . Journal of Plant Interactions, 2022, 17, 562-568.	1.0	7
188	Multilayered synergistic regulation of phytoalexin biosynthesis by ethylene, jasmonate, and MAPK signaling pathways in Arabidopsis. Plant Cell, 2022, 34, 3066-3087.	3.1	30
189	Plant Kinases in the Perception and Signaling Networks Associated With Arthropod Herbivory. Frontiers in Plant Science, 2022, 13, .	1.7	5
190	Indirect recognition of pathogen effectors by NLRs. Essays in Biochemistry, 2022, 66, 485-500.	2.1	4
191	Phytocytokine signalling reopens stomata in plant immunity and water loss. Nature, 2022, 605, 332-339.	13.7	64
192	Environmental Cues Contribute to Dynamic Plasma Membrane Organization of Nanodomains Containing Flotillin-1 and Hypersensitive Induced Reaction-1 Proteins in Arabidopsis thaliana. Frontiers in Plant Science, 2022, 13, .	1.7	5
193	Scaling-up to understand tree–pathogen interactions: A steep, tough climb or a walk in the park?. Current Opinion in Plant Biology, 2022, 68, 102229.	3.5	3
194	Ca ²⁺ signals in plant immunity. EMBO Journal, 2022, 41, e110741.	3.5	82
195	Molecular plant immunity against biotrophic, hemibiotrophic, and necrotrophic fungi. Essays in Biochemistry, 2022, 66, 581-593.	2.1	10
196	The Intracellularly Acting Effector Foa3 Suppresses Defense Responses When Infiltrated Into the Apoplast. Frontiers in Plant Science, 2022, 13, .	1.7	5
199	Mitochondrial functions in plant immunity. Trends in Plant Science, 2022, 27, 1063-1076.	4.3	18
200	Rethinking of botanical volatile organic compounds applied in food preservation: Challenges in acquisition, application, microbial inhibition and stimulation. Trends in Food Science and Technology, 2022, 125, 166-184.	7.8	25
201	<i>BpEIL1</i> negatively regulates resistance to <i>Rhizoctonia solani</i> and <i>Alternaria alternata</i> in birch <i></i> . Genes and Genetic Systems, 2022, , .	0.2	0
203	The Emerging Role of PP2C Phosphatases in Tomato Immunity. Molecular Plant-Microbe Interactions, 2022, 35, 737-747.	1.4	4
204	Phosphorylation-mediated inactivation of C3H14 by MPK4 enhances bacterial-triggered immunity in Arabidopsis. Plant Physiology, 2022, 190, 1941-1959.	2.3	6
206	Cell wall integrity regulation across plant species. Plant Molecular Biology, 2022, 109, 483-504.	2.0	23

#	Article	IF	CITATIONS
207	PeTGA1 enhances disease resistance against Colletotrichum gloeosporioides through directly regulating PeSARD1 in poplar. International Journal of Biological Macromolecules, 2022, 214, 672-684.	3.6	9
208	Defects in plant immunity modulate the rates and patterns of RNA virus evolution. Virus Evolution, 2022, 8, .	2.2	14
209	Understanding enemy's weapons to an effective prevention: common virulence effects across microbial phytopathogens kingdoms. Critical Reviews in Microbiology, 2023, 49, 528-542.	2.7	2
210	From plant immunity to crop disease resistance. Journal of Genetics and Genomics, 2022, 49, 693-703.	1.7	24
212	Ectopic Expression of Executor Gene Xa23 Enhances Resistance to Both Bacterial and Fungal Diseases in Rice. International Journal of Molecular Sciences, 2022, 23, 6545.	1.8	1
213	Nano-selenium enhances the antioxidant capacity, organic acids and cucurbitacin B in melon (Cucumis) Tj ETQq1	1.0,78431 2.9	4 _. gBT /Ove
214	Regulation of plant responses to biotic and abiotic stress by receptor-like cytoplasmic kinases. Stress Biology, 2022, 2, .	1.5	6
215	Understanding R Gene Evolution in Brassica. Agronomy, 2022, 12, 1591.	1.3	0
216	Increasing the resilience of plant immunity to a warming climate. Nature, 2022, 607, 339-344.	13.7	72
217	Transcriptome Analysis of Fusarium–Tomato Interaction Based on an Updated Genome Annotation of Fusarium oxysporum f. sp. lycopersici Identifies Novel Effector Candidates That Suppress or Induce Cell Death in Nicotiana benthamiana. Journal of Fungi (Basel, Switzerland), 2022, 8, 672.	1.5	8
218	Loss of function of the bHLH transcription factor Nrd1 in tomato enhances resistance to <i>Pseudomonas syringae</i> . Plant Physiology, 2022, 190, 1334-1348.	2.3	7
220	PROTEIN <i>S</i> â€ACYL TRANSFERASE 13/16 modulate disease resistance by <i>S</i> â€acylation of the nucleotide binding, leucineâ€rich repeat protein R5L1 in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2022, 64, 1789-1802.	4.1	7
221	Seed priming with calcium chloride enhances stress tolerance in rice seedlings. Plant Science, 2022, 323, 111381.	1.7	7
222	The key micronutrient copper orchestrates broad-spectrum virus resistance in rice. Science Advances, 2022, 8, .	4.7	16
223	Characterization of Salivary Secreted Proteins That Induce Cell Death From Riptortus pedestris (Fabricius) and Their Roles in Insect-Plant Interactions. Frontiers in Plant Science, 0, 13, .	1.7	5
224	The RECEPTORâ€LIKE PROTEIN53 immune complex associates with LLG1 to positively regulate plant immunity. Journal of Integrative Plant Biology, 2022, 64, 1833-1846.	4.1	10
225	Histone acetyltransferase <scp>TaHAG1</scp> interacts with <scp>TaPLATZ5</scp> to activate <i>TaPAD4</i> expression and positively contributes to powdery mildew resistance in wheat. New Phytologist, 2022, 236, 590-607.	3.5	16
226	Plasma membrane-nucleo-cytoplasmic coordination of a receptor-like cytoplasmic kinase promotes EDS1-dependent plant immunity. Nature Plants, 2022, 8, 802-816.	4.7	30

#	Article	IF	CITATIONS
228	The Role of Ubiquitination in Plant Immunity: Fine-Tuning Immune Signaling and Beyond. Plant and Cell Physiology, 2022, 63, 1405-1413.	1.5	9
229	The Integrated LIM-Peptidase Domain of the CSA1/CHS3 Paired Immune Receptor Detects Changes in DA1 Family Peptidase Inhibitors in Arabidopsis. SSRN Electronic Journal, 0, , .	0.4	0
231	Cloning southern corn rust resistant gene RppK and its cognate gene AvrRppK from Puccinia polysora. Nature Communications, 2022, 13, .	5.8	23
232	TOUCH 3 and CALMODULIN 1/4/6 cooperate with calcium-dependent protein kinases to trigger calcium-dependent activation of CAM-BINDING PROTEIN 60-LIKE G and regulate fungal resistance in plants. Plant Cell, 2022, 34, 4088-4104.	3.1	12
233	Priming seeds for the future: Plant immune memory and application in crop protection. Frontiers in Plant Science, 0, 13, .	1.7	17
234	A lncRNA fine-tunes salicylic acid biosynthesis to balance plant immunity and growth. Cell Host and Microbe, 2022, 30, 1124-1138.e8.	5.1	35
235	News about amino acid metabolism in plant–microbe interactions. Trends in Biochemical Sciences, 2022, 47, 839-850.	3.7	38
236	Actin cytoskeleton function in plant innate immunity. Scientia Sinica Vitae, 2022, 52, 1203-1211.	0.1	0
237	Microbeâ€derived nonâ€necrotic glycoside hydrolase family 12 proteins act as immunogenic signatures triggering plant defenses. Journal of Integrative Plant Biology, 2022, 64, 1966-1978.	4.1	5
238	Research Progress and Prospect of Alfalfa Resistance to Pathogens and Pests. Plants, 2022, 11, 2008.	1.6	8
239	Salicylic acidâ€activated <scp>BIN2</scp> phosphorylation of <scp>TGA3</scp> promotes <i>Arabidopsis</i> Â <scp>PR</scp> gene expression and disease resistance. EMBO Journal, 2022, 41, .	3.5	17
240	StMPK7 phosphorylates and stabilizes a potato RNA-binding protein StUBA2a/b to enhance plant defence responses. Horticulture Research, 2022, 9, .	2.9	3
241	Dissecting <i>in vivo</i> responses of phytohormones to <i>Alternaria solani</i> infection reveals orchestration of JA- and ABA-mediated antifungal defenses in potato. Horticulture Research, 2022, 9, .	2.9	2
242	Regulation of immune complex formation and signalling by <scp>FERONIA</scp> , a busy goddess in plant–microbe interactions. Molecular Plant Pathology, 2022, 23, 1695-1700.	2.0	5
243	Fineâ€ŧuning <scp>OsCPK18</scp> / <scp>OsCPK4</scp> activity via genome editing of phosphorylation motif improves rice yield and immunity. Plant Biotechnology Journal, 2022, 20, 2258-2271.	4.1	7
244	Essential Acidovorax citrulli Virulence Gene hrpE Activates Host Immune Response against Pathogen. International Journal of Molecular Sciences, 2022, 23, 9144.	1.8	8
245	Advanced genes expression pattern greatly contributes to divergence in Verticillium wilt resistance between Gossypium barbadense and Gossupium hirsutum. Frontiers in Plant Science, 0, 13, .	1.7	2
246	Health risks of phthalates: A review of immunotoxicity. Environmental Pollution, 2022, 313, 120173.	3.7	23

ARTICLE IF CITATIONS The impact of biotechnology and genomics on an ancient crop: Cannabis sativa., 2023, , 177-204. 1 247 Omics in tuber crops: Cassava and sweet potato., 2022, , 527-543. 248 249 The role of receptor-like kinases in fungal/microbial resistance in plants., 2023, 63-85. 2 Recent advances in the role of protein kinases during plant-herbivore interaction., 2023, 269-279. ATP-citrate lyase B (ACLB) negatively affects cell death and resistance to Verticillium wilt. BMC Plant 251 1.6 5 Biology, 2022, 22, . Comparative transcriptome meta-analysis reveals a set of genes involved in the responses to multiple pathogens in maize. Frontiers in Plant Science, 0, 13, . 1.7 The involvement of AtMKK1 and AtMKK3 in plant-deleterious microbial volatile compounds-induced 253 2.0 3 defense responses. Plant Molecular Biology, 2023, 111, 21-36. Mapping of a novel clubroot disease resistance locus in Brassica napus and related functional 254 1.7 identification. Frontiers in Plant Science, 0, 13, . Susceptibility Is New Resistance: Wheat Susceptibility Genes and Exploitation in Resistance Breeding. 255 1.4 6 Agriculture (Switzerland), 2022, 12, 1419. The <scp>CC–NB–LRR</scp> protein <scp>BSR1</scp> from <i>Brachypodium</i> confers resistance to <i>Barley stripe mosaic virus </i> in gramineous plants by recognising <scp>TGB1</scp> movement protein. New Phytologist, 2022, 236, 2233-2248. 3.5 The tomato resistance gene <i>Bs4</i> suppresses leaf watersoaking phenotypes induced by <scp>AvrHah1</scp>, ă transcription activatorâ€like effector from tomatoâ€pathogenic xanthomonads. 258 3 3.5 New Phytologist, 2022, 236, 1856-1870. Plant <i>N</i>-acylethanolamines play a crucial role in defense and its variation in response to elevated CO2 and temperature in tomato. Horticulture Research, 2023, 10, . The Global Assessment of Oilseed Brassica Crop Species Yield, Yield Stability and the Underlying 260 1.6 3 Genetics. Plants, 2022, 11, 2740. Revealing the contribution of GbPR10.5D1 to resistance against <i>Verticillium dahliae</i> 1.6 regulation for structural defense and immune signaling. Plant Genome, 2022, 15, . An Overview of PRR- and NLR-Mediated Immunities: Conserved Signaling Components across the Plant 262 Kingdom That Communicate Both Pathways. International Journal of Molecular Sciences, 2022, 23, 10 1.8 12974. The<i>Phytophthora sojae</i>nuclear effector PsAvh110 targets a host transcriptional complex to 3.1 modulate plant immunity. Plant Cell, 2023, 35, 574-597. Coordinated regulation of plant defense and autoimmunity by paired trihelix transcription factors 264 3.59 <scp>ASR3</scp>/<scp>AlTF1</scp> in <i>Arabidopsis</i>. New Phytologist, 2023, 237, 914-929. Advances in Fungal Elicitor-Triggered Plant Immunity. International Journal of Molecular Sciences, 1.8 2022, 23, 12003

#	Article	IF	CITATIONS
266	Transcriptomics and iTRAQ-proteomics analyses provide novel insights into the defense mechanism of black shank disease in tobacco. Frontiers in Plant Science, 0, 13, .	1.7	3
268	Wheeling in a new era in plant immunity. Nature Plants, 2022, 8, 1142-1143.	4.7	0
269	Histological and molecular responses of Vigna angularis to Uromyces vignae infection. BMC Plant Biology, 2022, 22, .	1.6	5
270	Allelic variation in the Arabidopsis TNL CHS3/CSA1 immune receptor pair reveals two functional cell-death regulatory modes. Cell Host and Microbe, 2022, 30, 1701-1716.e5.	5.1	18
272	Protein S-Acyl Transferase GhPAT27 Was Associated with Verticillium wilt Resistance in Cotton. Plants, 2022, 11, 2758.	1.6	1
273	Chitosan and nematophagous fungi for sustainable management of nematode pests. Frontiers in Fungal Biology, 0, 3, .	0.9	2
274	The NAC transcription factor ONAC083 negatively regulates rice immunity against <i>Magnaporthe oryzae</i> by directly activating transcription of the RINGâ€H2 gene <i>OsRFPH2â€6</i> . Journal of Integrative Plant Biology, 2023, 65, 854-875.	4.1	5
275	Design, Synthesis, and Fungicidal Activity of Novel Plant Elicitors Based on a Diversity-Oriented Synthesis Strategy. Journal of Agricultural and Food Chemistry, 2022, 70, 13486-13498.	2.4	4
276	Identification of the Transcription Factors RAP2-13 Activating the Expression of CsBAK1 in Citrus Defence Response to Xanthomonas citri subsp. citri. Horticulturae, 2022, 8, 1012.	1.2	0
277	Phytocytokine SCREWs increase plant immunity through actively reopening stomata. Journal of Plant Physiology, 2022, 279, 153832.	1.6	3
278	Development specifies, diversifies and empowers root immunity. EMBO Reports, 2022, 23, .	2.0	4
279	Enhanced Resistance to Sclerotinia sclerotiorum in Brassica rapa by Activating Host Immunity through Exogenous Verticillium dahliae Aspf2-like Protein (VDAL) Treatment. International Journal of Molecular Sciences, 2022, 23, 13958.	1.8	5
280	A plant growth-promoting bacteria Priestia megaterium JR48 induces plant resistance to the crucifer black rot via a salicylic acid-dependent signaling pathway. Frontiers in Plant Science, 0, 13, .	1.7	4
281	Grapevine VaRPP13 protein enhances oomycetes resistance by activating SA signal pathway. Plant Cell Reports, 0, , .	2.8	0
282	The <i>Pythium periplocum</i> elicitin PpEli2 confers broad-spectrum disease resistance by triggering a novel receptor-dependent immune pathway in plants. Horticulture Research, 2023, 10, .	2.9	0
283	Advances in Durable Resistance to Diseases in Staple Food Crops: A Review. Open Agriculture Journal, 2022, 16, .	0.3	0
284	The clubroot pathogen <i>Plasmodiophora brassicae</i> : A profile update. Molecular Plant Pathology, 2023, 24, 89-106.	2.0	19
285	ER Stress and the Unfolded Protein Response: Homeostatic Regulation Coordinate Plant Survival and Growth. Plants, 2022, 11, 3197.	1.6	6

#	Article	IF	CITATIONS
286	Structure, biochemical function, and signaling mechanism of plant NLRs. Molecular Plant, 2023, 16, 75-95.	3.9	19
287	Quantitative disease resistance: Multifaceted players in plant defense. Journal of Integrative Plant Biology, 2023, 65, 594-610.	4.1	4
288	A mini-TGA protein modulates gene expression through heterogeneous association with transcription factors. Plant Physiology, 0, , .	2.3	2
289	Structure–function analyses of coiled-coil immune receptors define a hydrophobic module for improving plant virus resistance. Journal of Experimental Botany, 2023, 74, 1372-1388.	2.4	6
290	The Arabidopsis TIR-NBS-LRR protein CSA1 guards BAK1-BIR3 homeostasis and mediates convergence of pattern- and effector-induced immune responses. Cell Host and Microbe, 2022, 30, 1717-1731.e6.	5.1	25
292	Integrated Transcriptome and Metabolome Analysis Reveals Phenylpropanoid Biosynthesis and Phytohormone Signaling Contribute to "Candidatus Liberibacter asiaticus―Accumulation in Citrus Fruit Piths (Fluffy Albedo). International Journal of Molecular Sciences, 2022, 23, 15648.	1.8	2
293	A comprehensive dynamic immune acetylproteomics profiling induced by Puccinia polysora in maize. BMC Plant Biology, 2022, 22, .	1.6	0
294	A transcriptome analysis of Benincasa hispida revealed the pathways and genes involved in response to Phytophthora melonis infection. Frontiers in Plant Science, 0, 13, .	1.7	0
295	Novel Elicitin from <i>Pythium oligandrum</i> Confers Disease Resistance against <i>Phytophthora capsici</i> in Solanaceae Plants. Journal of Agricultural and Food Chemistry, 2022, 70, 16135-16145.	2.4	3
296	NLR surveillance of pathogen interference with hormone receptors induces immunity. Nature, 2023, 613, 145-152.	13.7	16
297	The origin and evolution of salicylic acid signaling and biosynthesis in plants. Molecular Plant, 2023, 16, 245-259.	3.9	19
298	The Rubber Tree (<i>Heveae brasiliensis</i>) MLO Protein HbMLO12 Promotes Plant Susceptibility to Sustain Infection by a Powdery Mildew Fungus. Molecular Plant-Microbe Interactions, 2023, 36, 273-282.	1.4	2
300	Modulation of Host Immunity and Development by Ustilago maydis. , 2023, , 3-30.		0
301	A "protector―model for membrane trafficking-regulated and NLR-mediated plant immunity. Molecular Plant, 2023, 16, 303-305.	3.9	1
302	Insights into the expression of DNA (de)methylation genes responsive to nitric oxide signaling in potato resistance to late blight disease. Frontiers in Plant Science, 0, 13, .	1.7	1
303	The Expanded and Diversified Calmodulin-Binding Protein 60 (CBP60) Family in Rice (Oryza sativa L.) Is Conserved in Defense Responses against Pathogens. Agronomy, 2022, 12, 3060.	1.3	3
305	A pair of Gâ€ŧype lectin receptorâ€like kinases modulates nlp20â€mediated immune responses by coupling to the RLP23 receptor complex. Journal of Integrative Plant Biology, 2023, 65, 1312-1327.	4.1	2
306	Convergent evolution of immune receptors underpins distinct elicitin recognition in closely related Solanaceous plants. Plant Cell, 2023, 35, 1186-1201.	3.1	8

#	Article	IF	CITATIONS
307	A novel salivary effector, BtE3, is essential for whitefly performance on host plants. Journal of Experimental Botany, 2023, 74, 2146-2159.	2.4	7
308	Rhizobial migration toward roots mediated by FadL-ExoFQP modulation of extracellular long-chain AHLs. ISME Journal, 2023, 17, 417-431.	4.4	6
309	Interaction between nanomaterials and the innate immune system across evolution. Biological Reviews, 2023, 98, 747-774.	4.7	8
310	Recognition of glycoside hydrolase 12 proteins by the immune receptor <scp>RXEG1</scp> confers <i>Fusarium</i> head blight resistance in wheat. Plant Biotechnology Journal, 2023, 21, 769-781.	4.1	6
311	Protein Kinases as Potential Targets Contribute to the Development of Agrochemicals. Journal of Agricultural and Food Chemistry, 2023, 71, 52-64.	2.4	2
312	CsAP2-09 confers resistance against citrus bacterial canker by regulating CsGH3.1L-mediated phytohormone biosynthesis. International Journal of Biological Macromolecules, 2023, 229, 964-973.	3.6	3
313	Characteristics, Roles and Applications of Proteinaceous Elicitors from Pathogens in Plant Immunity. Life, 2023, 13, 268.	1.1	1
314	Integrative Transcriptome, miRNAs, Degradome, and Phytohormone Analysis of Brassica rapa L. in Response to Plasmodiophora brassicae. International Journal of Molecular Sciences, 2023, 24, 2414.	1.8	3
315	Genome-wide identification of the TGA genes in common bean (Phaseolus vulgaris) and revealing their functions in response to Fusarium oxysporum f. sp. phaseoli infection. Frontiers in Genetics, 0, 14, .	1.1	2
316	EDR1 associates with its homologs to synergistically regulate plant immunity in Arabidopsis. Plant Science, 2023, 330, 111619.	1.7	1
317	Plant immune receptor pathways as a united front against pathogens. PLoS Pathogens, 2023, 19, e1011106.	2.1	3
319	Dual function of the CHS3-CSA1 immune receptor pair. Trends in Plant Science, 2023, 28, 375-378.	4.3	0
320	Salicylic acid inhibits rice endocytic protein trafficking mediated by OsPIN3t and clathrin to affect root growth. Plant Journal, 0, , .	2.8	0
321	Male and female poplars exhibited sex-specific differences in metabolic and transcriptional responses to two levels of water deficit. Industrial Crops and Products, 2023, 196, 116441.	2.5	0
322	A novel module regulating ROS in NLR-mediated immunity. Trends in Plant Science, 2023, 28, 512-514.	4.3	4
323	Rhizosphere bacterial interactions and impact on plant health. Current Opinion in Microbiology, 2023, 73, 102297.	2.3	13
324	Plant-microbiome crosstalk and disease development. Current Opinion in Plant Biology, 2023, 72, 102351.	3.5	10
325	Hydathode immunity protects the Arabidopsis leaf vasculature against colonization by bacterial pathogens. Current Biology, 2023, 33, 697-710.e6.	1.8	5

#	Article	IF	CITATIONS
326	The grapevine LysM receptor-like kinase VvLYK5-1 recognizes chitin oligomers through its association with VvLYK1-1. Frontiers in Plant Science, 0, 14, .	1.7	3
327	The Effects of Epicuticular Wax on Anthracnose Resistance of Sorghum bicolor. International Journal of Molecular Sciences, 2023, 24, 3070.	1.8	4
328	The Genetic Mechanism of the Immune Response to the Rice False Smut (RFS) Fungus Ustilaginoidea virens. Plants, 2023, 12, 741.	1.6	2
329	Getting to the root of a club – Understanding developmental manipulation by the clubroot pathogen. Seminars in Cell and Developmental Biology, 2023, 148-149, 22-32.	2.3	2
330	The woody plant-degrading pathogen <i>Lasiodiplodia theobromae</i> effector LtCre1 targets the grapevine sugar-signaling protein VvRHIP1 to suppress host immunity. Journal of Experimental Botany, 2023, 74, 2768-2785.	2.4	1
331	Editorial: Advances in crop resistance breeding using modern genomic tools. Frontiers in Plant Science, 0, 14, .	1.7	0
332	<i>Aureobasidium pullulans</i> from the Fire Blight Biocontrol Product, Blossom Protect, Induces Host Resistance in Apple Flowers. Phytopathology, 2023, 113, 1192-1201.	1.1	8
333	Plant HEM1 specifies a condensation domain to control immune gene translation. Nature Plants, 2023, 9, 289-301.	4.7	9
334	Systematic Description of the Content Variation of Natural Products (NPs): To Prompt the Yield of High-Value NPs and the Discovery of New Therapeutics. Journal of Chemical Information and Modeling, 2023, 63, 1615-1625.	2.5	1
335	Genome-Wide Characterization of the PIFs Family in Sweet Potato and Functional Identification of IbPIF3.1 under Drought and Fusarium Wilt Stresses. International Journal of Molecular Sciences, 2023, 24, 4092.	1.8	8
336	Transcriptomic Analysis Revealed Key Defense Genes and Signaling Pathways Mediated by the Arabidopsis thaliana Gene SAD2 in Response to Infection with Pseudomonas syringae pv. Tomato DC3000. International Journal of Molecular Sciences, 2023, 24, 4229.	1.8	1
337	SHOU4/4L link cell wall cellulose synthesis to patternâ€ŧriggered immunity. New Phytologist, 2023, 238, 1620-1635.	3.5	0
338	SstF, a novel sulforaphaneâ€sensing transcription factor of <i>Xanthomonas campestris</i> , is required for sulforaphane tolerance and virulence. Molecular Plant Pathology, 2023, 24, 452-465.	2.0	2
339	In Silico Characterization of the Secretome of the Fungal Pathogen Thielaviopsis punctulata, the Causal Agent of Date Palm Black Scorch Disease. Journal of Fungi (Basel, Switzerland), 2023, 9, 303.	1.5	2
340	Inflammation: All Living Things Have an Immune System. Radiology, 0, , .	3.6	0
341	Comparative-genomic analysis reveals dynamic NLR gene loss and gain across Apiaceae species. Frontiers in Genetics, 0, 14, .	1.1	1
343	Wheat Pore-forming toxin-like protein confers broad-spectrum resistance to fungal pathogens in Arabidopsis. Molecular Plant-Microbe Interactions, 0, , .	1.4	0
344	Identifying Putative Resistance Genes for Barley Yellow Dwarf Virus-PAV in Wheat and Barley. Viruses, 2023, 15, 716.	1.5	1

#	Article	IF	CITATIONS
345	Calcium-binding protein OsANN1 regulates rice blast disease resistance by inactivating jasmonic acid signaling. Plant Physiology, 0, , .	2.3	2
346	Ubiquitylation of PHYTOSULFOKINE RECEPTOR 1 modulates the defense response in tomato. Plant Physiology, 2023, 192, 2507-2522.	2.3	6
347	Full-length RNA sequencing reveals the mechanisms by which an TSWV–HCRV complex suppresses plant basal resistance. Frontiers in Plant Science, 0, 14, .	1.7	1
348	Membrane Dynamics Regulated by Cytoskeleton in Plant Immunity. International Journal of Molecular Sciences, 2023, 24, 6059.	1.8	1
350	Soybean GmSAUL1, a Bona Fide U-Box E3 Ligase, Negatively Regulates Immunity Likely through Repressing the Activation of GmMPK3. International Journal of Molecular Sciences, 2023, 24, 6240.	1.8	2
351	Transcriptome Dynamics Underlying Planticine®-Induced Defense Responses of Tomato (Solanum) Tj ETQq1 1	0.784314 1.8	rgßT /Overlo
352	A Leucine-Rich Repeat Receptor-like Kinase TaBIR1 Contributes to Wheat Resistance against Puccinia striiformis f. sp. tritici. International Journal of Molecular Sciences, 2023, 24, 6438.	1.8	0
353	ETI signaling nodes are involved in resistance of Hawaii 7996 to <i>Ralstonia solanacearum-induced</i> bacterial wilt disease in tomato. Plant Signaling and Behavior, 2023, 18, .	1.2	1
354	Comparative transcriptome analysis of juniper branches infected by Gymnosporangium spp. highlights their different infection strategies associated with cytokinins. BMC Genomics, 2023, 24, .	1.2	0
355	Comparative transcriptomics identifies the key in planta-expressed genes of Fusarium graminearum during infection of wheat varieties. Frontiers in Genetics, 0, 14, .	1.1	1
356	Transcriptome analysis of two pepper genotypes infected with pepper mild mottle virus. Frontiers in Genetics, 0, 14, .	1.1	1
357	Peeking into plant-microbe interactions during plant defense. , 2023, , 167-200.		0
358	Immune signaling networks in plant-pathogen interactions. , 2023, , 137-147.		1
368	Roles of long non-coding RNAs in plant immunity. PLoS Pathogens, 2023, 19, e1011340.	2.1	7
381	Genome-wide association of defense hormone crosstalk in plants. , 2023, , 353-371.		0
382	Use of plant-defense hormones against pathogen diseases. , 2023, , 305-334.		0
384	Insights to Gossypium defense response against Verticillium dahliae: the Cotton Cancer. Functional and Integrative Genomics, 2023, 23, .	1.4	8
421	Regulatory roles of epigenetic modifications in plant-phytopathogen interactions. , 2023, 1, .		0

#	Article	IF	CITATIONS
454	The Impacts of Plant Hormones on the Growth and Quality of Sprouts. Food and Bioprocess Technology, 0, , .	2.6	0
460	Editorial: Regulation of plant immunity by immune receptors. Frontiers in Plant Science, 0, 14, .	1.7	Ο
478	Biotic Interactions. , 2023, , 717-762.		0
500	Future perspectives in viroid research. , 2024, , 397-407.		0