Single-layered organic photovoltaics with double casca 18% efficiencies

Nature Communications 12, 309 DOI: 10.1038/s41467-020-20580-8

Citation Report

#	Article	IF	CITATIONS
1	Semitransparent polymer solar cells floating on water: selected transmission windows and active control of algal growth. Journal of Materials Chemistry C, 2021, 9, 13132-13143.	5.5	8
2	Recent progress of metal-halide perovskite-based tandem solar cells. Materials Chemistry Frontiers, 2021, 5, 4538-4564.	5.9	15
3	Machine learning-assisted development of organic photovoltaics <i>via</i> high-throughput <i>in situ</i> formulation. Energy and Environmental Science, 2021, 14, 3438-3446.	30.8	29
4	Progress and prospects of the morphology of non-fullerene acceptor based high-efficiency organic solar cells. Energy and Environmental Science, 0, , .	30.8	149
5	Electron-deficient diketone unit engineering for non-fused ring acceptors enabling over 13% efficiency in organic solar cells. Journal of Materials Chemistry A, 2021, 9, 14948-14957.	10.3	50
6	Bathocuproine as a cathode interlayer for nonfullerene organic solar cells with efficiency over 17%. Journal of Materials Chemistry A, 2021, 9, 23269-23275.	10.3	11
7	Design of ultra-high luminescent polymers for organic photovoltaic cells with low energy loss. Chemical Communications, 2021, 57, 9132-9135.	4.1	12
8	Adenine-based polymer modified zinc oxide for efficient inverted organic solar cells. Journal of Materials Chemistry C, 2021, 9, 11851-11858.	5.5	9
9	Non-fullerene electron acceptors with benzotrithiophene with π-extension terminal groups for the development of high-efficiency organic solar cells. Journal of Materials Chemistry C, 2021, 9, 13896-13903.	5.5	15
10	Zinc oxide nanoparticles as electron transporting interlayer in organic solar cells. Journal of Materials Chemistry C, 2021, 9, 14093-14114.	5.5	33
11	Efficient and moisture-resistant organic solar cells <i>via</i> simultaneously reducing the surface defects and hydrophilicity of an electron transport layer. Journal of Materials Chemistry C, 2021, 9, 13500-13508.	5.5	15
12	Molecular design revitalizes the low-cost PTV-polymer for highly efficient organic solar cells. National Science Review, 2021, 8, nwab031.	9.5	70
13	Over 70% Fill Factor of Allâ€Polymer Solar Cells Guided by the Law of Similarity and Intermiscibility. Solar Rrl, 2021, 5, 2100019.	5.8	6
14	Flexible organic solar cells for biomedical devices. Nano Research, 2021, 14, 2891-2903.	10.4	19
15	Developing Halogenâ€Free Polymer Donors for Efficient Nonfullerene Organic Solar Cells by Addition of Highly Electronâ€Đeficient Diketopyrrolopyrrole Unit. Solar Rrl, 2021, 5, 2100142.	5.8	9
16	Highâ€Efficiency Organic Photovoltaics using Eutectic Acceptor Fibrils to Achieve Current Amplification. Advanced Materials, 2021, 33, e2007177.	21.0	111
17	Ternaryâ€organic photovoltaics with J71 as donor and two compatible nonfullerene acceptors. Journal of Polymer Science, 0, , .	3.8	2
18	High-Performance Ternary Organic Solar Cells Enabled by Synergizing Fullerene and Non-fullerene Acceptors. Organic Materials, 2021, 03, 254-276.	2.0	6

ARTICLE IF CITATIONS Progress in Semitransparent Organic Solar Cells. Solar Rrl, 2021, 5, 2100041. 5.8 44 19 Co²⁺-Tuned Tin Oxide Interfaces for Enhanced Stability of Organic Solar Cells. Langmuir, 3.5 2021, 37, 3173-3179. Exploring Ternary Organic Solar Cells for the Improved Efficiency of 16.5% with the Compatible 21 Nonacyclic Carbazole-Based Nonfullerene Acceptors as the Third Component. ACS Applied Energy 5.123 Materials, 2021, 4, 2847-2855. Tuning the absorption and optoelectronic properties of naphthalene diimide based solar cells with non-fullerene acceptors. Chemical Papers, 2021, 75, 4327-4336. A Quinoxalineâ€Based D–A Copolymer Donor Achieving 17.62% Efficiency of Organic Solar Cells. 23 21.0 155 Advanced Materials, 2021, 33, e2100474. Largeâ€Area Bladeâ€Coated Solar Cells: Advances and Perspectives. Advanced Energy Materials, 2021, 11, 2100378. Manipulating Crystallization Kinetics of Conjugated Polymers in Nonfullerene Photovoltaic Blends 25 4.8 16 toward Refined Morphologies and Higher Performances. Macromolecules, 2021, 54, 4030-4041. Novel High-Efficiency Polymer Acceptors via Random Ternary Copolymerization Engineering Enables All-Polymer Solar Cells with Excellent Performance and Stability. ACS Applied Materials & amp; Interfaces, 2021, 13, 17892-17901. 8.0 26 Enhancing Photovoltaic Performances of Naphthaleneâ€Based Unfusedâ€Ring Electron Acceptors upon 27 5.8 21 Regioisomerization. Solar Rrl, 2021, 5, 2100094. Hybrid Perovskite Quantum Dot/Nonâ€Fullerene Molecule Solar Cells with Efficiency Over 15%. 14.9 44 Advanced Functional Materials, 2021, 31, 2101272. Mapping the Side-Chain Length of Small-Molecule Acceptors towards the Optimal Hierarchical 29 2.0 0 Morphology in Ternary Organic Solar Cells. Organic Materials, 2021, 03, 191-197. Highâ€Efficiency Organic Solar Cells Based on a Lowâ€Cost Fully Nonâ€Fused Electron Acceptor. Advanced Functional Materials, 2021, 31, 2101742. 98 Selective Extraction of Nonfullerene Acceptors from Bulk-Heterojunction Layer in Organic Solar $\mathbf{31}$ 2.9 3 Cells for Detailed Analysis of Microstructure. Materials, 2021, 14, 2107. Fluorination Enables Tunable Molecular Interaction and Photovoltaic Performance in Non-Fullerene 3.6 Solar Cells Based on Ester-Substituted Polythiophene. Frontiers in Chemistry, 2021, 9, 687996. Highly Efficient Non-Fused-Ring Electron Acceptors Enabled by the Conformational Lock and 33 8.0 30 Structural Isomerization Effects. ACS Applied Materials & amp; Interfaces, 2021, 13, 25214-25223. 18.4 % Organic Solar Cells Using a High Ionization Energy Selfâ€Assembled Monolayer as Holeâ€Extraction Interlayer. ChemSusChem, 2021, 14, 3569-3578. 6.8 121 Synergistic Engineering of Substituents and Backbones on Donor Polymers: Toward Terpolymer 35 Design of High-Performance Polymer Solar Cells. ACS Applied Materials & amp; Interfaces, 2021, 13, 8.0 22 23993-24004. Allâ€polymer solar cells with over 16% efficiency and enhanced stability enabled by compatible solvent and polymer additives. Aggregate, 2022, 3, e58.

#	Article	IF	CITATIONS
37	Recent progress of Yâ€series electron acceptors for organic solar cells. Nano Select, 2021, 2, 2029-2039.	3.7	35
38	Suppressing Energetic Disorder Enables Efficient Indoor Organic Photovoltaic Cells With a PTV Derivative. Frontiers in Chemistry, 2021, 9, 684241.	3.6	9
39	High-performance polymer solar cells with efficiency over 18% enabled by asymmetric side chain engineering of non-fullerene acceptors. Science China Chemistry, 2021, 64, 1192-1199.	8.2	181
40	An ultraviolet-ozone post-treatment to remove the inherent impurities in all-ambient solution-processed CsPbBr3 perovskite films. Applied Physics Letters, 2021, 118, 221604.	3.3	5
41	Dodecacyclicâ€Fused Electron Acceptors with Multiple Electronâ€Deficient Units for Efficient Organic Solar Cells. ChemSusChem, 2021, 14, 3544-3552.	6.8	15
42	Organic Solar Cells with 18% Efficiency Enabled by an Alloy Acceptor: A Twoâ€inâ€One Strategy. Advanced Materials, 2021, 33, e2100830.	21.0	323
43	Easy-processing saccharin doped ZnO electron extraction layer in efficient polymer solar cells. Solar Energy, 2021, 220, 706-712.	6.1	3
44	Molecular Properties and Aggregation Behavior of Small-Molecule Acceptors Calculated by Molecular Simulation. ACS Omega, 2021, 6, 14467-14475.	3.5	5
45	Control of aggregated structure of photovoltaic polymers for highâ€efficiency solar cells. Aggregate, 2021, 2, e46.	9.9	60
46	Tuning Aggregation Behavior of Polymer Donor <i>via</i> <scp>Molecularâ€Weight</scp> Control for Achieving 17.1% Efficiency Inverted Polymer Solar Cells. Chinese Journal of Chemistry, 2021, 39, 1941-1947.	4.9	33
47	Recent advances of interface engineering for non-fullerene organic solar cells. Organic Electronics, 2021, 93, 106141.	2.6	27
48	Two star-shaped small molecule donors based on benzodithiophene unit for organic solar cells. Chinese Chemical Letters, 2022, 33, 247-251.	9.0	21
49	A unified description of non-radiative voltage losses in organic solar cells. Nature Energy, 2021, 6, 799-806.	39.5	235
50	Airâ€Processed Efficient Organic Solar Cells from Aromatic Hydrocarbon Solvent without Solvent Additive or Postâ€Treatment: Insights into Solvent Effect on Morphology. Energy and Environmental Materials, 2022, 5, 977-985.	12.8	59
51	Narrowâ€Bandgap Singleâ€Component Polymer Solar Cells with Approaching 9% Efficiency. Advanced Materials, 2021, 33, e2101295.	21.0	53
52	Tricyclic or Pentacyclic D Units: Design of Dâ~π–A-Type Copolymers for High <i>V</i> _{OC} Organic Photovoltaic Cells. ACS Applied Materials & Interfaces, 2021, 13, 30756-30765.	8.0	16
53	An Overview of Highâ€Performance Indoor Organic Photovoltaics. ChemSusChem, 2021, 14, 3428-3448.	6.8	21
54	Porphyrin Acceptors with Two Perylene Diimide Dimers for Organic Solar Cells. ChemSusChem, 2021, 14, 3614-3621.	6.8	2

#	Article	IF	CITATIONS
55	Probing morphology and chemistry in complex soft materials with in situ resonant soft x-ray scattering. Journal of Physics Condensed Matter, 2021, 33, 313001.	1.8	5
56	Enhancing the photovoltaic performance with two similar structure polymers as donors by broadening the absorption spectrum and optimizing the molecular arrangement. Organic Electronics, 2021, 93, 106153.	2.6	6
57	Exploring the Charge Dynamics and Energy Loss in Ternary Organic Solar Cells with a Fill Factor Exceeding 80%. Advanced Energy Materials, 2021, 11, 2101338.	19.5	62
58	Achieving over 10 % Efficiency in Poly(3â€hexylthiophene)â€Based Organic Solar Cells via Solid Additives. ChemSusChem, 2021, 14, 3607-3613.	6.8	43
59	A benzo[ghi]-perylene triimide based double-cable conjugated polymer for single-component organic solar cells. Chinese Chemical Letters, 2022, 33, 466-469.	9.0	23
60	13.4 % Efficiency from Allâ€&mallâ€Molecule Organic Solar Cells Based on a Crystalline Donor with Chlorine and Trialkylsilyl Substitutions. ChemSusChem, 2021, 14, 3535-3543.	6.8	15
61	Improved Photovoltaic Performance of Polymer Solar Cells via a Volatile and Nonhalogen Additive to Optimize Crystallinity. ACS Applied Energy Materials, 2021, 4, 7129-7137.	5.1	17
62	Ternary solar cells via ternary polymer donors and third component PC71BM to optimize morphology with 13.15% efficiency. Solar Energy, 2021, 222, 18-26.	6.1	37
63	Recent Progress of Organic Photovoltaics with Efficiency over 17%. Energies, 2021, 14, 4200.	3.1	75
64	Controlling Polymer Morphology in Blade-Coated All-Polymer Solar Cells. Chemistry of Materials, 2021, 33, 5951-5961.	6.7	14
65	Highly Efficient Ternary Solar Cells with Efficient Förster Resonance Energy Transfer for Simultaneously Enhanced Photovoltaic Parameters. Advanced Functional Materials, 2021, 31, 2105304.	14.9	30
66	Molecular packing modulation enabling optimized blend morphology and efficient all small molecule organic solar cells. Dyes and Pigments, 2021, 191, 109387.	3.7	10
67	Digital printing of a novel electrode for stable flexible organic solar cells with a power conversion efficiency of 8.5%. Scientific Reports, 2021, 11, 14212.	3.3	10
68	Conductive Ionenes Promote Interfacial Self-Doping for Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 41810-41817.	8.0	18
69	Characteristics of Non-Fullerene Acceptor-Based Organic Photovoltaic Active Layers Using X-ray Scattering and Solid-State NMR. Journal of Physical Chemistry C, 2021, 125, 15863-15871.	3.1	2
70	~1.2 V open-circuit voltage from organic solar cells. Journal of Semiconductors, 2021, 42, 070202.	3.7	11
71	17.6%â€Efficient Quasiplanar Heterojunction Organic Solar Cells from a Chlorinated 3D Network Acceptor. Advanced Materials, 2021, 33, e2102778.	21.0	87
72	Boosting Highly Efficient Hydrocarbon Solvent-Processed All-Polymer-Based Organic Solar Cells by Modulating Thin-Film Morphology. ACS Applied Materials & Interfaces, 2021, 13, 34301-34307.	8.0	20

CITATION REPORT ARTICLE IF CITATIONS Unveiling structure-performance relationships from multi-scales in non-fullerene organic 12.8 98 photovoltaics. Nature Communications, 2021, 12, 4627. Tackling voltage losses. Nature Energy, 2021, 6, 775-776. 39.5 A Wellâ€Mixed Phase Formed by Two Compatible Nonâ€Fullerene Acceptors Enables Ternary Organic Solar 21.0 354 Cells with Efficiency over 18.6%. Advanced Materials, 2021, 33, e2101733. Nanocrystalâ€enabled front surface bandgap gradient for the reduction of surface recombination in 5.8 inverted perovskite solar cells. Solar Rrl, 2021, 5, 2100489. Roles and Impacts of Ancillary Materials for Multiâ€Component Blend Organic Photovoltaics towards 6.8 4 High Efficiency and Stability. ChemSusChem, 2021, 14, 3475-3487. High-Performance Simple Nonfused Ring Electron Acceptors with Diphenylamino Flanking Groups. ACS Applied Materials & amp; Interfaces, 2021, 13, 39652-39659. 8.0 Marcus Hole Transfer Governs Charge Generation and Device Operation in Nonfullerene Organic 17.4 41 Solar Cells. ACS Energy Letters, 2021, 6, 2971-2981. All-polymer solar cells. Journal of Semiconductors, 2021, 42, 080301. 36 Influence of thermal annealing on the charge generation and transport in PM6-based non-fullerene 2.2 1 solar cells. Journal of Materials Science: Materials in Electronics, 2021, 32, 22879-22889. Regioregular narrow bandgap copolymer with strong aggregation ability for high-performance 16.0 semitransparent photovoltaics. Nano Energy, 2021, 86, 106098. High-performance alloy-like ternary organic solar cells with two compatible non-fullerene 2.6 6 acceptors. Organic Electronics, 2021, 95, 106201. Completely non-fused electron acceptor with 3D-interpenetrated crystalline structure enables 12.8 210 efficient and stable organic solar cell. Nature Communications, 2021, 12, 5093. Realizing Stable Highâ€Performance and Lowâ€Energyâ€Loss Ternary Photovoltaics through Judicious 5.8 18 Selection of the Third Component. Solar Rrl, 2021, 5, 2100450. Concurrently Improved <i>J</i>_{sc}, Fill Factor, and Stability in a Ternary Organic Solar Cell Enabled by a C-Shaped Non-fullerene Acceptor and Its Structurally Similar Third Component. ACS Applied Materials & amp; Interfaces, 2021, 13, 40766-40777. 8.0 Improved Charge Transport and Reduced Carrier Recombination of Nonfullerene Organic Solar Cells 9 5.1with the Binary Solvent. ACS Applied Energy Materials, 2021, 4, 8175-8182. Modulating Chlorination Position on Polymer Donors for Highly Efficient Nonfullerene Organic 5.8 Solar Cells. Solar Rrl, 2021, 5, 2100510. Interfacial and Permeating Modification Effect of n-type Non-fullerene Acceptors toward 8.0 17 High-Performance Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2021, 13, 40778-40787.

90Short Excitedâ€State Lifetimes Mediate Chargeâ€Recombination Losses in Organic Solar Cell Blends with
Low Chargeâ€Transfer Driving Force. Advanced Materials, 2022, 34, e2101784.21.011

73

74

75

77

79

81

83

85

87

		CITATION REPORT	
#	Article	IF	CITATIONS
91	The performance-stability conundrum of BTP-based organic solar cells. Joule, 2021, 5, 2129-2147.	24.0	133
92	Mechanical Robust Flexible Singleâ€Component Organic Solar Cells. Small Methods, 2021, 5, e2100481.	8.6	33
93	Impact of inkjet printing parameters on the morphology and device performance of organic photovoltaics. Journal Physics D: Applied Physics, 2021, 54, 465105.	2.8	4
94	Design and synthesis of the quinacridone-based donor polymers for application to organic solar cells. Journal of Industrial and Engineering Chemistry, 2021, 101, 135-143.	5.8	12
95	Aminonaphthalimideâ€Based Molecular Cathode Interlayers for As ast Organic Solar Cells. ChemSusChem, 2021, 14, 4783-4792.	6.8	14
96	Using Two Compatible Donor Polymers Boosts the Efficiency of Ternary Organic Solar Cells to 17.7%. Chemistry of Materials, 2021, 33, 7254-7262.	6.7	35
97	Nanoscale heterogeneous distribution of surface energy at interlayers in organic bulk-heterojunction solar cells. Joule, 2021, 5, 3154-3168.	24.0	45
98	Semitransparent organic solar cells based on all-low-bandgap donor and acceptor materials and their performance potential. Materials Today Energy, 2021, 21, 100807.	4.7	23
99	Low ost and efficient organic solar cells based on polythiophene―and poly(thiophene) Tj ETQq0 0 0 rgBT /(Dverlock 10) Tf 50 422 To
100	A Multi-modal Approach to Understanding Degradation of Organic Photovoltaic Materials. ACS Applied Materials & Interfaces, 2021, 13, 44641-44655.	8.0	2
101	Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency. Joule, 2021, 5, 2408-2419.	24.0	419
102	Unprecedented Longâ€∓erm Thermal Stability of 1D/2A Terpolymerâ€Based Polymer Solar Cells Processed with Nonhalogenated Solvent. Solar Rrl, 2021, 5, 2100513.	5.8	7
103	Graphdiyne oxide modified nano CuO as inorganic hole transport layer for efficient and stable organic solar cells. 2D Materials, 2021, 8, 044015.	4.4	4
104	Reconciling the Driving Force and the Barrier to Charge Separation in Donor–Nonfullerene Acceptor Films. ACS Energy Letters, 2021, 6, 3572-3581.	17.4	10
105	Ternary organic solar cells with improved efficiency and stability enabled by compatible dual-acceptor strategy. Organic Electronics, 2021, 96, 106227.	2.6	16
106	Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years. Nature Communications, 2021, 12, 5419.	12.8	128
107	Emerging Chemistry in Enhancing the Chemical and Photochemical Stabilities of Fusedâ€Ring Electron Acceptors in Organic Solar Cells. Advanced Functional Materials, 2021, 31, 2106735.	14.9	36
108	Germanium nanoparticles film as a room-temperature electron transport layer for organic solar cells. Solar Energy, 2021, 226, 421-426.	6.1	3

#	Article	IF	CITATIONS
109	Enhancing the Photovoltaic Performance of Triplet Acceptors Enabled by Side hain Engineering. Solar Rrl, 2021, 5, 2100522.	5.8	12
110	Defect density and performance influenced by ozone treatment of ZnO interface in inverted organic solar cell. Solar Energy, 2021, 225, 942-949.	6.1	6
111	18.5% Efficiency Organic Solar Cells with a Hybrid Planar/Bulk Heterojunction. Advanced Materials, 2021, 33, e2103091.	21.0	136
112	18.77 % Efficiency Organic Solar Cells Promoted by Aqueous Solution Processed Cobalt(II) Acetate Hole Transporting Layer. Angewandte Chemie, 2021, 133, 22728-22735.	2.0	28
113	Singlet and Triplet Excited-State Dynamics of a Nonfullerene Electron Acceptor Y6. Journal of Physical Chemistry C, 2021, 125, 20806-20813.	3.1	29
114	18.77 % Efficiency Organic Solar Cells Promoted by Aqueous Solution Processed Cobalt(II) Acetate Hole Transporting Layer. Angewandte Chemie - International Edition, 2021, 60, 22554-22561.	13.8	152
115	Transparent organic photovoltaics: A strategic niche to advance commercialization. Joule, 2021, 5, 2261-2272.	24.0	44
116	Melamine-Doped Cathode Interlayer Enables High-Efficiency Organic Solar Cells. ACS Energy Letters, 2021, 6, 3582-3589.	17.4	45
117	Highly crystalline acceptor materials based on benzodithiophene with different amount of fluorine substitution on alkoxyphenyl conjugated side chains for organic photovoltaics. Materials Reports Energy, 2021, 1, 100059.	3.2	2
118	A dithienobenzothiadiazole-quaterthiophene wide bandgap polymer enables non-fullerene based polymer solar cells with over 15% efficiency. Polymer, 2021, 233, 124193.	3.8	12
119	Effects of brominated terminal groups on the performance of fused-ring electron acceptors in organic solar cells. Dyes and Pigments, 2021, 194, 109652.	3.7	3
120	Perspective on the perovskite quantum dots for flexible photovoltaics. Journal of Energy Chemistry, 2021, 62, 505-507.	12.9	20
121	Nanoscale Phase Separation in Ternary Organic Solar Cells Based on PTB7:PC ₇₀ BM:IC ₇₀ BA. Journal of Nanoscience and Nanotechnology, 2021, 21, 5749-5755.	0.9	0
122	High-performance hole transport layer based on WS2 doped PEDOT:PSS for organic solar cells. Organic Electronics, 2021, 99, 106305.	2.6	18
123	Improvement in power conversion efficiency of all-polymer solar cells enabled by ultrafast channels for charge dynamics. Materials Today Nano, 2021, 16, 100133.	4.6	2
124	Highly stable inverted non-fullerene OSCs by surface modification of SnO2 with an easy-accessible material. Chemical Engineering Journal, 2021, 426, 131583.	12.7	8
125	Explore fused-ring core incorporated A-Ï€-D-Ï€-A type acceptors and their application in organic solar cells: Insight into molecular conformation, optical and electrochemical properties, film morphology, and energy loss. Dyes and Pigments, 2021, 196, 109572.	3.7	1
126	Fine-tuned crystallinity of polymerized non-fullerene acceptor via molecular engineering towards efficient all-polymer solar cell. Chemical Engineering Journal, 2022, 428, 131232.	12.7	20

#	Article	IF	CITATIONS
127	Boosting the photovoltaic performance of ladder-type heteroheptacene-based nonfullerene acceptors by incorporating auxochromic groups in the electron-rich core. Chemical Engineering Journal, 2022, 427, 131022.	12.7	7
128	Ester side chains engineered quinoxaline based D-A copolymers for high-efficiency all-polymer solar cells. Chemical Engineering Journal, 2022, 429, 132551.	12.7	16
129	A selenophene-containing near-infrared unfused acceptor for efficient organic solar cells. Chemical Engineering Journal, 2022, 429, 132298.	12.7	28
130	Hydrogen bond induced high-performance quaternary organic solar cells with efficiency up to 17.48% and superior thermal stability. Materials Chemistry Frontiers, 2021, 5, 3850-3858.	5.9	28
131	Medium band-gap non-fullerene acceptors based on a benzothiophene donor moiety enabling high-performance indoor organic photovoltaics. Energy and Environmental Science, 2021, 14, 4555-4563.	30.8	43
132	17.25% high efficiency ternary solar cells with increased open-circuit voltage using a high HOMO level small molecule guest donor in a PM6:Y6 blend. Journal of Materials Chemistry A, 2021, 9, 20493-20501.	10.3	24
133	Recent advances in PM6:Y6-based organic solar cells. Materials Chemistry Frontiers, 2021, 5, 3257-3280.	5.9	138
134	A metal chelation strategy suppressing chemical reduction between PEDOT and polyethylenimine for a printable low-work function electrode in organic solar cells. Journal of Materials Chemistry A, 2021, 9, 3918-3924.	10.3	9
135	Impact of fluorine substituted π-bridges on the photovoltaic performance of organic small-molecule donor materials. Molecular Systems Design and Engineering, 2021, 6, 739-747.	3.4	2
136	Manipulating the intermolecular stacking of polymeric donors for efficient organic solar cells. Journal of Materials Chemistry C, 2021, 9, 14209-14216.	5.5	8
137	Porphyrin-Based All-Small-Molecule Organic Solar Cells With Absorption-Complementary Nonfullerene Acceptor. IEEE Journal of Photovoltaics, 2022, 12, 316-321.	2.5	3
138	Uphill and downhill charge generation from charge transfer to charge separated states in organic solar cells. Journal of Materials Chemistry C, 2021, 9, 14463-14489.	5.5	10
139	Developing the Nondevelopable: Creating Curved‣urface Electronics from Nonstretchable Devices. Advanced Materials, 2022, 34, e2106683.	21.0	22
140	Enabling High Efficiency of Hydrocarbonâ€Solvent Processed Organic Solar Cells through Balanced Charge Generation and Nonâ€Radiative Loss. Advanced Energy Materials, 2021, 11, 2101768.	19.5	61
141	Allâ€Green Solventâ€Processed Planar Heterojunction Organic Solar Cells with Outstanding Power Conversion Efficiency of 16%. Advanced Functional Materials, 2022, 32, 2107567.	14.9	58
142	Advances and prospective in thermally stable nonfullerene polymer solar cells. Science China Chemistry, 2021, 64, 1875-1887.	8.2	31
143	Efficiency Improvement of All‣mallâ€Molecule Organic Solar Cells Through Fusedâ€Aromaticâ€Ring Sideâ€Chained Donors. Solar Rrl, 2021, 5, .	5.8	7
144	Simple Nonfused Ring Electron Acceptors with 3D Network Packing Structure Boosting the Efficiency of Organic Solar Cells to 15.44%. Advanced Energy Materials, 2021, 11, 2102591.	19.5	111

#	Article	IF	CITATIONS
145	Zirconium-Doped Zinc Oxide Nanoparticles as Cathode Interfacial Layers for Efficiently Rigid and Flexible Organic Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 10616-10621.	4.6	11
146	Surface Reconstruction for Stable Monolithic Allâ€Inorganic Perovskite/Organic Tandem Solar Cells with over 21% Efficiency. Advanced Functional Materials, 2022, 32, .	14.9	47
147	Multiâ€Functional Solid Additive Induced Favorable Vertical Phase Separation and Ordered Molecular Packing for Highly Efficient Layerâ€byâ€Layer Organic Solar Cells. Small, 2021, 17, e2103497.	10.0	49
148	Gradual chlorination at different positions of D-ï€-A copolymers based on benzodithiophene and isoindigo for organic solar cells. Materials Reports Energy, 2021, 1, 100065.	3.2	3
149	Thermoplastic Elastomer Tunes Phase Structure and Promotes Stretchability of Highâ€Efficiency Organic Solar Cells. Advanced Materials, 2021, 33, e2106732.	21.0	101
150	Simple Nonfusedâ€Ring Electron Acceptors with Noncovalently Conformational Locks for Lowâ€Cost and Highâ€Performance Organic Solar Cells Enabled by Endâ€Group Engineering. Advanced Functional Materials, 2022, 32, 2108861.	14.9	84
151	Direct Observation of the Charge Transfer States from a Non-Fullerene Organic Solar Cell with a Small Driving Force. Journal of Physical Chemistry Letters, 2021, 12, 10595-10602.	4.6	12
152	Polymer Solar Cells with 18.74% Efficiency: From Bulk Heterojunction to Interdigitated Bulk Heterojunction. Advanced Functional Materials, 2022, 32, 2108797.	14.9	116
153	New Electron Acceptor with End-Extended Conjugation for High-Performance Polymer Solar Cells. Energy & Fuels, 0, , .	5.1	5
154	A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents. Nature Energy, 2021, 6, 1045-1053.	39.5	230
155	12Еquinoxaline[2,3-b]phenoxazines: Synthesis, optical, electrochemical properties and insight into photovoltaic application. Dyes and Pigments, 2022, 197, 109848.	3.7	7
156	Fused-heterocycle engineering on asymmetric non-fullerene acceptors enables organic solar cells approaching 29ÂmA/cm2 short-circuit current density. Chemical Engineering Journal, 2022, 430, 132830.	12.7	19
157	Solid additives in organic solar cells: progress and perspectives. Journal of Materials Chemistry C, 2022, 10, 2364-2374.	5.5	40
158	High-efficiency organic solar cells enabled by an alcohol-washable solid additive. Science China Chemistry, 2021, 64, 2161-2168.	8.2	32
159	Investigation of tunable halogen-free solvent engineering on aggregation and miscibility towards high-performance organic solar cells. Nano Energy, 2022, 91, 106678.	16.0	42
160	Nearâ€Infrared Nonfullerene Acceptors Based on 4 <i>H</i> â€Cyclopenta[1,2â€ <i>b</i> :5,4â€ <i>b</i> â€2]dithiophene for Organic Solar Cells and Organic Fieldâ€Effect Transistors. Chemistry - an Asian Journal, 2021, 16, 4171-4178.	3.3	9
161	Introducing Lowâ€Cost Pyrazine Unit into Terpolymer Enables Highâ€Performance Polymer Solar Cells with Efficiency of 18.23%. Advanced Functional Materials, 2022, 32, 2109271.	14.9	49
162	Efficient Organic Solar Cells Enabled by Chlorinated Nonplanar Small Molecules. ACS Applied Energy Materials, 2021, 4, 12974-12981.	5.1	7

#	Article	IF	CITATIONS
163	Organic Thin Films Deposited by Matrix-Assisted Pulsed Laser Evaporation (MAPLE) for Photovoltaic Cell Applications: A Review. Coatings, 2021, 11, 1368.	2.6	7
164	Asymmetric Non-Fullerene Small-Molecule Acceptors toward High-Performance Organic Solar Cells. ACS Central Science, 2021, 7, 1787-1797.	11.3	58
165	Upper and Apparent Lower Critical Solution Temperature Branches in the Phase Diagram of Polymer:Small Molecule Semiconducting Systems. Journal of Physical Chemistry Letters, 2021, 12, 10845-10853.	4.6	7
166	Manipulating the Crystalline Morphology in the Nonfullerene Acceptor Mixture to Improve the Carrier Transport and Suppress the Energetic Disorder. Small Science, 2022, 2, 2100092.	9.9	5
167	Organoboron molecules and polymers for organic solar cell applications. Chemical Society Reviews, 2022, 51, 153-187.	38.1	92
168	Near-infrared absorbing polymer acceptors enabled by selenophene-fused core and halogenated end-group for binary all-polymer solar cells with efficiency over 16%. Nano Energy, 2022, 92, 106718.	16.0	65
169	Contrasting the Charge Carrier Mobility of Isotactic, Syndiotactic, and Atactic Poly((<i>N</i> -carbazolylethylthio)propyl methacrylate). ACS Macro Letters, 2021, 10, 1493-1500.	4.8	5
170	Increasing donor-acceptor spacing for reduced voltage loss in organic solar cells. Nature Communications, 2021, 12, 6679.	12.8	56
171	Ternary Blend Organic Solar Cells: Understanding the Morphology from Recent Progress. Advanced Materials, 2022, 34, e2107476.	21.0	100
172	Doping Approaches for Organic Semiconductors. Chemical Reviews, 2022, 122, 4420-4492.	47.7	153
173	Ladder-Type Fused Benzodithiophene Extended along the Short-Axis Direction as a New Donor Building Block for Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 57693-57702.	8.0	4
174	Efficient Organic Solar Cells Enabled by Simple Nonâ€Fused Electron Donors with Low Synthetic Complexity. Small, 2022, 18, e2104623.	10.0	30
175	Systematically Controlling Acceptor Fluorination Optimizes Hierarchical Morphology, Vertical Phase Separation, and Efficiency in Nonâ€Fullerene Organic Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	46
176	Insulating Polymers as Additives to Bulkâ€Heterojunction Organic Solar Cells: The Effect of Miscibility. ChemPhysChem, 2022, 23, .	2.1	20
177	Direct Observations of Uniform Bulk Heterojunctions and the Energy Level Alignments in Nonfullerene Organic Photovoltaic Active Layers. ACS Applied Materials & Interfaces, 2021, 13, 56430-56437.	8.0	0
178	Polymerized Smallâ€Molecule Acceptor as an Interface Modulator to Increase the Performance of Allâ€Smallâ€Molecule Solar Cells. Advanced Energy Materials, 2022, 12, 2102394.	19.5	15
179	A review on oxide/metal/oxide thin films on flexible substrates as electrodes for organic and perovskite solar cells. Optical Materials: X, 2022, 13, 100122.	0.8	11
180	A polymer donor with versatility for fabricating high-performance ternary organic photovoltaics. Chemical Engineering Journal, 2022, 431, 133950.	12.7	25

	CITATION R	EPORT	
#	Article	IF	CITATIONS
181	Wide-bandgap organic solar cells with a novel perylene-based non-fullerene acceptor enabling open-circuit voltages beyond 1.4 V. Journal of Materials Chemistry A, 2022, 10, 2888-2906.	10.3	21
182	Delicate crystallinity control enables high-efficiency P3HT organic photovoltaic cells. Journal of Materials Chemistry A, 2022, 10, 3418-3429.	10.3	45
183	Versatile third components in organic ternary solar cells. Solar Energy, 2022, 231, 732-757.	6.1	5
184	Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors. Matter, 2022, 5, 725-734.	10.0	145
185	Stable dinitrile end-capped closed-shell non-quinodimethane as a donor, an acceptor and an additive for organic solar cells. Materials Advances, 2022, 3, 1759-1766.	5.4	1
186	peri-N-amine-perylenes, with and without phenyl bridge: Photophysical studies and their OLED applications. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 426, 113710.	3.9	3
187	High-performance heptacyclic ladder-type heteroarene-based electron acceptors enabled by bulky neighboring side-chains and end-group fluorination. Chemical Engineering Journal, 2022, 432, 134393.	12.7	8
188	Ternary organic solar cells: A review of the role of the third element. Nano Energy, 2022, 94, 106915.	16.0	87
189	Copper phosphotungstate as low cost, solution-processed, stable inorganic anode interfacial material enables organic photovoltaics with over 18% efficiency. Nano Energy, 2022, 94, 106923.	16.0	20
190	ZnO:Bio-inspired polydopamine functionalized Ti3C2Tx composite electron transport layers for highly efficient polymer solar cells. Journal of Alloys and Compounds, 2022, 900, 163381.	5.5	8
191	Enabling Roll-Processed and Flexible Organic Solar Cells Based On PffBT4T Through Temperature-Controlled Slot-Die Coating. IEEE Journal of Photovoltaics, 2022, , 1-9.	2.5	1
192	Polymerized Small Molecular Acceptor with Branched Side Chains for All Polymer Solar Cells with Efficiency over 16.7%. Advanced Materials, 2022, 34, e2110155.	21.0	79
193	Conjugated Mesopolymer Achieving 15% Efficiency Singleâ€Junction Organic Solar Cells. Advanced Science, 2022, 9, e2105430.	11.2	20
194	Engineering of the alkyl chain branching point on a lactone polymer donor yields 17.81% efficiency. Journal of Materials Chemistry A, 2022, 10, 3314-3320.	10.3	17
195	Symmetry-Breaking Charge Separation in Molecular Constructs for Efficient Light Energy Conversion. ACS Energy Letters, 2022, 7, 696-711.	17.4	35
196	Realizing 19.05% Efficiency Polymer Solar Cells by Progressively Improving Charge Extraction and Suppressing Charge Recombination. Advanced Materials, 2022, 34, e2109516.	21.0	394
197	Hybrid Cathode Interlayer Enables 17.4% Efficiency Binary Organic Solar Cells. Advanced Science, 2022, 9, e2105575.	11.2	31
198	Correlating Electronic Structure and Device Physics with Mixing Region Morphology in Highâ€Efficiency Organic SolarÂCells. Advanced Science, 2022, 9, e2104613.	11.2	10

ARTICLE IF CITATIONS Tin Oxide Electron Transport Layers for Air-/Solution-Processed Conventional Organic Solar Cells. 199 8.0 9 ACS Applied Materials & amp; Interfaces, 2022, 14, 1568-1577. Tandem Organic Solar Cell with 20.2% Efficiency. Joule, 2022, 6, 171-184. 24.0 584 Origin of the Additiveâ€Induced <i>V</i>_{OC} Change in Nonâ€Fullerene Organic Solar Cells. 201 10.0 15 Small, 2022, 18, e2107106. Quaternary Organic Solar Cells Enable Suppressed Energy Loss. Solar Rrl, 2022, 6, . 5.8 Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage 203 39.5 137 losses and optimized interconnecting layer. Nature Energy, 2022, 7, 229-237. Design of Nearâ€Infrared Nonfullerene Acceptor with Ultralow Nonradiative Voltage Loss for 204 Highấ€Performance Semitransparent Ternary Organic Solar Cells. Angewandte Chemie, 2022, 134, . Highâ€Performance Indoor Organic Solar Cells Based on a Doubleâ€Cable Conjugated Polymer. Solar Rrl, 205 5.8 12 2022, 6, . Compromising Charge Generation and Recombination with Asymmetric Molecule for Highâ€Performance Binary Organic Photovoltaics with Over 18% Certified Efficiency. Advanced Functional Materials, 206 14.9 2022, 32, . Coordinationâ€Induced Defects Elimination of SnO₂ Nanoparticles via a Small Electrolyte 207 7.3 12 Molecule for Highâ€Performance Inverted Organic Solar Cells. Advanced Optical Materials, 2022, 10, . Efficient interface modification <i>via</i> multi-site coordination for improved efficiency and 208 30.8 49 stability in organic solar cells. Energy and Environmental Science, 2022, 15, 822-829. Fabrication of inverted organic solar cells on stainless steel substrate with electrodeposited and 209 0 1.4 spin coated ZnO buffer layers. Journal of Polymer Engineering, 2022, . Achieving Efficient Polymer Solar Cells Based on Near-Infrared Absorptive Backbone Twisted Nonfullerene Acceptors through a Synergistic Strategy of an Indacenodiselenophene Fused-Ring Core and a Chlorinated Terminal Group. ACS Applied Energy Materials, 2022, 5, 1322-1330. 5.1 Simple furan-based polymers with the self-healing function enable efficient eco-friendly organic solar 211 5.5 12 cells with high stability. Journal of Materials Chemistry C, 2022, 10, 506-516. Highâ€Throughput Screening of Bladeâ€Coated Polymer:Polymer Solar Cells: Solvent Determines Achievable Performance. ChemSusChem, 2022, 15, . 6.8 Molecular optimization of incorporating pyran fused acceptor–donor–acceptor type acceptors 213 5.56 enables over 15% efficiency in organic solar cells. Journal of Materials Chemistry C, 2022, 10, 1977-1983. Design of Nearâ€Infrared Nonfullerene Acceptor with Ultralow Nonradiative Voltage Loss for Highâ€Performance Semitransparent Ternary Organic Solar Cells. Angewandte Chemie - International 214 Edition, 2022, 61, . Characterizing and Improving the Thermal Stability of Organic Photovoltaics Based on Halogen-Rich 215 8.0 10 Non-Fullerene Acceptors. ACS Applied Materials & amp; Interfaces, 2022, 14, 5692-5698. Photoinduced Charge Transfer and Recombination Dynamics in Star Nonfullerene Organic Solar Cells. Journal of Physical Chemistry Letters, 2022, 13, 1123-1130.

#	Article	IF	CITATIONS
217	Strengthening the Intermolecular Interaction of Prototypical Semicrystalline Conjugated Polymer Enables Improved Photocurrent Generation at the Heterojunction. Macromolecular Rapid Communications, 2022, 43, e2100871.	3.9	9
218	Slotâ€Dieâ€Coated Organic Solar Cells Optimized through Multistep Crystallization Kinetics. Solar Rrl, 2022, 6, .	5.8	7
219	Recent progress in all-small-molecule organic photovoltaics. Journal of Materials Chemistry A, 2022, 10, 6291-6329.	10.3	58
220	Enabling high-performance, centimeter-scale organic solar cells through three-dimensional charge transport. Cell Reports Physical Science, 2022, , 100761.	5.6	4
221	Solvent Tuning of the Active Layer Morphology of Nonâ€Fullerene Based Organic Solar Cells. Solar Rrl, 2022, 6, .	5.8	4
222	High fill factor organic solar cells with increased dielectric constant and molecular packing density. Joule, 2022, 6, 444-457.	24.0	117
223	Highâ€Polarizability Organic Ferroelectric Materials Doping for Enhancing the Builtâ€In Electric Field of Perovskite Solar Cells Realizing Efficiency over 24%. Advanced Materials, 2022, 34, e2110482.	21.0	65
224	Alkyl side chain engineering enables high performance as-cast organic solar cells of over 17% efficiency. Fundamental Research, 2023, 3, 611-617.	3.3	10
225	Highlights of mainstream solar cell efficiencies in 2021. Frontiers in Energy, 2022, 16, 1-8.	2.3	19
226	Balancing the Molecular Aggregation and Vertical Phase Separation in the Polymer: Nonfullerene Blend Films Enables 13.09% Efficiency of Organic Solar Cells with Inkjetâ€Printed Active Layer. Advanced Energy Materials, 2022, 12, .	19.5	17
227	Chloride side-chain engineered quinoxaline-based D-A copolymer enabling non-fullerene organic solar cells with over 16% efficiency. Chemical Engineering Journal, 2022, 437, 135182.	12.7	19
228	Near-infrared non-fused ring acceptors with light absorption up to 1000Ânm for efficient and low-energy loss organic solar cells. Materials Today Energy, 2022, 24, 100938.	4.7	16
229	A linear 2D-conjugated polymer based on 4,8-bis(4-chloro-5-tripropylsilyl-thiophen-2-yl)benzo[1,2- <i>b</i> :4,5- <i>b</i> â€2]dithiophene (BDT-T-SiCl) for low voltage loss organic photovoltaics. Journal of Materials Chemistry A, 2022, 10, 9869-9877.	10.3	17
230	A comparison of the positional effect of difluorination and the synergistic effect of siloxane-terminated side chains on benzodithiophene-based conjugated polymers for efficient photovoltaic application. Journal of Materials Chemistry C, 2022, 10, 7189-7200.	5.5	3
231	An asymmetric wide-bandgap acceptor simultaneously enabling highly efficient single-junction and tandem organic solar cells. Energy and Environmental Science, 2022, 15, 1585-1593.	30.8	89
232	Highly efficient organic solar cells with superior deformability enabled by diluting the small molecule acceptor content. Journal of Materials Chemistry A, 2022, 10, 8293-8302.	10.3	10
233	Cascaded energy landscape as a key driver for slow yet efficient charge separation with small energy offset in organic solar cells. Energy and Environmental Science, 2022, 15, 1545-1555.	30.8	53
234	A New PEDOT Derivative for Efficient Organic Solar Cell with a Fill Factor of 0.80. Advanced Energy Materials, 2022, 12, .	19.5	52

#	Article	IF	Citations
235	Binding Energy of Triplet Excitons in Nonfullerene Acceptors: The Effects of Fluorination and Chlorination. Journal of Physical Chemistry A, 2022, 126, 1393-1402.	2.5	6
236	Electroactive Ionenes: Efficient Interlayer Materials in Organic Photovoltaics. Accounts of Chemical Research, 2022, 55, 1097-1108.	15.6	17
240	One-Pot Synthesis of Fully Conjugated Amphiphilic Block Copolymers Using Asymmetrically Functionalized Push–Pull Monomers. Macromolecules, 2022, 55, 2872-2881.	4.8	1
241	Synthesis and properties of a novel decacyclic <i>S</i> , <i>N</i> -heteroacene. Acta Crystallographica Section C, Structural Chemistry, 2022, 78, 250-256.	0.5	Ο
242	Tuning Morphology of Active Layer by using a Wide Bandgap Oligomerâ€Like Donor Enables Organic Solar Cells with Over 18% Efficiency. Advanced Energy Materials, 2022, 12, .	19.5	45
243	Computational chemistry advances on benzodithiophene-based organic photovoltaic materials. Critical Reviews in Solid State and Materials Sciences, 2023, 48, 333-360.	12.3	5
244	Geminate and Nongeminate Pathways for Triplet Exciton Formation in Organic Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	22
245	Hole/Electron Transporting Materials for Nonfullerene Organic Solar Cells. Chemistry - A European Journal, 2022, 28, .	3.3	20
246	Supramolecular p/nâ€heterojunction of C ₆₀ â€functionalized bis(merocyanine) quadruple stack: A model system for charge carrier separation and recombination in organic solar cells. Natural Sciences, 2022, 2, .	2.1	0
247	Theoryâ€Guided Material Design Enabling Highâ€Performance Multifunctional Semitransparent Organic Photovoltaics without Optical Modulations. Advanced Materials, 2022, 34, e2200337.	21.0	42
248	Pushing the Efficiency of High Open ircuit Voltage Binary Organic Solar Cells by Vertical Morphology Tuning. Advanced Science, 2022, 9, e2200578.	11.2	51
249	Recent Progress in Indacenodithiophene-Based Acceptor Materials for Non-Fullerene Organic Solar Cells. Topics in Current Chemistry, 2022, 380, 18.	5.8	11
250	Revealing the Sole Impact of Acceptor's Molecular Conformation to Energy Loss and Device Performance of Organic Solar Cells through Positional Isomers. Advanced Science, 2022, 9, e2103428.	11.2	9
251	Nonâ€Fused Polymerized Small Molecular Acceptors for Efficient Allâ€Polymer Solar Cells. Solar Rrl, 2022, 6, .	5.8	18
252	Properties and Applications of Copper(I) Thiocyanate Holeâ€Transport Interlayers Processed from Different Solvents. Advanced Electronic Materials, 2022, 8, .	5.1	9
253	Symmetrically Fluorinated Benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene-Cored Donor for High-Performance All-Small-Molecule Organic Solar Cells with Improved Active Layer Morphology and Crystallinity. ACS Applied Materials & Interfaces, 2022, 14, 14532-14540.	8.0	10
254	Quasi-Bilayer All-Small-Molecule Solar Cells Based on a Chlorophyll Derivative and Non-Fullerene Materials with Untraditional Energy Alignments. Journal of Physical Chemistry C, 2022, 126, 4807-4814.	3.1	2
255	Desired open-circuit voltage increase enables efficiencies approaching 19% in symmetric-asymmetric molecule ternary organic photovoltaics. Joule, 2022, 6, 662-675.	24.0	212

#	Article	IF	CITATIONS
256	Nonalloy Model-Based Ternary Organic Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 12461-12468.	8.0	8
257	Insight the difference of free charge generation in two small molecular accepter organic solar cells. Solar Energy, 2022, 235, 163-169.	6.1	1
258	lsogenous Asymmetric–Symmetric Acceptors Enable Efficient Ternary Organic Solar Cells with Thin and 300Ânm Thick Active Layers Simultaneously. Advanced Functional Materials, 2022, 32, .	14.9	75
259	Oligomeric Acceptor: A "Twoâ€inâ€One―Strategy to Bridge Small Molecules and Polymers for Stable Solar Devices. Angewandte Chemie, 0, , .	2.0	1
260	Elastomeric Indoor Organic Photovoltaics with Superb Photothermal Endurance. Advanced Functional Materials, 2022, 32, .	14.9	14
261	Carrier Generation Engineering toward 18% Efficiency Organic Solar Cells by Controlling Film Microstructure. Advanced Energy Materials, 2022, 12, .	19.5	25
262	Ferroelectric Polymer Drives Performance Enhancement of Nonâ€fullerene Organic Solar Cells. Angewandte Chemie, 2022, 134, .	2.0	3
263	Greenâ€Solventâ€Processed 17% Efficient Polymer Solar Cell Achieved Synergistically by Aligning Energy Levels and Improving Morphology with the Quaternary Strategy. Solar Rrl, 2022, 6, .	5.8	5
264	Oligomeric Acceptor: A "Twoâ€inâ€One―Strategy to Bridge Small Molecules and Polymers for Stable Solar Devices. Angewandte Chemie - International Edition, 2022, 61, .	13.8	64
265	Two Better Compatible and Complementary Light Absorption Polymer Donors Contributing Synergistically to High Efficiency and Better Thermally Stable Ternary Organic Solar Cells. ACS Applied Energy Materials, 0, , .	5.1	7
266	Ferroelectric Polymer Drives Performance Enhancement of Nonâ€fullerene Organic Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	29
267	Circular Discovery in Small Molecule and Conjugated Polymer Synthetic Methodology. Journal of the American Chemical Society, 2022, 144, 6123-6135.	13.7	25
268	Performances of two side-chain modified medium-bandgap alternating polymers with main-chain twisted non-fullerene acceptor. Synthetic Metals, 2022, 286, 117038.	3.9	0
269	Solid solution effect boosts the photovoltaic performance of PCDTBT-based organic solar cells. Organic Electronics, 2022, 104, 106489.	2.6	1
270	Morphology manipulation for highly miscible photovoltaic blend of carboxylate-substituted polythiophene:Y6. Dyes and Pigments, 2022, 202, 110269.	3.7	2
271	n-Doping of photoactive layer in binary organic solar cells realizes over 18.3% efficiency. Nano Energy, 2022, 96, 107133.	16.0	28
272	Block copolymer compatibilizer for efficient and stable nonfullerene organic solar cells. Chemical Engineering Journal, 2022, 438, 135543.	12.7	26
273	Dual-functional ambipolar non-fused ring electron acceptor as third component and designing similar molecular structure between two acceptors for high-performance ternary organic solar cells. Nano Energy, 2022, 98, 107186.	16.0	29

#	Article	IF	CITATIONS
274	Optical dispersion and photovoltaic performance of safranin thin films solar cells in hybrid organic-inorganic isotype heterojunction configuration. Materials Research Bulletin, 2022, 151, 111824.	5.2	17
275	P3HT-Based Organic Solar Cells with a Photoresponse to 1000 nm Enabled by Narrow Band Gap Nonfullerene Acceptors with High HOMO Levels. ACS Applied Materials & Interfaces, 2021, 13, 61487-61495.	8.0	16
276	Enhanced Charge Transport and Broad Absorption Enabling Record 18.13% Efficiency of PM6:Y6 Based Ternary Organic Photovoltaics with a High Fill Factor Over 80%. Advanced Functional Materials, 2022, 32, .	14.9	30
277	Dithienobenzothiadiazole-Bridged Nonfullerene Electron Acceptors for Efficient Organic Solar Cells. ACS Applied Polymer Materials, 2023, 5, 2298-2306.	4.4	6
278	Elucidating Charge Generation in Green-Solvent Processed Organic Solar Cells. Molecules, 2021, 26, 7439.	3.8	5
279	Recent progress in organic solar cells (Part I material science). Science China Chemistry, 2022, 65, 224-268.	8.2	349
280	Toward Highâ€Performance Semitransparent Organic Photovoltaics with Narrowâ€Bandgap Donors and Nonâ€Fullerene Acceptors. Advanced Energy Materials, 2022, 12, .	19.5	45
281	Miscibility-Controlled Mechanical and Photovoltaic Properties in Double-Cable Conjugated Polymer/Insulating Polymer Composites. Macromolecules, 2022, 55, 322-330.	4.8	16
282	<i>In situ</i> and <i>ex situ</i> investigations on ternary strategy and co-solvent effects towards high-efficiency organic solar cells. Energy and Environmental Science, 2022, 15, 2479-2488.	30.8	84
283	An Aggregationâ€Suppressed Polymer Blending Strategy Enables Highâ€Performance Organic and Quantum Dot Hybrid Solar Cells. Small, 2022, 18, e2201387.	10.0	17
284	Fully solution-processed, light-weight, and ultraflexible organic solar cells. Flexible and Printed Electronics, 2022, 7, 025003.	2.7	10
285	Boosting the Photovoltaic Performance and Thermal Stability of Organic Solar Cells via an Insulating Fluoropolymer Additive. ChemPlusChem, 2022, 87, e202200045.	2.8	1
286	Photocatalytic hydrogen evolution based on carbon nitride and organic semiconductors. Nanotechnology, 2022, 33, 322001.	2.6	7
287	Relationship between molecular properties and degradation mechanisms of organic solar cells based on bis-adducts of phenyl-C ₆₁ butyric acid methyl ester. Journal of Materials Chemistry C, 2022, 10, 7875-7885.	5.5	2
288	Donor–Acceptor Copolymers with Rationally Regulated Side Chain Orientation for Polymer Solar Cells Processed by Non-Halogenated Solvent. Organic Materials, 2022, 4, 18-27.	2.0	3
289	Highâ€Efficiency Microcavity Semitransparent Organic Photovoltaics with Simultaneously Improved Average Visible Transmittance and Color Rendering Index. Solar Rrl, 0, , 2200174.	5.8	8
290	Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nature Materials, 2022, 21, 656-663.	27.5	1,214
291	Comparing three numerical methods for current–voltage characteristics simulations of organic solar cells considering surface recombination effects. Optical and Quantum Electronics, 2022, 54, .	3.3	0

#	Article	IF	CITATIONS
292	Vertically optimized phase separation with improved exciton diffusion enables efficient organic solar cells with thick active layers. Nature Communications, 2022, 13, 2369.	12.8	122
293	Asymmetric electron acceptor enables highly luminescent organic solar cells with certified efficiency over 18%. Nature Communications, 2022, 13, 2598.	12.8	113
294	Anionâ€Doped Thicknessâ€Insensitive Electron Transport Layer for Efficient Organic Solar Cells. Macromolecular Rapid Communications, 2022, 43, e2200190.	3.9	2
295	Novel Third Components with (Thio)barbituric Acid as the End Groups Improving the Efficiency of Ternary Solar Cells. ACS Applied Materials & amp; Interfaces, 2022, 14, 23701-23708.	8.0	13
296	Fluid Mechanics Inspired Sequential Bladeâ€Coating for Highâ€Performance Largeâ€Area Organic Solar Modules. Advanced Functional Materials, 2022, 32, .	14.9	36
297	Perylene bisimides-based molecular dyads with different alkyl linkers for single-component organic solar cells. Dyes and Pigments, 2022, 203, 110355.	3.7	6
298	A long-term stable organic semiconductor photocathode-based photoelectrochemical module system for hydrogen production. Journal of Materials Chemistry A, 2022, 10, 13247-13253.	10.3	5
299	Control of Phase Separation and Crystallization for <scp>Highâ€Efficiency</scp> and <scp>Mechanically Deformable</scp> Organic Solar Cells. Energy and Environmental Materials, 2023, 6, .	12.8	6
300	Probing the Contribution of Lateral Pathways to Outâ€ofâ€Plane Charge Transport in Organic Bulk Heterojunctions. Advanced Electronic Materials, 2022, 8, .	5.1	4
301	Monodispersed ZnO nanoink and ultra-smooth large-area ZnO films for high performance and stable organic solar cells. Flexible and Printed Electronics, 2022, 7, 025013.	2.7	9
302	Simultaneous Tuning of Alkyl Chains and End Groups in Non-fused Ring Electron Acceptors for Efficient and Stable Organic Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 24374-24385.	8.0	28
303	Achieving High-Efficiency Organic Photovoltaics from a New Completely Amorphous Donor Polymer. Chemistry of Materials, 2022, 34, 5103-5115.	6.7	9
304	High-Performance Non-fullerene organic solar cells enabled by noncovalent Conformational locks and Side-Chain engineering. Chemical Engineering Journal, 2022, 446, 137206.	12.7	10
305	Tunable Photovoltaics: Adapting Solar Cell Technologies to Versatile Applications. Advanced Energy Materials, 2022, 12, .	19.5	27
306	Subtle Effect of Alkyl Substituted π-Bridges on Dibenzo[a,c]phenazine Based Polymer Donors towards Enhanced Photovoltaic Performance. Chinese Journal of Polymer Science (English Edition), 0, , .	3.8	1
307	Recent progress in organic solar cells (Part II device engineering). Science China Chemistry, 2022, 65, 1457-1497.	8.2	157
308	Complex multilength-scale morphology in organic photovoltaics. Trends in Chemistry, 2022, 4, 699-713.	8.5	13
309	Effect of ï€-Spacer Length in Novel Xanthene-Linked <scp>l</scp> -(Dâ~'ï€â€"A) ₂ -Type Dianchoring Dyes for Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2022, 5, 6764-6771.	5.1	2

#	Article	IF	CITATIONS
310	Enhancing the organic solar cells performances by elevating cesium carboxylate content of graphene oxide based cathode interface layer. Surfaces and Interfaces, 2022, 31, 102068.	3.0	1
311	PTB7 and PTB7-Th as universal polymers to evaluate materials development aspects of organic solar cells including interfacial layers, new fullerenes, and non-fullerene electron acceptors. Synthetic Metals, 2022, 287, 117088.	3.9	6
312	Modulating the molecular orientation of linear benzodifuran-based isomeric polymers by exchanging the positions of chlorine and fluorine atoms. Nano Energy, 2022, 99, 107413.	16.0	27
313	Recent advances in small molecular design for high performance non-fullerene organic solar cells. Molecular Systems Design and Engineering, 2022, 7, 832-855.	3.4	12
314	Length Effect of Alkyl Linkers on the Crystalline Transition in Naphthalene Diimide-Based Double-Cable Conjugated Polymers. Macromolecules, 2022, 55, 5188-5196.	4.8	7
315	Mechanical-robust and recyclable polyimide substrates coordinated with cyclic Ti-oxo cluster for flexible organic solar cells. Npj Flexible Electronics, 2022, 6, .	10.7	17
316	18.01% Efficiency organic solar cell and 2.53% light utilization efficiency semitransparent organic solar cell enabled by optimizing PM6:Y6 active layer morphology. Science China Chemistry, 2022, 65, 1615-1622.	8.2	26
317	Hammer throw-liked hybrid cyclic and alkyl chains: A new side chain engineering for over 18 % efficiency organic solar cells. Nano Energy, 2022, 101, 107538.	16.0	27
318	Introduction of Water Treatment in Slotâ€Đie Coated Organic Solar Cells to Improve Device Performance and Stability. Advanced Functional Materials, 2022, 32, .	14.9	5
319	Molecular-Shape-Controlled Nonfused Ring Electron Acceptors for High-Performance Organic Solar Cells with Tunable Phase Morphology. ACS Applied Materials & Interfaces, 2022, 14, 28807-28815.	8.0	16
320	Highly efficient fiber-shaped organic solar cells toward wearable flexible electronics. Npj Flexible Electronics, 2022, 6, .	10.7	26
321	Heterogeneous lattice strain strengthening in severely distorted crystalline solids. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	27
322	Ternary organic solar cells: Insights into charge and energy transfer processes. Applied Physics Letters, 2022, 120, .	3.3	3
323	Naphthalene as a Thermalâ€Annealingâ€Free Volatile Solid Additive in Nonâ€Fullerene Polymer Solar Cells with Improved Performance and Reproducibility. Advanced Functional Materials, 2022, 32, .	14.9	29
324	Modulating the nanoscale morphology on carboxylate-pyrazine containing terpolymer toward 17.8% efficiency organic solar cells with enhanced thermal stability. Chemical Engineering Journal, 2022, 446, 137424.	12.7	14
325	Highly efficient layer-by-layer deposition solar cells achieved with halogen-free solvents and molecular engineering of non-fullerene acceptors. Chemical Engineering Journal, 2022, 448, 137621.	12.7	12
326	Spontaneous carrier generation and low recombination in high-efficiency non-fullerene solar cells. Energy and Environmental Science, 2022, 15, 3483-3493.	30.8	23
327	Selfâ€Assembly Metal Chelate as Ultraviolet Filterable Interface Layer for Efficient Organic Solar Cells. Advanced Energy Materials, 2022, 12,	19.5	7

#	Article	IF	CITATIONS
328	Planarized Polymer Acceptor Featuring High Electron Mobility for Efficient All-Polymer Solar Cells. Chinese Journal of Polymer Science (English Edition), 2022, 40, 968-978.	3.8	3
329	The structure-performance correlation of bulk-heterojunction organic solar cells with multi-length-scale morphology. Science China Chemistry, 2022, 65, 1634-1641.	8.2	5
330	Non-Halogenated Solvents and Layer-by-Layer Blade-Coated Ternary Organic Solar Cells via Cascade Acceptor Adjusting Morphology and Crystallization to Reduce Energy Loss. ACS Applied Materials & Interfaces, 2022, 14, 31054-31065.	8.0	15
331	High-Efficiency Ternary Organic Solar Cells with a Good Figure-of-Merit Enabled by Two Low-Cost Donor Polymers. ACS Energy Letters, 2022, 7, 2547-2556.	17.4	109
332	Targeted Adjusting Molecular Arrangement in Organic Solar Cells via a Universal Solid Additive. Advanced Functional Materials, 2022, 32, .	14.9	11
333	Highly Efficient Layerâ€byâ€Layer Processed Quaternary Organic Solar Cells with Improved Charge Transport and Reduced Energy Loss. Solar Rrl, 2022, 6, .	5.8	10
334	New Insights into Hybrid Materials Based on Conductive Polymers and Their Use in Energy-Related Applications. Materials, 2022, 15, 4928.	2.9	1
335	Traps and transport resistance are the next frontiers for stable non-fullerene acceptor solar cells. Nature Communications, 2022, 13, .	12.8	23
336	Organic materials based solar cells. Materials Today: Proceedings, 2022, , .	1.8	3
337	Recent Progress of Y6â€Derived Asymmetric Fused Ring Electron Acceptors. Advanced Functional Materials, 2022, 32, .	14.9	114
338	Revealing aggregation of non-fullerene acceptors in intermixed phase by ultraviolet-visible absorption spectroscopy. Cell Reports Physical Science, 2022, 3, 100983.	5.6	6
339	Nanomorphology dependence of the environmental stability of organic solar cells. NPG Asia Materials, 2022, 14, .	7.9	3
340	Highâ€₽erformance Semitransparent Organic Solar Cells: From Competing Indexes of Transparency and Efficiency Perspectives. Advanced Science, 2022, 9, .	11.2	31
341	Synergetic Strategy for Highly Efficient and Super Flexible Thickâ€film Organic Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	27
342	Interplay between charge separation and hole back transfer determines the efficiency of non-fullerene organic solar cells with low energy level offset. Organic Electronics, 2022, 108, 106601.	2.6	4
343	lsomerization of Noncovalently Conformational Lock in Nonfused Electron Acceptor toward Efficient Organic Solar Cells. ACS Applied Energy Materials, 2022, 5, 10224-10232.	5.1	11
344	Organic Solar Cell With Efficiency Over 20% and <i>V</i> _{OC} Exceeding 2.1ÂV Enabled by Tandem With Allâ€Inorganic Perovskite and Thermal Annealingâ€Free Process. Advanced Science, 2022, 9, .	11.2	27
345	Spectroelectrochemically determined energy levels of PM6:Y6 blends and their relevance to solar cell performance. Journal of Materials Chemistry C, 2022, 10, 11565-11578.	5.5	14

#	Article	IF	CITATIONS
346	Design Rules of the Mixing Phase and Impacts on Device Performance in High-Efficiency Organic Photovoltaics. Research, 2022, 2022, .	5.7	2
347	Highly Efficient Organic Solar Cells Enabled by the Incorporation of a Sulfonated Graphene Doped PEDOT:PSS Interlayer. ACS Applied Materials & Interfaces, 2022, 14, 34814-34821.	8.0	20
348	Renewed Prospects for Organic Photovoltaics. Chemical Reviews, 2022, 122, 14180-14274.	47.7	323
349	Achieving and Understanding of Highly Efficient Ternary Organic Photovoltaics: From Morphology and Energy Loss to Working Mechanism. Small Methods, 2022, 6, .	8.6	16
350	Understanding interfacial energy structures in organic solar cells using photoelectron spectroscopy: A review. Journal of Applied Physics, 2022, 132, .	2.5	3
351	Efficient Polymer Solar Cells Facilitated by Halogenated Substituted Wideâ€Bandgap Polymers and a Backbone Twisted Lowâ€Bandgap Acceptor. ChemistrySelect, 2022, 7, .	1.5	0
352	Over 19.2% Efficiency of Organic Solar Cells Enabled by Precisely Tuning the Charge Transfer State Via Donor Alloy Strategy. Advanced Science, 2022, 9, .	11.2	93
353	A Random Terpolymer Donor with Similar Monomers Enables 18.28% Efficiency Binary Organic Solar Cells with Well Polymer Batch Reproducibility. ACS Energy Letters, 2022, 7, 3045-3057.	17.4	46
354	High-performance scalable organic photovoltaics with high thickness tolerance from 1Âcm2 to above 50Âcm2. Joule, 2022, 6, 2406-2422.	24.0	24
355	Managing Challenges in Organic Photovoltaics: Properties and Roles of Donor/Acceptor Interfaces. Advanced Functional Materials, 2022, 32, .	14.9	15
356	Fundamentals of organic solar cells: A review on mobility issues and measurement methods. Optik, 2022, 267, 169730.	2.9	7
357	Efficient ternary organic photovoltaic using polymers donor with two absorption peaks and similar HOMO levels as third component materials. Materials Today Chemistry, 2022, 26, 101094.	3.5	1
358	A new perspective to develop regiorandom polymer acceptors with high active layer ductility, excellent device stability, and high efficiency approaching 17%. , 2023, 5, .		46
359	Investigating the morphology of bulk heterojunctions by laser photoemission electron microscopy. Polymer Testing, 2022, 116, 107791.	4.8	0
360	Highly efficient layer-by-layer large-scale manufacturing of polymer solar cells with minimized device-to-device variations by employing benzothiadiazole-based solid additives. Journal of Materials Chemistry A, 2022, 10, 20606-20615.	10.3	17
361	High-performance pseudo-bilayer ternary organic solar cells with PC ₇₁ BM as the third component. Journal of Materials Chemistry A, 2022, 10, 23124-23133.	10.3	12
362	Low energy loss (0.42 eV) and efficiency over 15% enabled by non-fullerene acceptors containing <i>N</i> -bis(trifluoromethyl)phenylbenzotriazole as the core in binary solar cells. Journal of Materials Chemistry C, 2022, 10, 13174-13182.	5.5	4
363	Bulk heterojunction organic photovoltaic cells based on D–A type BODIPY small molecules as non-fullerene acceptors. Journal of Materials Chemistry C, 2022, 10, 12776-12788.	5.5	12

#	Article	IF	CITATIONS
364	Side chain engineering of indacenodithieno[3,2- <i>b</i>]thiophene (IDTT)-based wide bandgap polymers for non-fullerene organic photovoltaics. Journal of Materials Chemistry C, 2022, 10, 14633-14642.	5.5	4
365	Solar Cell Technologies: An Overview. Engergy Systems in Electrical Engineering, 2022, , 1-59.	0.7	0
366	Semitransparent organic solar cells with light utilization efficiency of 4% using fused-cyclopentadithiophene based near-infrared polymer donor. Chemical Engineering Journal, 2023, 452, 139423.	12.7	10
367	Efficient Ternary Polymer Solar Cells with Two Structurally Similar Fullerene-Free Acceptors to Redshift Absorption Peaks and Improve Exciton Dissociation. ACS Applied Energy Materials, 2022, 5, 11553-11560.	5.1	1
368	Surface recombination influence on photocurrent spectra of organic photovoltaic devices. Optical and Quantum Electronics, 2022, 54, .	3.3	0
369	Multicomponent Solar Cells with High Fill Factors and Efficiencies Based on Non-Fullerene Acceptor Isomers. Molecules, 2022, 27, 5802.	3.8	2
370	Organic Photovoltaic Cells Based on Nonhalogenated Polymer Donors and Nonhalogenated A-DAâ€2D-A-Type Nonfullerene Acceptors with High <i>V</i> _{OC} and Low Nonradiative Voltage Loss. ACS Applied Materials & Interfaces, 2022, 14, 41296-41303.	8.0	14
371	Surface Charge and Nanoparticle Chromophore Coupling to Achieve Fast Exciton Quenching and Efficient Charge Separation in Photoacoustic Imaging (PAI) and Photothermal therapy (PTT). Advanced Therapeutics, 2022, 5, .	3.2	2
372	ZnO Surface Passivation with Glucose Enables Simultaneously Improving Efficiency and Stability of Inverted Polymer: Non-fullerene Solar Cells. Chinese Journal of Polymer Science (English Edition), 2022, 40, 1594-1603.	3.8	4
373	Recent Advances in the Research of Photoâ€Assisted Lithiumâ€Based Rechargeable Batteries. Chemistry - A European Journal, 2022, 28, .	3.3	9
374	Precise Control of Selenium Functionalization in Nonâ€Fullerene Acceptors Enabling Highâ€Efficiency Organic Solar Cells. Angewandte Chemie, 2022, 134, .	2.0	3
375	Multiphase Morphology with Enhanced Carrier Lifetime via Quaternary Strategy Enables Highâ€Efficiency, Thickâ€Film, and Largeâ€Area Organic Photovoltaics. Advanced Materials, 2022, 34, .	21.0	84
376	Precise Control of Selenium Functionalization in Nonâ€Fullerene Acceptors Enabling Highâ€Efficiency Organic Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	27
377	Non-Halogenated Solvent-Processed High-Efficiency Polymer Solar Cells: the Role of Diphenyl Ether in Morphology, Light-Trapping, Transport Properties. Transactions of Tianjin University, 0, , .	6.4	1
378	Facile access to high-performance organic solar cells through an A-D1-D2-A type unfused non-fullerene acceptors. Dyes and Pigments, 2023, 208, 110785.	3.7	5
379	Ternary organic photovoltaic using long wavelength light absorption polymer as guest donor with enhance photovoltaic performance. Materials Today Chemistry, 2022, 26, 101190.	3.5	1
380	Regulation of Polymer Configurations Enables Green Solventâ€Processed Largeâ€Area Binary Allâ€Polymer Solar Cells With Breakthrough Performance and High Efficiency Stretchability Factor. Advanced Materials, 2023, 35, .	21.0	34
381	Importance of structural hinderance in performance–stability equilibrium of organic photovoltaics. Nature Communications, 2022, 13, .	12.8	50

#	Article	IF	CITATIONS
382	Ternary NiCuS electrocatalyst for iodide/triiodide reduction in dye-sensitized solar cells. Materials Today: Proceedings, 2022, , .	1.8	1
383	Highly Efficient Nonfullerene Organic Solar Cells with Nickel Oxide Holeâ€Transporting Layer: Using Dipoleâ€Induced Energyâ€Level Modification. Energy Technology, 2022, 10, .	3.8	1
384	Design and Synthesis of <scp><i>N</i>â€Alkylanilineâ€Substituted</scp> Low <scp>Bandâ€Gap</scp> Electron Acceptors for Photovoltaic Application. Chinese Journal of Chemistry, 2023, 41, 424-430.	4.9	14
385	Latest progress on fully nonâ€fused electron acceptors for highâ€performance organic solar cells. Chinese Chemical Letters, 2023, 34, 107968.	9.0	13
386	Picosecond Charge-Transfer-State Dynamics in Wide Band Gap Polymer–Non-Fullerene Small-Molecule Blend Films Investigated via Transient Infrared Spectroscopy. Journal of Physical Chemistry Letters, 2022, 13, 10418-10423.	4.6	1
387	An extensive XPS analysis on sensitized PBDB-T-SF thin films for photovoltaic applications. Materials Today Communications, 2022, 33, 104619.	1.9	1
388	Unraveling the Stretchâ€Induced Microstructural Evolution and Morphology–Stretchability Relationships of Highâ€Performance Ternary Organic Photovoltaic Blends. Advanced Materials, 2023, 35,	21.0	27
389	Improving the Photovoltaic Performance of Dithienobenzodithiophene-Based Polymers via Addition of an Additional Eluent in the Soxhlet Extraction Process. ACS Applied Materials & (1), 14, 52244-52252.	8.0	4
390	What's Next for Organic Solar Cells? The Frontiers and Challenges. Advanced Energy and Sustainability Research, 2023, 4, .	5.8	9
391	Revealing Photodegradation Pathways of Organic Solar Cells by Spectrally Resolved Accelerated Lifetime Analysis. Advanced Energy Materials, 2023, 13, .	19.5	9
392	Charge-transfer states in photosynthesis and organic solar cells. Frontiers in Photonics, 0, 3, .	2.4	2
393	High-Performance Ternary Organic Photovoltaics Incorporating Small-Molecule Acceptors with an Unfused-Ring Core. ACS Applied Energy Materials, 2022, 5, 15423-15433.	5.1	7
394	Study on Optical Efficiency of Organic Photovoltaic Devices with Multi-Tip Metal Nanostructures. Defect and Diffusion Forum, 0, 421, 83-89.	0.4	0
395	Nonhalogenated Solutionâ€Processed Donorâ€Dispersed Planar Heterojunction Organic Solar Cells with Enhanced Homogeneity in Vertical Phase Separation. Solar Rrl, 2023, 7, .	5.8	6
396	Regulating Charge Carrier Recombination in the Interconnecting Layer to Boost the Efficiency and Stability of Monolithic Perovskite/Organic Tandem Solar Cells. Advanced Materials, 2023, 35, .	21.0	15
397	Effects of stirring temperature of P3HT:PCBM solution on device performance of organic photovoltaics. Journal of the Korean Physical Society, 0, , .	0.7	0
398	Optimized Morphology Enables High-Efficiency Nonfullerene Ternary Organic Solar Cells. Langmuir, 2023, 39, 75-82.	3.5	1
399	Ternary PM6:Y6 Solar Cells with Singleâ€Walled Carbon Nanotubes. Small Science, 2023, 3,	9.9	1

#	Article	IF	CITATIONS
400	Printed Organic Photovoltaic Modules on Transferable Ultraâ€ŧhin Substrates as Additive Power Sources. Small Methods, 2023, 7, .	8.6	10
401	A Simple Cathode Interfacial Material Performs Well in Organic Solar Cells. Energy Technology, 0, , 2200986.	3.8	0
402	Guidedâ€Growth Ultrathin Metal Film Enabled Efficient Semiâ€Transparent Organic Solar Cells. Advanced Energy Materials, 2023, 13, .	19.5	13
403	Film Formation Kinetics of Polymer Donor and Nonfullerene Acceptor Active Layers During Printing Out of 1,2,4â€Trimethylbenzene in Ambient Conditions. Solar Rrl, 2023, 7, .	5.8	1
404	Versatile Processability by Breaking the Symmetrical Chemical Structure of Nonfullerene Acceptors. Solar Rrl, O, , 2201012.	5.8	1
405	Organic Solar Cells: Physical Principle and Recent Advances. Chemistry - an Asian Journal, 2023, 18, .	3.3	16
406	Medium Bandgap Nonfullerene Acceptor for Efficient Ternary Polymer Solar Cells with High Open-Circuit Voltage. ACS Omega, 2023, 8, 1989-2000.	3.5	0
407	Efficiency Improvement of Semitransparent Polymer Solar Cells with Invariable Color Render Index. Journal of Electronic Materials, 0, , .	2.2	0
408	Medium Bandgap Polymers for Efficient Non-Fullerene Polymer Solar Cells—An In-Depth Study of Structural Diversity of Polymer Structure. International Journal of Molecular Sciences, 2023, 24, 522.	4.1	3
409	Recent Developments of Polymer Solar Cells with Photovoltaic Performance over 17%. Advanced Functional Materials, 2023, 33, .	14.9	38
410	Benzothiadiazole-based materials for organic solar cells. Chinese Chemical Letters, 2024, 35, 108438.	9.0	1
411	Understanding Causalities in Organic Photovoltaics Device Degradation in a Machineâ€Learningâ€Driven Highâ€Throughput Platform. Advanced Materials, 0, , .	21.0	10
412	A new BODIPY dimer containing carbazole group as a small molecule donor for ternary organic solar cells with the PCE up to 14.97%. Dyes and Pigments, 2023, 215, 111297.	3.7	5
413	Structural Fusion Yields Guest Acceptors that Enable Ternary Organic Solar Cells with 18.77 % Efficiency. Angewandte Chemie, 2023, 135, .	2.0	0
414	Structural Fusion Yields Guest Acceptors that Enable Ternary Organic Solar Cells with 18.77 % Efficiency. Angewandte Chemie - International Edition, 2023, 62, .	13.8	19
415	Charge-Separated States Determined Photoinduced Electron Transfer Efficiency in a D-D-A System in an External Electric Field. Journal of Physical Chemistry C, 2023, 127, 2805-2817.	3.1	2
416	Optical interference on the measurement of film-depth-dependent light absorption spectroscopy and a correction approach. Review of Scientific Instruments, 2023, 94, 023907.	1.3	0
417	The Multiplicity of π–π Interactions of Fused-Ring Electron Acceptor Polymorphs on the Exciton Migration and Charge Transport. Journal of Physical Chemistry Letters, 2023, 14, 2331-2338	4.6	4

#	Article	IF	CITATIONS
418	Compromising Charge Generation and Recombination of Organic Photovoltaics with Mixed Diluent Strategy for Certified 19.4% Efficiency. Advanced Materials, 2023, 35, .	21.0	116
419	Interface Engineering for Highly Efficient Organic Solar Cells. Advanced Materials, 0, , .	21.0	40
420	Highlights of mainstream solar cell efficiencies in 2022. Frontiers in Energy, 2023, 17, 9-15.	2.3	9
421	Intrinsic Advantage of Fusedâ€Ring Nonfullerene Acceptorâ€Based Organic Solar Cells to Reduce Voltage Loss. Physica Status Solidi (A) Applications and Materials Science, 2023, 220, .	1.8	1
422	N-Annulated Perylene Diimide Non-Fullerene Acceptors for Organic Photovoltaics. Colorants, 2023, 2, 151-178.	1.5	7
423	Understanding Improved Performance of Vacuum-Deposited All Small-Molecule Organic Solar Cells Upon Postprocessing Thermal Treatment. IEEE Journal of Photovoltaics, 2023, 13, 411-418.	2.5	1
424	Dithienobenzoselenadiazole-Based Polymer Donors with Tuned Side Chains for Efficient Polymer Solar Cells. ACS Applied Energy Materials, 2023, 6, 4079-4088.	5.1	4
425	Subgap Absorption in Organic Semiconductors. Journal of Physical Chemistry Letters, 2023, 14, 3174-3185.	4.6	3
426	Selective fluorination on donor and acceptor for management of efficiency and energy loss in non-fullerene organic photovoltaics. Science China Chemistry, 2023, 66, 1190-1200.	8.2	6
427	Charge Concentration Limits the Hydrogen Evolution Rate in Organic Nanoparticle Photocatalysts. Advanced Materials, 0, , .	21.0	3
428	19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition. Nature Communications, 2023, 14, .	12.8	146
429	Dithieno[3,2â€ <i>f</i> :2′,3′â€ <i>h</i>]quinoxalineâ€Based Photovoltaic–Thermoelectric Dualâ€Function Energyâ€Harvesting Wideâ€Bandgap Polymer and its Backbone Isomer. Small, 2023, 19, .	^{al} 10.0	8
430	Refined molecular microstructure and optimized carrier management of multicomponent organic photovoltaics toward 19.3% certified efficiency. Energy and Environmental Science, 2023, 16, 2262-2273.	30.8	34
431	An Efficient Oneâ€Arrowâ€Twoâ€Hawks Strategy Achieves High Efficiency and Stable Batch Variance for Benzodifuranâ€based Polymer Solar Cells. Advanced Functional Materials, 2023, 33, .	14.9	7
432	Reducing Energy Loss in Polymer Solar Cell through Optimization of Novel Metal Nanocomposite. Energy & Fuels, 2023, 37, 6129-6137.	5.1	0
433	A cluster of bilayer diodes model for bulk heterojunction organic solar cells. Optical and Quantum Electronics, 2023, 55, .	3.3	0
434	Recent Progress in Largeâ€Area Organic Solar Cells. Small Science, 2023, 3, .	9.9	11
435	Lowâ€ŧemperature prepared ZnO layer with electron beam annealing process for enhancing the environmental, thermal and operational stability of organic photovoltaics Solar Rrl, 0, , .	5.8	1

#	Article	IF	CITATIONS
436	Fused polycyclic lactam-based π-conjugated polymers for efficient nonfullerene organic solar cells. Journal of Materials Chemistry A, 2023, 11, 9840-9845.	10.3	3
437	Designing Electron-Deficient Diketone Unit Based Non-Fused Ring Acceptors with Amplified Optoelectronic Features for Highly Efficient Organic Solar Cells: A DFT Study. Molecules, 2023, 28, 3625.	3.8	10
438	Evolution of photoelectric conversion and device stability of PM6:N2200 all-polymer solar cells. Chemical Physics, 2023, 572, 111965.	1.9	0
439	Integration of spinel ferrite magnetic nanoparticles into organic solar cells: a review. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 294, 116512.	3.5	2
440	Boundary research between organic conductors and transistors: new trends for functional molecular crystals. CrystEngComm, 0, , .	2.6	0
441	A free base porphyrin as an effective modifier of the cathode interlayer for organic solar cells. Applied Surface Science, 2023, 635, 157720.	6.1	4
442	3D network acceptor with gradient hydrogen bond interaction as a bifunctional layer in quasiplanar heterojunction organic solar cells. Nano Energy, 2023, 113, 108593.	16.0	4
443	Dual functions of light-emission and light-harvesting using organic donor and acceptor co-deposition. Organic Electronics, 2023, 121, 106876.	2.6	1
444	Coplanar Conformational Structure of π onjugated Polymers for Optoelectronic Applications. Advanced Materials, 2024, 36, .	21.0	3
445	Latest Updates of Single-Junction Organic Solar Cells up to 20% Efficiency. Energies, 2023, 16, 3895.	3.1	8
446	Charge Separation from Triplet Excited States in Nonfullerene Acceptorâ€Based Organic Solar Cells. Solar Rrl, 2023, 7, .	5.8	0
447	All-polymer organic solar cells with nano-to-micron hierarchical morphology and large light receiving angle. Nature Communications, 2023, 14, .	12.8	50
448	Solutionâ€Processable Zinc Oxide for Printed Photovoltaics: Progress, Challenges, and Prospect. Advanced Energy and Sustainability Research, 2023, 4, .	5.8	0
449	Efficient and Scalable Largeâ€Area Organic Solar Cells by Asymmetric Nonfullerene Acceptors Based on 9Hâ€Indeno[1,2â€b]pyrazineâ€2,3,8â€Tricarbonitrile. Advanced Functional Materials, 2023, 33, .	14.9	1
450	Reducing the voltage loss of Y-series acceptor based organic solar cells via ternary/quaternary strategies. Chinese Chemical Letters, 2024, 35, 108802.	9.0	3
451	Ultrahigh and Tunable Negative Photoresponse in Organicâ€Gated Carbon Nanotube Film Fieldâ€Effect Transistors. Advanced Functional Materials, 2023, 33, .	14.9	1
452	Origins of the open-circuit voltage in ternary organic solar cells and design rules for minimized voltage losses. Nature Energy, 2023, 8, 978-988.	39.5	9
453	Spontaneous vertical phase distribution of multi-acceptors system enables high-efficiency organic photovoltaics in non-halogenated solvent and large-area module application. Chemical Engineering Journal, 2023, 473, 145201.	12.7	2

#	Article	IF	CITATIONS
454	Facile, Versatile and Stepwise Synthesis of Highâ€Performance Oligomer Acceptors for Stable Organic Solar Cells. Angewandte Chemie, 2023, 135, .	2.0	0
455	Facile, Versatile and Stepwise Synthesis of Highâ€Performance Oligomer Acceptors for Stable Organic Solar Cells. Angewandte Chemie - International Edition, 2023, 62, .	13.8	10
456	All-Polymer Solar Cells Sequentially Solution Processed from Hydrocarbon Solvent with a Thick Active Layer. Polymers, 2023, 15, 3462.	4.5	0
457	å¨å›ºæ€çºʊ̥ᢌ՜å‰ä¼ç"µæ±ç"ç©¶èչ›å±•. Laser and Optoelectronics Progress, 2023, 60, 1316007.	0.6	0
458	What We have Learnt from PM6:Y6. Advanced Materials, 0, , .	21.0	3
459	A narrow-bandgap non-fullerene acceptor constructed with an S,N-heteroacene up to a dodecamer in size. Journal of Materials Chemistry C, 2023, 11, 12900-12905.	5.5	0
460	Sn(SCN) ₂ as an additive for improving the hole transport properties of PEDOT:PSS in organic photovoltaics. Journal of Materials Chemistry C, 2023, 11, 13803-13813.	5.5	0
461	Excited-state symmetry breaking in quadrupolar pull–push–pull molecules: dicyanovinyl <i>vs.</i> cyanophenyl acceptors. Physical Chemistry Chemical Physics, 2023, 25, 22689-22699.	2.8	4
462	Research progress on PM6:Y6-based ternary organic solar cells. Scientia Sinica Chimica, 2023, , .	0.4	0
463	Complete Peripheral Fluorination of the Smallâ€Molecule Acceptor in Organic Solar Cells Yields Efficiency over 19 %. Angewandte Chemie, 2023, 135, .	2.0	0
464	Complete Peripheral Fluorination of the Smallâ€Molecule Acceptor in Organic Solar Cells Yields Efficiency over 19 %. Angewandte Chemie - International Edition, 2023, 62, .	13.8	9
466	Organic laser power converter for efficient wireless micro power transfer. Nature Communications, 2023, 14, .	12.8	6
467	Enlightening the Well-Controlled Photochemical Behavior of 1,1-Dicyanomethylene-3-Indanone-Functionalized π-Conjugated Molecules. Chemistry of Materials, 2023, 35, 8122-8134.	6.7	0
468	Molecular modelling of fused heterocycle-based asymmetric non-fullerene acceptors for efficient organic solar cells. Journal of Saudi Chemical Society, 2023, 27, 101739.	5.2	6
469	The impact of environmental conditions on the performance of polycrystalline photovoltaic panels. AIP Conference Proceedings, 2023, , .	0.4	0
470	Isomerized Green Solid Additive Engineering for Thermally Stable and Ecoâ€Friendly Allâ€Polymer Solar Cells with Approaching 19% Efficiency. Advanced Materials, 2023, 35, .	21.0	6
471	Operando study of the influence of small molecule acceptors on the morphology induced device degradation of organic solar cells with different degrees of π–π stacking. Energy and Environmental Science, 2023, 16, 5970-5981.	30.8	1
473	Multi-functionally ferroelectric polymer promotes highly-efficient large-area organic solar cells with excellent comprehensive performance. Nano Energy, 2024, 119, 109023.	16.0	3

#	Article	IF	CITATIONS
474	Improved Short-Circuit Current and Fill Factor in PM6:Y6 Organic Solar Cells through D18-Cl Doping. Nanomaterials, 2023, 13, 2899.	4.1	0
475	Methylammonium-free wide-bandgap metal halide perovskites for tandem photovoltaics. Nature Reviews Materials, 2023, 8, 822-838.	48.7	2
476	18.9% Efficiency Binary Organic Solar Cells Enabled by Regulating the Intrinsic Properties of PEDOT:PSS. Advanced Functional Materials, 2024, 34, .	14.9	1
477	All-inorganic halide perovskites for air-processed "n–i–p―monolithic perovskite/organic hybrid tandem solar cells exceeding 23% efficiency. Energy and Environmental Science, 2024, 17, 1046-1060.	30.8	1
478	Structural and spectroscopic features of naphthol green B integrated for improved light harvesting capability of organic/inorganic hybrid solar cells. Optical Materials, 2023, 146, 114516.	3.6	0
479	Improved Efficiency in Organic Solar Cells Based on A2-D-A1-D-A2 Nonfullerene Acceptors with a Benzoselenadiazole Core Induced by Higher Dipole Moment and Dielectric Constant. ACS Applied Energy Materials, 2023, 6, 12052-12063.	5.1	0
480	Organic heterostructures based on thermal evaporated phthalocyanine and porphyrin as mixed (ZnPc:TPyP) or stacked (ZnPc/TPyP) films. Thin Solid Films, 2023, 787, 140140.	1.8	0
481	Organic interlayer materials for non-fullerene solar cells. Trends in Chemistry, 2024, 6, 37-50.	8.5	1
483	Liquid–Solid Transfer Process of Ordered Structures in Efficient Polymer Photovoltaic Materials. ACS Applied Polymer Materials, 0, , .	4.4	0
484	Theoretical exploration of the molecular stacking and charge transfer mechanism of PBQx:Y6 OSCs. Surfaces and Interfaces, 2024, 44, 103767.	3.0	0
485	Dimerized small molecular acceptors: Regulation of dimer conformation realizes binary organic solar cells with highly comprehensive performance. Nano Energy, 2024, 121, 109218.	16.0	1
486	Recent progress of hybrid cathode interface layer for organic solar cells. Journal of Energy Chemistry, 2024, 91, 383-406.	12.9	0
487	Energy level measurement for organic semiconductors. Physical Chemistry Chemical Physics, 2024, 26, 2768-2779.	2.8	0
488	Feasibility study on radioisotope-powered thermophotovoltaic/thermoelectric hybrid power generation system used in deep-sea: From design to experiment. Applied Energy, 2024, 358, 122604.	10.1	0
489	Stretchable and transparent nanopillar arrays for high-performance ultra-flexible organic photovoltaics. Applied Physics Letters, 2024, 124, .	3.3	0
490	Extracting charge carrier mobility in organic solar cells through space-charge-limited current measurements. Materials Science and Engineering Reports, 2024, 157, 100772.	31.8	1
491	Dicyclopentadithienothiophene-based non-fullerene acceptors for ternary blend organic photovoltaics. Journal of Materials Chemistry C, 2024, 12, 2247-2257.	5.5	1
492	Investigation of phonon thermal transport in monolayer and bilayer 2D organic C60 networks. International Journal of Heat and Mass Transfer, 2024, 222, 125197.	4.8	0

#	Article	IF	CITATIONS
493	Optimization of Non-fullerene Organic Photovoltaics Through Interface Engineering with Graphene Oxide: A Numerical Simulation. Journal of Electronic Materials, 2024, 53, 1539-1550.	2.2	0
494	Evolution of interfacial defects and energy losses during aging of organic photovoltaics. Physica B: Condensed Matter, 2024, 677, 415707.	2.7	0
495	Relocating selenium alkyl chain enables efficient all-small molecule organic solar cells. Chemical Engineering Journal, 2024, 482, 149149.	12.7	0
496	Highâ€Performance Ternary Organic Solar Cells with Enhanced Luminescence Efficiency and Miscibility Enabled by Two Compatible Acceptors. Advanced Energy Materials, 2024, 14, .	19.5	0
497	Recent Progress in High-Performance Organic Photovoltaic Devices. , 2024, , .		0
498	Optimizing Emission Stability in Blue Perovskite Lightâ€Emitting Diodes via Oxygenâ€Plasma Treatment of Ni <i>_x</i> O <i>_y</i> Hole Transport Layer. Advanced Optical Materials, 2024, 12, .	7.3	0
499	Recent advances on monolithic perovskiteâ€organic tandem solar cells. , 2024, 3, 113-132.		0
500	A molecular dynamics simulation route towards Eu-doped multi-component transparent spectral conversion glass-ceramics. Journal of Rare Earths, 2024, , .	4.8	0
501	Noncovalent Interaction Boosts Performance and Stability of Organic Solar Cells Based on Giant-Molecule Acceptors. ACS Applied Materials & amp; Interfaces, 2024, 16, 7317-7326.	8.0	0
502	Advances in organic solar cells: Materials, progress, challenges and amelioration for sustainable future. Sustainable Energy Technologies and Assessments, 2024, 63, 103632.	2.7	0
503	Wideâ€Bandgap Polymers with a C(sp ³)─F Polyfluoride Backbone Enable Highâ€Efficient Ternary Organic Solar Cells. Advanced Functional Materials, 0, , .	14.9	0
504	Identifying and Amplifying the Spontaneously Formed Photoâ€Charge Contribution in Opaque and Semitransparent Organic Photovoltaics. Advanced Energy Materials, 2024, 14, .	19.5	0
505	Efficient and Stable Organic Solar Cells Enabled by Backbone Engineering of Nonconjugated Polymer Zwitterion Interlayers. ACS Applied Energy Materials, 2024, 7, 2570-2578.	5.1	0
506	Optimizing the film formation of high crystalline donors for efficient organic solar cells. Chemical Engineering Journal, 2024, 487, 150414.	12.7	0
507	What is the Limit Size of 2D Conjugated Extension on Central Units of Small Molecular Acceptors in Organic Solar Cells?. Small, 0, , .	10.0	0
508	A general micromechanics-based model for precipitate strengthening and fracture toughness in polycrystal high entropy alloys. International Journal of Plasticity, 2024, 175, 103949.	8.8	0
509	Directional Exciton Diffusion, Measured by Subpicosecond Transient Absorption as an Explanation for Squaraine Solar Cell Performance. Journal of Physical Chemistry C, 2024, 128, 4616-4630.	3.1	0