Atomically Thin Mesoporous Co₃O<sub>4< Nâ€**r**GO Nanosheets as Highâ€Performance Bifunction Batteries

Advanced Materials 30, 1703657 DOI: 10.1002/adma.201703657

Citation Report

#	Article	IF	CITATIONS
2	Bifunctional electrocatalysts of MOF-derived Co–N/C on bamboo-like MnO nanowires for high-performance liquid- and solid-state Zn–air batteries. Journal of Materials Chemistry A, 2018, 6, 9716-9722.	5.2	167
3	Recent Advances in Carbonâ€Based Bifunctional Oxygen Electrocatalysts for Znâ~'Air Batteries. ChemElectroChem, 2018, 5, 1424-1434.	1.7	129
4	Co ₃ O ₄ /MnO ₂ /Hierarchically Porous Carbon as Superior Bifunctional Electrodes for Liquid and All-Solid-State Rechargeable Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2018, 10, 15591-15601.	4.0	89
5	Controllable Synthesis of Ni _{<i>x</i>} Se (0.5 ≤i>x ≤) Nanocrystals for Efficient Rechargeable Zinc–Air Batteries and Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 13675-13684.	4.0	116
6	Palladium single atoms supported by interwoven carbon nanotube and manganese oxide nanowire networks for enhanced electrocatalysis. Journal of Materials Chemistry A, 2018, 6, 23366-23377.	5.2	68
7	Robust N-doped carbon aerogels strongly coupled with iron–cobalt particles as efficient bifunctional catalysts for rechargeable Zn–air batteries. Nanoscale, 2018, 10, 19937-19944.	2.8	144
8	Pyrite-Type CoS2 Nanoparticles Supported on Nitrogen-Doped Graphene for Enhanced Water Splitting. Frontiers in Chemistry, 2018, 6, 569.	1.8	32
9	A Confinement Strategy for Stabilizing ZIFâ€Derived Bifunctional Catalysts as a Benchmark Cathode of Flexible Allâ€Solidâ€State Zinc–Air Batteries. Advanced Materials, 2018, 30, e1805268.	11.1	147
10	Multiscale Structural Engineering of Niâ€Doped CoO Nanosheets for Zinc–Air Batteries with High Power Density. Advanced Materials, 2018, 30, e1804653.	11.1	131
11	In Situ Fabrication of Heterostructure on Nickel Foam with Tuned Composition for Enhancing Waterâ€Splitting Performance. Small, 2018, 14, e1803666.	5.2	100
12	Co3O4@g-C3N4 supported on N-doped graphene as effective electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2018, 43, 20687-20695.	3.8	40
13	Allâ€inâ€One Bifunctional Oxygen Electrode Films for Flexible Znâ€Air Batteries. Small, 2018, 14, e1803409.	5.2	59
14	Fe/Co Double Hydroxide/Oxide Nanoparticles on Nâ€Doped CNTs as Highly Efficient Electrocatalyst for Rechargeable Liquid and Quasiâ€Solidâ€State Zinc–Air Batteries. Advanced Energy Materials, 2018, 8, 1801836.	10.2	94
15	Exploring Indiumâ€Based Ternary Thiospinel as Conceivable Highâ€Potential Airâ€Cathode for Rechargeable Zn–Air Batteries. Advanced Energy Materials, 2018, 8, 1802263.	10.2	248
16	N,S-Atom-coordinated Co ₉ S ₈ trinary dopants within a porous graphene framework as efficient catalysts for oxygen reduction/evolution reactions. Dalton Transactions, 2018, 47, 14992-15001.	1.6	37
17	Finite-Element Analysis on Percolation Performance of Foam Zinc. ACS Omega, 2018, 3, 11018-11025.	1.6	2
18	Enhanced performance of multi-dimensional CoS nanoflake/NiO nanosheet architecture with synergetic effect for asymmetric supercapacitor. Nanotechnology, 2018, 29, 455401.	1.3	28
19	Ultrafine Pt Nanoparticleâ€Decorated Pyriteâ€Type CoS ₂ Nanosheet Arrays Coated on Carbon Cloth as a Bifunctional Electrode for Overall Water Splitting. Advanced Energy Materials, 2018, 8, 1800935.	10.2	286

#	Article	IF	CITATIONS
20	Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chemical Society Reviews, 2018, 47, 5919-5945.	18.7	314
21	Atomic Fe–N _x Coupled Openâ€Mesoporous Carbon Nanofibers for Efficient and Bioadaptable Oxygen Electrode in Mg–Air Batteries. Advanced Materials, 2018, 30, e1802669.	11.1	128
22	In Situ Electrodeposition of Cobalt Sulfide Nanosheet Arrays on Carbon Cloth as a Highly Efficient Bifunctional Electrocatalyst for Oxygen Evolution and Reduction Reactions. ACS Applied Materials & Interfaces, 2018, 10, 30433-30440.	4.0	69
23	Highly active bifunctional oxygen electrocatalysts derived from nickel– or cobalt–phytic acid xerogel for zinc–air batteries. Nanoscale, 2018, 10, 15834-15841.	2.8	31
24	Metal–Air Batteries: From Static to Flow System. Advanced Energy Materials, 2018, 8, 1801396.	10.2	156
25	Realizing large-scale and controllable fabrication of active cobalt oxide nanorod catalysts for zinc-air battery. Chemical Engineering Science, 2019, 194, 127-133.	1.9	21
26	Long-Shelf-Life Polymer Electrolyte Based on Tetraethylammonium Hydroxide for Flexible Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2019, 11, 28909-28917.	4.0	81
27	Redoxâ€Inert Fe ³⁺ Ions in Octahedral Sites of Coâ€Fe Spinel Oxides with Enhanced Oxygen Catalytic Activity for Rechargeable Zinc–Air Batteries. Angewandte Chemie, 2019, 131, 13425-13430.	1.6	119
28	Selfâ€Catalyzed Growth of Co, Nâ€Codoped CNTs on Carbonâ€Encased CoS <i>_x</i> Surface: A Nobleâ€Metalâ€Free Bifunctional Oxygen Electrocatalyst for Flexible Solid Zn–Air Batteries. Advanced Functional Materials, 2019, 29, 1904481.	7.8	217
29	Electrochemical assay of hydrogen peroxide based on hybrids of Co3O4/biomass-derived carbon. Ionics, 2019, 25, 6051-6059.	1.2	8
30	Redoxâ€Inert Fe ³⁺ Ions in Octahedral Sites of Coâ€Fe Spinel Oxides with Enhanced Oxygen Catalytic Activity for Rechargeable Zinc–Air Batteries. Angewandte Chemie - International Edition, 2019, 58, 13291-13296.	7.2	355
31	Nanostructured Co-based bifunctional electrocatalysts for energy conversion and storage: current status and perspectives. Journal of Materials Chemistry A, 2019, 7, 18674-18707.	5.2	277
32	Mn-Doped Co–N–C Dodecahedron as a Bifunctional Electrocatalyst for Highly Efficient Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 14180-14188.	3.2	78
33	CuCo ₂ S ₄ Nanosheets@Nâ€Doped Carbon Nanofibers by Sulfurization at Room Temperature as Bifunctional Electrocatalysts in Flexible Quasiâ€Solidâ€State Zn–Air Batteries. Advanced Science, 2019, 6, 1900628.	5.6	123
34	Photoinduced Oxygen Reduction Reaction Boosts the Output Voltage of a Zinc–Air Battery. Angewandte Chemie - International Edition, 2019, 58, 12460-12464.	7.2	102
35	Photoinduced Oxygen Reduction Reaction Boosts the Output Voltage of a Zinc–Air Battery. Angewandte Chemie, 2019, 131, 12590-12594.	1.6	33
36	Toward Flexible and Wearable Zn–Air Batteries from Cotton Textile Waste. ACS Omega, 2019, 4, 19341-19349.	1.6	21
37	General and Scalable Fabrication of Core–Shell Metal Sulfides@C Anchored on 3D Nâ€Doped Foam toward Flexible Sodium Ion Batteries. Small, 2019, 15, e1903259.	5.2	62

#	Article	IF	CITATIONS
38	Oxygen Vacancy–Rich Inâ€Đoped CoO/CoP Heterostructure as an Effective Air Cathode for Rechargeable Zn–Air Batteries. Small, 2019, 15, e1904210.	5.2	142
39	Hybrid Co3O4@Co9S8 Electrocatalysts for Oxygen Evolution Reaction. Frontiers in Materials, 2019, 6,	1.2	11
40	Investigation of the Environmental Stability of Poly(vinyl alcohol)–KOH Polymer Electrolytes for Flexible Zinc–Air Batteries. Frontiers in Chemistry, 2019, 7, 678.	1.8	32
41	Bifunctional atomic iron-based catalyst for oxygen electrode reactions. Journal of Catalysis, 2019, 378, 353-362.	3.1	41
42	Monolithic heteronanomat paper air cathodes toward origami-foldable/rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2019, 7, 24231-24238.	5.2	27
43	Effective Oxygen Reduction Reaction Performance of FeCo Alloys In Situ Anchored on Nitrogen-Doped Carbon by the Microwave-Assistant Carbon Bath Method and Subsequent Plasma Etching. Nanomaterials, 2019, 9, 1284.	1.9	19
44	Engineering the In-Plane Structure of Metallic Phase Molybdenum Disulfide <i>via</i> Co and O Dopants toward Efficient Alkaline Hydrogen Evolution. ACS Nano, 2019, 13, 11733-11740.	7.3	75
45	Controlled Synthesis of Porous Co ₃ O ₄ Nanostructures for Efficient Electrochemical Sensing of Glucose. Journal of Nanomaterials, 2019, 2019, 1-7.	1.5	9
46	Facile loading mesoporous Co3O4 on nitrogen doped carbon matrix as an enhanced oxygen electrode catalyst. Materials Letters, 2019, 244, 78-82.	1.3	95
47	Recent Advances in Carbonâ€Based Bifunctional Oxygen Catalysts for Zincâ€Air Batteries. Batteries and Supercaps, 2019, 2, 743-765.	2.4	119
48	Applications of carbon nanotubes and graphene for third-generation solar cells and fuel cells. Nano Materials Science, 2019, 1, 77-90.	3.9	38
49	Studies on the Effect of the Substrate on the Electrocatalytic Performance of Electrodeposited NiFe Hydroxides for Oxygen Evolution Reaction. International Journal of Electrochemical Science, 2019, 14, 4173-4184.	0.5	8
50	Electrode Materials for Rechargeable Zinc-Ion and Zinc-Air Batteries: Current Status and Future Perspectives. Electrochemical Energy Reviews, 2019, 2, 395-427.	13.1	122
51	The surface engineering of cobalt carbide spheres throughÂN, B co-doping achieved by room-temperature <i>in situ</i> anchoring effects for active and durable multifunctional electrocatalysts. Journal of Materials Chemistry A, 2019, 7, 14904-14915.	5.2	88
52	Mesoporous Decoration of Freestanding Palladium Nanotube Arrays Boosts the Electrocatalysis Capabilities toward Formic Acid and Formate Oxidation. Advanced Energy Materials, 2019, 9, 1900955.	10.2	72
53	All-solid-state sponge-like squeezable zinc-air battery. Energy Storage Materials, 2019, 23, 375-382.	9.5	47
54	Rational design of multifunctional air electrodes for rechargeable Zn–Air batteries: Recent progress and future perspectives. Energy Storage Materials, 2019, 21, 253-286.	9.5	171
55	Charge redistribution of Co on cobalt (II) oxide surface for enhanced oxygen evolution electrocatalysis. Nano Energy, 2019, 61, 267-274.	8.2	35

	CITATION REI	PORT	
#	Article	IF	CITATIONS
56	Co ₃ O ₄ nanosheets on zeolite-templated carbon as an efficient oxygen electrocatalyst for a zinc–air battery. Journal of Materials Chemistry A, 2019, 7, 9988-9996.	5.2	60
57	Hollow Nanocages of NixCo1â^'xSe for Efficient Zinc–Air Batteries and Overall Water Splitting. Nano-Micro Letters, 2019, 11, 28.	14.4	63
58	Pt‣ike Oxygen Reduction Activity Induced by Costâ€Effective MnFeO ₂ /Nâ€Carbon. Chemistry - A European Journal, 2019, 25, 6226-6232.	1.7	18
59	Methacrylated gelatin-embedded fabrication of 3D graphene-supported Co3O4 nanoparticles for water splitting. Nanoscale, 2019, 11, 6866-6875.	2.8	13
60	Identifying the Activation of Bimetallic Sites in NiCo ₂ S ₄ @gâ€C ₃ N ₄ â€CNT Hybrid Electrocatalysts for Synergistic Oxygen Reduction and Evolution. Advanced Materials, 2019, 31, e1808281.	11.1	315
61	Nonsiliceous Mesoporous Materials: Design and Applications in Energy Conversion and Storage. Small, 2019, 15, 1805277.	5.2	13
62	BCNO Nanosheet Supported Co3O4 Nanoparticles as an Enhanced Electrocatalyst for Oxygen Evolution Reaction. Journal of the Electrochemical Society, 2019, 166, H177-H181.	1.3	5
63	Phaseâ€Transited Lysozymeâ€Driven Formation of Selfâ€Supported Co ₃ O ₄ @C Nanomeshes for Overall Water Splitting. Advanced Science, 2019, 6, 1900272.	5.6	95
64	Hollow Co3O4 Nanosphere Surrounded by N-Doped Graphitic Carbon Filled within Multilayer-Sandwiched Graphene Network: A High-Performance Anode for Lithium Storage. Inorganic Chemistry, 2019, 58, 3416-3424.	1.9	21
65	Controllable synthesis of nickel sulfide nanocatalysts and their phase-dependent performance for overall water splitting. Nanoscale, 2019, 11, 5646-5654.	2.8	148
66	Ultrathin Cobalt Oxide Layers as Electrocatalysts for Highâ€Performance Flexible Zn–Air Batteries. Advanced Materials, 2019, 31, e1807468.	11.1	227
67	Long-battery-life flexible zinc–air battery with near-neutral polymer electrolyte and nanoporous integrated air electrode. Journal of Materials Chemistry A, 2019, 7, 25449-25457.	5.2	61
68	In Situ Electrochemical Activation of a Codoped Heterogeneous System as a Highly Efficient Catalyst for the Oxygen Evolution Reaction in Alkaline Water Electrolysis. ACS Applied Energy Materials, 2019, 2, 8809-8817.	2.5	11
69	3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Applied Catalysis B: Environmental, 2019, 240, 193-200.	10.8	197
70	Alveolate porous carbon aerogels supported Co9S8 derived from a novel hybrid hydrogel for bifunctional oxygen electrocatalysis. Carbon, 2019, 144, 557-566.	5.4	177
71	Recent Advances in Flexible Zincâ€Based Rechargeable Batteries. Advanced Energy Materials, 2019, 9, 1802605.	10.2	296
72	Nitrogenâ€doped Carbon–CoO _{<i>x</i>} Nanohybrids: A Precious Metal Free Cathode that Exceeds 1.0â€W cm ^{â^'2} Peak Power and 100â€h Life in Anionâ€Exchange Membrane Fuel C Angewandte Chemie, 2019, 131, 1058-1063.	ellso	32
73	Nitrogenâ€doped Carbon–CoO _{<i>x</i>} Nanohybrids: A Precious Metal Free Cathode that Exceeds 1.0â€W cm ^{â^'2} Peak Power and 100â€h Life in Anionâ€Exchange Membrane Fuel C Angewandte Chemie - International Edition, 2019, 58, 1046-1051.	eমন্ত	117

#	Article	IF	CITATIONS
74	A Quasi‣olid‣tate Flexible Fiber‣haped Li–CO ₂ Battery with Low Overpotential and High Energy Efficiency. Advanced Materials, 2019, 31, e1804439.	11.1	151
75	Porous nanocomposite gel polymer electrolyte with high ionic conductivity and superior electrolyte retention capability for long-cycle-life flexible zinc–air batteries. Nano Energy, 2019, 56, 454-462.	8.2	212
76	Energy autonomous electronic skin. Npj Flexible Electronics, 2019, 3, .	5.1	245
77	Transitionâ€Metal Oxynitride: A Facile Strategy for Improving Electrochemical Capacitor Storage. Advanced Materials, 2019, 31, e1806088.	11.1	91
78	Carbon/Sulfur Composites Stabilized with Nano-TiNi for High-Performance Li–S Battery Cathodes. ACS Applied Energy Materials, 2019, 2, 1537-1543.	2.5	9
79	Hierarchical design and development of nanostructured trifunctional catalysts for electrochemical oxygen and hydrogen reactions. Nano Energy, 2019, 56, 724-732.	8.2	51
80	Twoâ€Step Activated Carbon Cloth with Oxygenâ€Rich Functional Groups as a Highâ€Performance Additiveâ€Free Air Electrode for Flexible Zinc–Air Batteries. Advanced Energy Materials, 2019, 9, 1802936.	10.2	170
81	Boosting oxygen reduction catalysis with N, F, and S tri-doped porous graphene: Tertiary N-precursors regulates the constitution of catalytic active sites. Carbon, 2019, 142, 1-12.	5.4	85
82	Non-noble Iron Group (Fe, Co, Ni)-Based Oxide Electrocatalysts for Aqueous Zinc–Air Batteries: Recent Progress, Challenges, and Perspectives. Organometallics, 2019, 38, 1186-1199.	1.1	51
83	Recent Progress on Transition Metal Oxides as Bifunctional Catalysts for Lithiumâ€Air and Zincâ€Air Batteries. Batteries and Supercaps, 2019, 2, 336-347.	2.4	173
84	Cobalt and nitrogen codoped ultrathin porous carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution. Carbon, 2019, 141, 704-711.	5.4	53
85	TiC supported amorphous MnOx as highly efficient bifunctional electrocatalyst for corrosion resistant oxygen electrode of Zn-air batteries. Nano Energy, 2020, 67, 104208.	8.2	93
86	Recent progress in grapheneâ€based electrodes for flexible batteries. InformaÄnÃ-Materiály, 2020, 2, 509-526.	8.5	122
87	Flexible 1D Batteries: Recent Progress and Prospects. Advanced Materials, 2020, 32, e1901961.	11.1	111
88	An Overview of Fiberâ€Shaped Batteries with a Focus on Multifunctionality, Scalability, and Technical Difficulties. Advanced Materials, 2020, 32, e1902151.	11.1	207
89	2D Nitrogenâ€Doped Carbon Nanotubes/Graphene Hybrid as Bifunctional Oxygen Electrocatalyst for Longâ€Life Rechargeable Zn–Air Batteries. Advanced Functional Materials, 2020, 30, 1906081.	7.8	190
90	Facile synthesis of nickel cobalt selenide hollow nanospheres as efficient bifunctional electrocatalyst for rechargeable Zn-air battery. Science China Materials, 2020, 63, 347-355.	3.5	32
91	Review—Energy Autonomous Wearable Sensors for Smart Healthcare: A Review. Journal of the Electrochemical Society, 2020, 167, 037516.	1.3	74

#	Article	IF	CITATIONS
92	Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction. Small, 2020, 16, e1906133.	5.2	328
93	Subnanometer iron clusters confined in a porous carbon matrix for highly efficient zinc–air batteries. Nanoscale Horizons, 2020, 5, 359-365.	4.1	27
94	Self-templated nitrogen-doped mesoporous carbon decorated with double transition-metal active sites for enhanced oxygen electrode catalysis. Rare Metals, 2020, 39, 824-833.	3.6	45
95	Carbon coated NixCoyMn1-x-yO/Mn3O4 with robust deficiencies grown on nanoporous alloy for enhanced Li-lon storage. Electrochimica Acta, 2020, 332, 135468.	2.6	3
96	Ultrafine SmMn2O5-δelectrocatalysts with modest oxygen deficiency for highly-efficient pH-neutral magnesium-air batteries. Journal of Power Sources, 2020, 449, 227482.	4.0	24
97	Engineering Hierarchical CoO Nanospheres Wrapped by Graphene via Controllable Sulfur Doping for Superior Li Ion Storage. Small, 2020, 16, e2003643.	5.2	36
98	In situ synthesis of Co3O4 nanoparticles confined in 3D nitrogen-doped porous carbon as an efficient bifunctional oxygen electrocatalyst. Rare Metals, 2020, 39, 1383-1394.	3.6	57
99	Synergistic engineering of 1D electrospun nanofibers and 2D nanosheets for sustainable applications. Sustainable Materials and Technologies, 2020, 26, e00214.	1.7	13
100	A review on recent advancement of nano-structured-fiber-based metal-air batteries and future perspective. Renewable and Sustainable Energy Reviews, 2020, 134, 110085.	8.2	27
101	Flexible and Wearable Power Sources for Nextâ€Generation Wearable Electronics. Batteries and Supercaps, 2020, 3, 1262-1274.	2.4	53
102	Kirigami-Inspired Flexible and Stretchable Zinc–Air Battery Based on Metal-Coated Sponge Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 54833-54841.	4.0	30
103	A Review of the Use of GPEs in Zinc-Based Batteries. A Step Closer to Wearable Electronic Gadgets and Smart Textiles. Polymers, 2020, 12, 2812.	2.0	33
104	d-Orbital steered active sites through ligand editing on heterometal imidazole frameworks for rechargeable zinc-air battery. Nature Communications, 2020, 11, 5858.	5.8	109
105	3D Foam Anode and Hydrogel Electrolyte for Highâ€Performance and Stable Flexible Zinc–Air Battery. ChemistrySelect, 2020, 5, 8305-8310.	0.7	15
106	Electrocatalysts optimized with nitrogen coordination for high-performance oxygen evolution reaction. Coordination Chemistry Reviews, 2020, 422, 213468.	9.5	38
107	Zinc based microâ€electrochemical energy storage devices: Present status and future perspective. EcoMat, 2020, 2, e12042.	6.8	34
108	Lithiationâ€Induced Vacancy Engineering of Co ₃ O ₄ with Improved Faradic Reactivity for Highâ€Performance Supercapacitor. Advanced Functional Materials, 2020, 30, 2004172.	7.8	156
109	Versatile Strategy to Design Flexible Planar-Integrated Microsupercapacitors Based on Co ₃ O ₄ -Decorated Laser-Induced Graphene. ACS Applied Energy Materials, 2020, 3, 10676-10684.	2.5	32

#	Article	IF	CITATIONS
110	Lithium and Stannum Hybrid Anodes for Flexible Wireâ€Type Lithium–Oxygen Batteries. Small Structures, 2020, 1, 2000015.	6.9	26
111	Synergistic Interfaceâ€Assisted Electrode–Electrolyte Coupling Toward Advanced Charge Storage. Advanced Materials, 2020, 32, e2005344.	11.1	64
112	The marriage of crystalline/amorphous Co/Co3O4 heterostructures with N-doped hollow carbon spheres: efficient and durable catalysts for oxygen reduction. Materials Today Energy, 2020, 18, 100497.	2.5	19
113	Sequential Electrodeposition of Bifunctional Catalytically Active Structures in MoO ₃ /Ni–NiO Composite Electrocatalysts for Selective Hydrogen and Oxygen Evolution. Advanced Materials, 2020, 32, e2003414.	11.1	206
114	Chromium-modulated multifunctional electrocatalytic activities of spinel oxide for Zn-air batteries and overall water splitting. Journal of Power Sources, 2020, 479, 229099.	4.0	19
115	Advanced architecture designs towards high-performance 3D microbatteries. Nano Materials Science, 2020, , .	3.9	18
116	Znâ€Based Oxides Anchored to Nitrogenâ€Doped Carbon Nanotubes as Efficient Bifunctional Catalysts for Znâ€Air Batteries. ChemElectroChem, 2020, 7, 2283-2296.	1.7	10
117	Polyaniline engineering defect-induced nitrogen doped carbon-supported Co3O4 hybrid composite as a high-efficiency electrocatalyst for oxygen evolution reaction. Applied Surface Science, 2020, 526, 146626.	3.1	36
118	Identifying Dense NiSe ₂ /CoSe ₂ Heterointerfaces Coupled with Surface Highâ€Valence Bimetallic Sites for Synergistically Enhanced Oxygen Electrocatalysis. Advanced Materials, 2020, 32, e2000607.	11.1	251
119	<i>In situ</i> structural evolution of the multi-site alloy electrocatalyst to manipulate the intermediate for enhanced water oxidation reaction. Energy and Environmental Science, 2020, 13, 2200-2208.	15.6	101
120	An Arealâ€Energy Standard to Validate Airâ€Breathing Electrodes for Rechargeable Zinc–Air Batteries. Advanced Energy Materials, 2020, 10, 2001287.	10.2	28
121	Bifunctional Oxygen Electrocatalyst of Mesoporous Ni/NiO Nanosheets for Flexible Rechargeable Zn–Air Batteries. Nano-Micro Letters, 2020, 12, 68.	14.4	103
122	Rhodium/graphitic-carbon-nitride composite electrocatalyst facilitates efficient hydrogen evolution in acidic and alkaline electrolytes. Journal of Colloid and Interface Science, 2020, 571, 30-37.	5.0	14
123	Efficient Energy Conversion and Storage Based on Robust Fluorideâ€Free Selfâ€Assembled 1D Niobium Carbide in 3D Nanowire Network. Advanced Science, 2020, 7, 1903680.	5.6	74
124	Co/CoN decorated nitrogen-doped porous carbon derived from melamine sponge as highly active oxygen electrocatalysts for zinc-air batteries. Journal of Power Sources, 2020, 453, 227900.	4.0	53
125	A Facile and Scalable Strategy for Fabrication of Superior Bifunctional Freestanding Air Electrodes for Flexible Zinc–Air Batteries. Advanced Functional Materials, 2020, 30, 2003407.	7.8	105
126	An Ironâ€Decorated Carbon Aerogel for Rechargeable Flow and Flexible Zn–Air Batteries. Advanced Materials, 2020, 32, e2002292.	11.1	213
127	Oxygen-Based Anion Redox for Lithium Batteries. Accounts of Chemical Research, 2020, 53, 1436-1444.	7.6	21

#	Article	IF	CITATIONS
128	Flexible Znâ€ion batteries based on manganese oxides: Progress and prospect. , 2020, 2, 387-407.		55
129	Single-unit-cell-thick layered electrocatalysts: from synthesis to application. Nanoscale Advances, 2020, 2, 2678-2687.	2.2	1
130	ZIF-8/LiFePO4 derived Fe-N-P Co-doped carbon nanotube encapsulated Fe2P nanoparticles for efficient oxygen reduction and Zn-air batteries. Nano Research, 2020, 13, 818-823.	5.8	64
131	An amorphous trimetallic (Ni–Co–Fe) hydroxide-sheathed 3D bifunctional electrode for superior oxygen evolution and high-performance cable-type flexible zinc–air batteries. Journal of Materials Chemistry A, 2020, 8, 5601-5611.	5.2	57
132	Quasi-solid-state fiber-shaped aqueous energy storage devices: recent advances and prospects. Journal of Materials Chemistry A, 2020, 8, 6406-6433.	5.2	47
133	Bifunctional Catalysts for Reversible Oxygen Evolution Reaction and Oxygen Reduction Reaction. Chemistry - A European Journal, 2020, 26, 3906-3929.	1.7	90
134	MOF Derived Co ₃ O ₄ @Co/NCNT Nanocomposite for Electrochemical Hydrogen Evolution, Flexible Zinc-Air Batteries, and Overall Water Splitting. Inorganic Chemistry, 2020, 59, 3160-3170.	1.9	67
135	Hierarchically structured Co3O4/SiO2 composites by Co nanocrystals transformation. Chemical Physics Letters, 2020, 740, 137068.	1.2	2
136	Surface Reorganization on Electrochemicallyâ€Induced Zn–Ni–Co Spinel Oxides for Enhanced Oxygen Electrocatalysis. Angewandte Chemie, 2020, 132, 6554-6561.	1.6	63
137	Surface Reorganization on Electrochemicallyâ€Induced Zn–Ni–Co Spinel Oxides for Enhanced Oxygen Electrocatalysis. Angewandte Chemie - International Edition, 2020, 59, 6492-6499.	7.2	217
138	Developing Indium-based Ternary Spinel Selenides for Efficient Solid Flexible Zn-Air Batteries and Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 8115-8123.	4.0	38
139	Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coordination Chemistry Reviews, 2020, 409, 213214.	9.5	182
140	Gadoliniumâ€Induced Valence Structure Engineering for Enhanced Oxygen Electrocatalysis. Advanced Energy Materials, 2020, 10, 1903833.	10.2	114
141	Unique advantages of 2D inorganic nanosheets in exploring high-performance electrocatalysts: Synthesis, application, and perspective. Coordination Chemistry Reviews, 2020, 415, 213280.	9.5	70
142	Towards high-performance microscale batteries: Configurations and optimization of electrode materials by in-situ analytical platforms. Energy Storage Materials, 2020, 29, 17-41.	9.5	25
143	Selfâ€Catalyzed Growth of Co–N–C Nanobrushes for Efficient Rechargeable Zn–Air Batteries. Small, 2020, 16, e2001171.	5.2	84
144	Hierarchical Carbon Microtube@Nanotube Core–Shell Structure for High-Performance Oxygen Electrocatalysis and Zn–Air Battery. Nano-Micro Letters, 2020, 12, 97.	14.4	57
145	A Rechargeable Zn–Air Battery with High Energy Efficiency and Long Life Enabled by a Highly Waterâ€Retentive Gel Electrolyte with Reaction Modifier. Advanced Materials, 2020, 32, e1908127.	11.1	172

#	Article	IF	CITATIONS
146	Cotton Clothâ€Induced Flexible Hierarchical Carbon Film for Sodiumâ€Ion Batteries. ChemElectroChem, 2020, 7, 2136-2144.	1.7	11
147	The Current State of Aqueous Zn-Based Rechargeable Batteries. ACS Energy Letters, 2020, 5, 1665-1675.	8.8	271
148	Cobalt Nanoparticles Embedded Nitrogen-Doped Carbon Nanotubes as Bifunctional Catalysts for Flexible Solid-State Zn-Air Battery. Journal of the Electrochemical Society, 2020, 167, 060521.	1.3	3
149	Recent advances in flexible fiber-shaped metal-air batteries. Energy Storage Materials, 2020, 28, 364-374.	9.5	79
150	A "trimurti" heterostructured hybrid with an intimate CoO/Co _x P interface as a robust bifunctional air electrode for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 9177-9184.	5.2	72
151	MOF-derived Co-MOF,O-doped carbon as trifunctional electrocatalysts to enable highly efficient Zn–air batteries and water-splitting. Journal of Energy Chemistry, 2021, 56, 290-298.	7.1	117
152	Strong coupled spinel oxide with N-rGO for high-efficiency ORR/OER bifunctional electrocatalyst of Zn-air batteries. Journal of Energy Chemistry, 2021, 57, 428-435.	7.1	45
153	A "Ship-in-a-Bottle―strategy to anchor CoFe nanoparticles inside carbon nanowall-assembled frameworks for high-efficiency bifunctional oxygen electrocatalysis. Chemical Engineering Journal, 2021, 417, 127895.	6.6	23
154	Formation of sandwiched leaf-like CNTs-Co/ZnCo2O4@NC-CNTs nanohybrids for high-power-density rechargeable Zn-air batteries. Nano Energy, 2021, 82, 105710.	8.2	133
155	Twoâ€Dimensional Transition Metal Oxides and Chalcogenides for Advanced Photocatalysis: Progress, Challenges, and Opportunities. Solar Rrl, 2021, 5, 2000403.	3.1	28
156	Surface and Interface Engineering: Molybdenum Carbide–Based Nanomaterials for Electrochemical Energy Conversion. Small, 2021, 17, e1903380.	5.2	87
157	Two-Dimensional Material-Based Heterostructures for Rechargeable Batteries. Cell Reports Physical Science, 2021, 2, 100286.	2.8	30
158	Cobalt sulfides constructed heterogeneous interfaces decorated on N,S-codoped carbon nanosheets as a highly efficient bifunctional oxygen electrocatalyst. Journal of Materials Chemistry A, 2021, 9, 13926-13935.	5.2	27
159	Smart fibers for energy conversion and storage. Chemical Society Reviews, 2021, 50, 7009-7061.	18.7	108
160	Accelerating the oxygen evolution reaction kinetics of Co ₃ O ₄ in neutral electrolyte by decorating RuO ₂ . Chemical Communications, 2021, 57, 2907-2910.	2.2	24
161	One-step synthesis of carbon-encapsulated nickel phosphide nanoparticles with efficient bifunctional catalysis on oxygen evolution and reduction. International Journal of Hydrogen Energy, 2021, 46, 8519-8530.	3.8	21
162	Co ₃ O ₄ –NiCo ₂ O ₄ Hybrid Nanoparticles Anchored on N-Doped Reduced Graphene Oxide Nanosheets as an Efficient Catalyst for Zn–Air Batteries. Energy & Fuels, 2021, 35, 4550-4558.	2.5	21
163	Ultrastable FeCo Bifunctional Electrocatalyst on Se-Doped CNTs for Liquid and Flexible All-Solid-State Rechargeable Zn–Air Batteries. Nano Letters, 2021, 21, 2255-2264.	4.5	120

#	Article	IF	CITATIONS
164	Binderâ€Free Air Electrodes for Rechargeable Zincâ€Air Batteries: Recent Progress and Future Perspectives. Small Methods, 2021, 5, e2000827.	4.6	66
165	Coupling Hierarchical Ultrathin Co Nanosheets With N-Doped Carbon Plate as High-Efficiency Oxygen Evolution Electrocatalysts. Frontiers in Nanotechnology, 2021, 3, .	2.4	3
166	Regulating the Catalytically Active Sites in Low-Cost and Earth-Abundant 3d Transition-Metal-Based Electrode Materials for High-Performance Zinc–Air Batteries. Energy & Fuels, 2021, 35, 6483-6503.	2.5	26
167	Stretchable Ni–Zn fabric battery based on sewable core–shell SCNF@Ni@NiCo LDHs thread cathode for wearable smart garment. Journal of Materials Science, 2021, 56, 10537-10554.	1.7	11
168	A Novel Fe and Cu Bimetallic Mixed Porous Carbon Material for Oxygen Reduction. Electrocatalysis, 2021, 12, 362-371.	1.5	2
169	Heteroatoms Adjusting Amorphous FeMn-Based Nanosheets via a Facile Electrodeposition Method for Full Water Splitting. ACS Sustainable Chemistry and Engineering, 2021, 9, 5963-5971.	3.2	18
170	Metal–Organic Frameworks and Metal–Organic Gels for Oxygen Electrocatalysis: Structural and Compositional Considerations. Advanced Materials, 2021, 33, e2008023.	11.1	60
171	Graphene-Based Two-Dimensional Mesoporous Materials: Synthesis and Electrochemical Energy Storage Applications. Materials, 2021, 14, 2597.	1.3	11
172	Recent Advances and Prospects of Fiberâ€Shaped Rechargeable Aqueous Alkaline Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100060.	2.8	5
173	Electronic fibers and textiles: Recent progress and perspective. IScience, 2021, 24, 102716.	1.9	60
174	Super-assembled carbon nanofibers decorated with dual catalytically active sites as bifunctional oxygen catalysts for rechargeable Zn-air batteries. Materials Today Energy, 2021, 20, 100682.	2.5	7
175	Toward Flexible Zinc–Air Batteries with Selfâ€Supported Air Electrodes. Small, 2021, 17, e2006773.	5.2	28
176	A-Site Doped Perovskite Oxide Strongly Interface Coupling with Carbon Nanotubes as a Promising Bifunctional Electrocatalyst for Solid-State Zn–Air Batteries. Energy & Fuels, 2021, 35, 12700-12705.	2.5	10
177	Bambooâ€Like Nanozyme Based on Nitrogenâ€Doped Carbon Nanotubes Encapsulating Cobalt Nanoparticles for Wound Antibacterial Applications. Advanced Functional Materials, 2021, 31, 2105198.	7.8	56
178	Dualâ€Phasic Carbon with Co Single Atoms and Nanoparticles as a Bifunctional Oxygen Electrocatalyst for Rechargeable Zn–Air Batteries. Advanced Functional Materials, 2021, 31, 2103360.	7.8	107
179	Molecular Control of Carbonâ€Based Oxygen Reduction Electrocatalysts through Metal Macrocyclic Complexes Functionalization. Advanced Energy Materials, 2021, 11, 2100866.	10.2	60
180	Support induced phase engineering toward superior electrocatalyst. Nano Research, 2022, 15, 1831-1837.	5.8	13
181	Textronics—A Review of Textileâ€Based Wearable Electronics. Advanced Engineering Materials, 2021, 23, 2100469.	1.6	79

#	Article	IF	CITATIONS
182	Heuristic Iron–Cobalt-Mediated Robust pH-Universal Oxygen Bifunctional Lusters for Reversible Aqueous and Flexible Solid-State Zn–Air Cells. ACS Nano, 2021, 15, 14683-14696.	7.3	51
183	Integrated Bifunctional Oxygen Electrodes for Flexible Zinc–Air Batteries: From Electrode Designing to Wearable Energy Storage. Advanced Materials Technologies, 2022, 7, 2100673.	3.0	12
184	Mn, N co-doped Co nanoparticles/porous carbon as air cathode for highly efficient rechargeable Zn-air batteries. Nano Research, 2022, 15, 1942-1948.	5.8	49
185	Development of high performance alpha-Co(OH)2/reduced graphene oxide microfilm for flexible in-sandwich and planar micro-supercapacitors. Journal of Colloid and Interface Science, 2021, 598, 1-13.	5.0	19
186	Recent advances in flexible batteries: From materials to applications. Nano Research, 2023, 16, 4821-4854.	5.8	37
187	Realizing Highâ€Energy and Stable Wireâ€Type Batteries with Flexible Lithium–Metal Composite Yarns. Advanced Energy Materials, 2021, 11, 2101809.	10.2	32
188	Wood Carbon Based Single-Atom Catalyst for Rechargeable Zn–Air Batteries. ACS Energy Letters, 2021, 6, 3624-3633.	8.8	103
189	Atomically dispersed iron atoms on nitrogen-doped porous carbon catalyst with high density and accessibility for oxygen reduction. Journal of Electroanalytical Chemistry, 2021, 898, 115627.	1.9	4
190	Air Electrodes for Flexible and Rechargeable Znâ ^{~,} Air Batteries. Small Structures, 2022, 3, 2100103.	6.9	46
191	Nanoporous Ni _{0.85} Se Electrocatalyst Anchored on rGO for Hydrazine Oxidation. Journal of the Electrochemical Society, 2021, 168, 104510.	1.3	17
192	Nickel decorated manganese oxynitride over graphene nanosheets as highly efficient visible light driven photocatalysts for acetylsalicylic acid degradation. Environmental Pollution, 2021, 289, 117864.	3.7	14
193	Three dimension Ni/Co-decorated N-doped hierarchically porous carbon derived from metal-organic frameworks as trifunctional catalysts for Zn-air battery and microbial fuel cells. Electrochimica Acta, 2021, 395, 139074.	2.6	8
194	Enhanced catalytic properties of cobaltosic oxide through constructing MXene-supported nanocomposites for ammonium perchlorate thermal decomposition. Applied Surface Science, 2021, 570, 151224.	3.1	21
195	Ru-incorporated Co3O4 nanoparticles from self-sacrificial ZIF-67 template as efficient bifunctional electrocatalysts for rechargeable metal-air battery. Journal of Colloid and Interface Science, 2022, 606, 654-665.	5.0	62
196	ZIF-derived "senbei―like Co ₉ S ₈ /CeO ₂ /Co heterostructural nitrogen-doped carbon nanosheets as bifunctional oxygen electrocatalysts for Zn-air batteries. Nanoscale, 2021, 13, 3227-3236.	2.8	33
197	Photothermal effect enables markedly enhanced oxygen reduction and evolution activities for high-performance Zn–air batteries. Journal of Materials Chemistry A, 2021, 9, 19734-19740.	5.2	33
198	Development of solid electrolytes in Zn–air and Al–air batteries: from material selection to performance improvement strategies. Journal of Materials Chemistry A, 2021, 9, 4415-4453.	5.2	67
199	MoS2 quantum dots decorated ultrathin NiO nanosheets for overall water splitting. Journal of Colloid and Interface Science, 2020, 566, 411-418.	5.0	38

# 200	ARTICLE Flexible metal–gas batteries: a potential option for next-generation power accessories for wearable electronics. Energy and Environmental Science, 2020, 13, 1933-1970.	IF 15.6	CITATIONS
201	Review—Recent Advance in Self-Supported Electrocatalysts for Rechargeable Zinc-Air Batteries. Journal of the Electrochemical Society, 2020, 167, 110564.	1.3	21
202	Recent Progress in Electrolytes for Zn–Air Batteries. Frontiers in Chemistry, 2020, 8, 372.	1.8	83
204	Atomically Thin Materials for Next-Generation Rechargeable Batteries. Chemical Reviews, 2022, 122, 957-999.	23.0	87
205	Hybrid power sources for wearable IoT devices. Denki Kagaku, 2020, 88, 331-336.	0.0	0
206	Textiles in soft robots: Current progress and future trends. Biosensors and Bioelectronics, 2022, 196, 113690.	5.3	50
208	Flexible one-dimensional Zn-based electrochemical energy storage devices: recent progress and future perspectives. Journal of Materials Chemistry A, 2021, 9, 26573-26602.	5.2	7
209	Modulation of pore-size in N, S-codoped carbon/Co9S8 hybrid for a stronger O2 affinity toward rechargable zinc-air battery. Nano Energy, 2022, 92, 106750.	8.2	27
210	Recent Progress of Electrospun Nanofibers for Zinc–Air Batteries. Advanced Fiber Materials, 2022, 4, 185-202.	7.9	33
211	Current advances and challenges in nanosheet-based wearable power supply devices. IScience, 2021, 24, 103477.	1.9	16
212	Engineering Gd2O3-Ni heterostructure for efficient oxygen reduction electrocatalysis via the electronic reconfiguration and adsorption optimization of intermediates. Chemical Engineering Journal, 2022, 433, 134597.	6.6	13
213	Efficient Bifunctional Oxygen Electrocatalysts for Rechargeable Zinc–Air Battery: Fe 3 O 4 /Nâ^'C Nanoflowers Derived from Aromatic Polyamide. ChemCatChem, 0, , .	1.8	4
214	Cobalt Nanocluster-Decorated N-Rich Hierarchical Carbon Architectures Efficiently Catalyze Oxygen Reduction and Hydrogen Evolution Reactions. ACS Sustainable Chemistry and Engineering, 2022, 10, 2001-2009.	3.2	8
215	Advanced electrospun nanofibers as bifunctional electrocatalysts for flexible metal-air (O2) batteries: Opportunities and challenges. Materials and Design, 2022, 214, 110406.	3.3	28
216	Self-grown layered double hydroxide nanosheets on bimetal-organic frameworks-derived N-doped CoOx carbon polyhedra for flexible all-solid-state rechargeable Zn-air batteries. Journal of Power Sources, 2022, 524, 231076.	4.0	10
217	Precisely tailored morphology of polyimine for simple synthesis of metal sulfide/carbon flower-like superstructures. Carbon, 2022, 190, 395-401.	5.4	3
218	Integratable solid-state zinc-air battery with extended cycle life inspired by bionics. Chemical Engineering Journal, 2022, 435, 134900.	6.6	11
219	Potassium Cobalt Pyrophosphate as a Nonprecious Bifunctional Electrocatalyst for Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2022, 14, 8992-9001.	4.0	9

#	Article	IF	CITATIONS
221	Roadmap for flexible solid-state aqueous batteries: From materials engineering and architectures design to mechanical characterizations. Materials Science and Engineering Reports, 2022, 148, 100671.	14.8	30
222	Cobalt-based oxygen electrocatalysts for zinc-air batteries: Recent progress, challenges, and perspectives. Nano Research, 2022, 15, 5038-5063.	5.8	25
223	Bioinspired Tough Solid‧tate Electrolyte for Flexible Ultralongâ€Life Zinc–Air Battery. Advanced Materials, 2022, 34, e2110585.	11.1	58
224	Bifunctional doped transition metal CoSSeNi–Pt/C for efficient electrochemical water splitting. International Journal of Hydrogen Energy, 2022, 47, 16862-16872.	3.8	9
225	Hanging meniscus configuration for characterizing oxygen-reduction electrocatalysts in highly concentrated electrolytes. Journal of Electroanalytical Chemistry, 2022, 913, 116288.	1.9	1
226	Covalent organic polymer derived N–doped carbon confined FeNi alloys as bifunctional oxygen electrocatalyst for rechargeable zinc-air battery. International Journal of Hydrogen Energy, 2022, 47, 16025-16035.	3.8	10
227	Hierarchically Nanostructured Solidâ€State Electrolyte for Flexible Rechargeable Zinc–Air Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	43
228	Hierarchically Nanostructured Solid‣tate Electrolyte for Flexible Rechargeable Zinc–Air Batteries. Angewandte Chemie, 2022, 134, .	1.6	13
229	Cobalt phosphosulfide nanoparticles encapsulated into heteroatom-doped carbon as bifunctional electrocatalyst for Znâ^'air battery. , 2022, 1, 100027.		51
230	Co3O4 Nanoneedle Array Grown on Carbon Fiber Paper for Air Cathodes towards Flexible and Rechargeable Zn–Air Batteries. Nanomaterials, 2021, 11, 3321.	1.9	3
231	Synergetic Chemistry and Interface Engineering of Hydrogel Electrolyte to Strengthen Durability of Solidâ€State Zn–Air Batteries. Small Methods, 2022, 6, e2101276.	4.6	41
232	Recent progress and future perspectives of flexible metalâ€air batteries. SmartMat, 2021, 2, 519-553.	6.4	43
233	Recent progress and perspectives on advanced flexible Zn-based batteries with hydrogel electrolytes. Materials Research Letters, 2022, 10, 501-520.	4.1	20
234	Hierarchical Core–Shell Co ₂ N/CoP Embedded in N, Pâ€doped Carbon Nanotubes as Efficient Oxygen Reduction Reaction Catalysts for Znâ€air Batteries. Small, 2022, 18, e2108094.	5.2	39
237	Multi-cavity carbon nanofiber film decorated with Co-N _{<i>x</i>} doped CNTs for lithium–sulfur batteries with high-areal-capacity. Journal of Materials Chemistry A, 2022, 10, 12168-12176.	5.2	8
238	CeO2 modified Ni-MOF as an efficient catalyst for electrocatalytic urea oxidation. , 0, 1, .		1
239	Highly active bifunctional electrocatalyst: Nanoporous (Ni,Co) _{0.} <scp> ₈₅ Se </scp> anchored on <scp>rGO</scp> for water and hydrazine oxidation. International Journal of Energy Research, 2022, 46, 15938-15947.	2.2	20
240	Antifreezing Zwitterionic-Based Hydrogel Electrolyte for Aqueous Zn Ion Batteries. ACS Applied Energy Materials, 2022, 5, 7530-7537.	2.5	24

#	Article	IF	CITATIONS
241	Solid-State Microbatteries. ACS Symposium Series, 0, , 181-200.	0.5	0
242	Enhancing microbial fuel cell performance by carbon nitride-based nanocomposites. , 2022, , 63-79.		0
243	In Situ Integrating Highly Ionic Conductive LDHâ€Array@PVA Gel Electrolyte and MXene/Zn Anode for Dendriteâ€Free Highâ€Performance Flexible Zn–Air Batteries. Advanced Energy Materials, 2022, 12, .	10.2	41
244	<scp>Sawtoothâ€edged</scp> zeolitic imidazolate framework codoped with Fe and Co as a bifunctional oxygen electrocatalyst for rechargeable liquid/solid <scp>zincâ€eir</scp> batteries. International Journal of Energy Research, 2022, 46, 22641-22652.	2.2	0
245	Mn-incorporated Co3O4 bifunctional electrocatalysts for zinc-air battery application: An experimental and DFT study. Applied Catalysis B: Environmental, 2022, 319, 121909.	10.8	45
246	Construction dual-regulated NiCo2S4 @Mo-doped CoFe-LDH for oxygen evolution reaction at large current density. Applied Catalysis B: Environmental, 2022, 319, 121917.	10.8	57
247	Rational construction of FeNi3/N doped carbon nanotubes for high-performance and reversible oxygen catalysis reaction for rechargeable Zn-air battery. Chemical Engineering Journal, 2023, 452, 139253.	6.6	19
248	Hydroxynaphthalene–Nb ₂ O ₅ complex photocatalysis for selective aerobic oxidation of amines induced by blue light. Sustainable Energy and Fuels, 2022, 6, 4437-4445.	2.5	2
249	A brief history of zinc–air batteries: 140 years of epic adventures. Energy and Environmental Science, 2022, 15, 4542-4553.	15.6	65
250	Single atomic Fe-pyridine N catalyst with dense active sites improve bifunctional electrocatalyst activity for rechargeable and flexible Zn-air batteries. Journal of Materials Chemistry A, 2022, 10, 20993-21003.	5.2	28
251	Efficient Electrocatalytic Oxidation of Glycerol via Promoted OH* Generation over Single-Atom-Bismuth-Doped Spinel Co ₃ O ₄ . ACS Catalysis, 2022, 12, 12432-12443.	5.5	63
252	Interfacial Electron Redistribution of FeCo2S4/N-S-rGO Boosting Bifunctional Oxygen Electrocatalysis Performance. Catalysts, 2022, 12, 1002.	1.6	2
253	Hollow CoO _{<i>X</i>} nanoparticle-embedded N-doped porous carbon as an efficient oxygen electrocatalyst for rechargeable zinc–air batteries. Materials Chemistry Frontiers, 2022, 6, 3706-3715.	3.2	2
254	Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes. Chemical Reviews, 2022, 122, 17155-17239.	23.0	67
255	Carbon-Encapsulated NCO _{4â^{~^}î²} /C Hierarchical Nano-Microflowers for Electrocatalytic Dechlorination of Dichloromethane. ACS Applied Nano Materials, 2022, 5, 14862-14870.	2.4	7
256	Poly(acrylic acid)-Based Composite Gel Polymer Electrolytes with High Mechanical Strength and Ionic Conductivity toward Flexible Zinc–Air Batteries with Long Cycling Lifetime. ACS Applied Materials & Interfaces, 2022, 14, 49801-49810.	4.0	15
257	A Honeycomb-like Ammonium-Ion Fiber Battery with High and Stable Performance for Wearable Energy Storage. Polymers, 2022, 14, 4149.	2.0	2
258	Carbon-based composites for rechargeable zinc-air batteries: A mini review. Frontiers in Chemistry, 0, 10, .	1.8	4

#	Article	IF	CITATIONS
259	Screen-Printing Preparation of High-Performance Nonenzymatic Glucose Sensors Based on Co ₃ O ₄ Nanoparticles-Embedded N-Doped Laser-Induced Graphene. ACS Applied Nano Materials, 2022, 5, 16655-16663.	2.4	7
260	FeNi coordination polymer based highly efficient and durable bifunction oxygen electrocatalyst for rechargeable zinc-air battery. Separation and Purification Technology, 2023, 308, 122974.	3.9	10
261	Understanding the Effect of Nickel Doping in Cobalt Spinel Oxides on Regulating Spin State to Promote the Performance of the Oxygen Reduction Reaction and Zinc–Air Batteries. ACS Energy Letters, 2023, 8, 159-168.	8.8	24
262	A review on system and materials for aqueous flexible metalâ \in "air batteries. , 2023, 5, .		8
263	Electrocatalysts for Flexible Devices. ACS Symposium Series, 0, , 237-257.	0.5	0
264	Aquatic Colloidal Graphene Gel Polymer Electrolyte for Flexible Rechargeable Zinc Air Batteries. Journal of the Electrochemical Society, 2022, 169, 120526.	1.3	3
265	Rational design of carbon-based electrocatalysts for enhancing redox reactions in rechargeable metal batteries. Nano Research, 2023, 16, 4246-4276.	5.8	10
267	Synergistic Bimetallic CoCuâ€Codecorated Carbon Nanosheet Arrays as Integrated Bifunctional Cathodes for Highâ€Performance Rechargeable/Flexible Zincâ€Air Batteries. Small, 2023, 19, .	5.2	8
268	Rational Design of Flexible Zn-Based Batteries for Wearable Electronic Devices. ACS Nano, 2023, 17, 1764-1802.	7.3	50
269	Rapid synthesis of doped metal oxides <i>via</i> Joule heating for oxygen electrocatalysis regulation. Journal of Materials Chemistry A, 2023, 11, 10267-10276.	5.2	6
270	Recent Advances in Wearable Aqueous Metalâ€Air Batteries: From Configuration Design to Materials Fabrication. Advanced Materials Technologies, 2023, 8, .	3.0	10
271	Flexible Gel Polymer Electrolytes Based on Carboxymethyl Cellulose Blended with Polyvinyl Alcohol or Polyacrylic Acid for Zincâ€Air Batteries. Batteries and Supercaps, 2023, 6, .	2.4	4
272	Multifunctional structural composite fibers in energy storage by extrusion-based manufacturing. Journal of Materials Research, 2023, 38, 2615-2630.	1.2	0
279	é«~æ•^åﷺ~碳基å,¬åŒ–å‰,çš"ç"ç©¶èį›å±•åŠå¶åœ¨é"Œç©ºæ°"电æ±ä¸åº"用. Science China Materials, 20	23,3666, 33	8123400.
292	Advances in Flexible Zinc-air Batteries: Working Principle, Preparation of Key Components, and	5.2	0

Advances in Flexible Zinc-air Batteries: Working Principle, Preparation of Key Components, and Electrode Configuration Design. Journal of Materials Chemistry A, 0, , . 292