An optical neural chip for implementing complex-value

Nature Communications 12, 457 DOI: 10.1038/s41467-020-20719-7

Citation Report

#	Article	IF	CITATIONS
1	Fully Complex-Valued Dendritic Neuron Model. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 2105-2118.	7.2	35
2	On-chip rapid drug screening of leukemia cells by acoustic streaming. Lab on A Chip, 2021, 21, 4005-4015.	3.1	21
3	Phase-shift determination for a 4  ×  4 intelligent photonic neural network with compatible le Applied Optics, 2021, 60, 2100.	earning. 0.9	2
4	Efficient On-Chip Training of Optical Neural Networks Using Genetic Algorithm. ACS Photonics, 2021, 8, 1662-1672.	3.2	61
5	Linear optical circuits characterization by means of thermal field correlation measurement. Laser Physics Letters, 2021, 18, 075201.	0.6	3
6	Photonic extreme learning machine by free-space optical propagation. Photonics Research, 2021, 9, 1446.	3.4	43
7	Reservoir computing based on a silicon microring and time multiplexing for binary and analog operations. Scientific Reports, 2021, 11, 15642.	1.6	31
9	A Silicon Photonic Coherent Neuron with 10GMAC/sec processing line-rate. , 2021, , .		14
10	Architecture agnostic algorithm for reconfigurable optical interferometer programming. Optics Express, 2021, 29, 38429.	1.7	8
11	Optical coherent dot-product chip for sophisticated deep learning regression. Light: Science and Applications, 2021, 10, 221.	7.7	56
12	Neuromorphic computing: Devices, hardware, and system application facilitated by two-dimensional materials. Applied Physics Reviews, 2021, 8, .	5.5	39
13	Neural SchrĶdinger Equation: Physical Law as Deep Neural Network. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 2686-2700.	7.2	13
14	Compute with Light: Architectures, Technologies and Training Models for Neuromorphic Photonic Circuits. , 2021, , .		7
15	Silicon-integrated coherent neurons with 32GMAC/sec/axon compute line-rates using EAM-based input and weighting cells. , 2021, , .		20
16	Artificial Neuron Based on Tera Hertz Optical Asymmetric Demultiplexer Using Quantum Dot Semiconductor Optical Amplifier. , 2021, , 293-306.		4
17	Direct construction of an optical linear transform and its application on optical complex data generation. Optics Express, 2022, 30, 1793.	1.7	2
18	Low-threshold all-optical nonlinear activation function based on a Ge/Si hybrid structure in a microring resonator. Optical Materials Express, 2022, 12, 970.	1.6	30
19	Photonic matrix multiplication lights up photonic accelerator and beyond. Light: Science and Applications, 2022, 11, 30.	7.7	167

#	Article	IF	CITATIONS
20	Recycling forward and backward frequency-multiplexed modes in a waveguide coupled to phased time-perturbed microrings for low-footprint neuromorphic computing. Optical Materials Express, 2022, 12, 1198.	1.6	1
21	An All-MRR-Based Photonic Spiking Neural Network for Spike Sequence Learning. Photonics, 2022, 9, 120.	0.9	5
22	Space-efficient optical computing with an integrated chip diffractive neural network. Nature Communications, 2022, 13, 1044.	5.8	90
23	Are phase change materials ideal for programmable photonics?: opinion. Optical Materials Express, 2022, 12, 2368.	1.6	16
24	Scalable and Robust Photonic Integrated Unitary Converter Based on Multiplane Light Conversion. Physical Review Applied, 2022, 17, .	1.5	14
25	Superhybrid Mode-Enhanced Optical Torques on Mie-Resonant Particles. Nano Letters, 2022, 22, 1769-1777.	4.5	17
26	Generalized robust training scheme using genetic algorithm for optical neural networks with imprecise components. Photonics Research, 2022, 10, 1868.	3.4	14
27	Programmable photonic neural networks combining WDM with coherent linear optics. Scientific Reports, 2022, 12, 5605.	1.6	24
28	At the intersection of optics and deep learning: statistical inference, computing, and inverse design. Advances in Optics and Photonics, 2022, 14, 209.	12.1	23
29	Emergence of Biased Errors in Imperfect Optical Circuits. Physical Review Applied, 2021, 16, .	1.5	0
30	Touchable cell biophysics property recognition platforms enable multifunctional blood smart health care. Microsystems and Nanoengineering, 2021, 7, 103.	3.4	18
31	Scalable and compact photonic neural chip with low learning-capability-loss. Nanophotonics, 2022, 11, 329-344.	2.9	26
32	All-Optical Nonlinear Activation Function Based on Germanium Silicon Hybrid Asymmetric Coupler. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-6.	1.9	8
34	Coherent Photonic Crossbar Arrays for Large-Scale Matrix-Matrix Multiplication. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-11.	1.9	11
35	All-Optical Recurrent Neural Network With Reconfigurable Activation Function. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-14.	1.9	6
36	Neuromorphic Silicon Photonics and Hardware-Aware Deep Learning for High-Speed Inference. Journal of Lightwave Technology, 2022, 40, 3243-3254.	2.7	32
37	Electromagnetic wave-based extreme deep learning with nonlinear time-Floquet entanglement. Nature Communications, 2022, 13, 2651.	5.8	8
38	Reconfigurable Activation Functions in Integrated Optical Neural Networks. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-13.	1.9	9

#	Article	IF	CITATIONS
39	Photonic (computational) memories: tunable nanophotonics for data storage and computing. Nanophotonics, 2022, 11, 3823-3854.	2.9	37
40	Deep Phase-Transmittance RBF Neural Network for Beamforming With Multiple Users. IEEE Wireless Communications Letters, 2022, 11, 1498-1502.	3.2	4
41	WDM equipped universal linear optics for programmable neuromorphic photonic processors. Neuromorphic Computing and Engineering, 2022, 2, 024010.	2.8	18
42	Polarization multiplexed diffractive computing: all-optical implementation of a group of linear transformations through a polarization-encoded diffractive network. Light: Science and Applications, 2022, 11, .	7.7	42
43	Programmable chalcogenide-based all-optical deep neural networks. Nanophotonics, 2022, 11, 4073-4088.	2.9	29
44	Multicore Photonic Complex-Valued Neural Network with Transformation Layer. Photonics, 2022, 9, 384.	0.9	2
45	An Optical Computing Chip for Executing Complex-valued Neural Network and Its On-chip Training. , 2022, , .		1
46	Deep learning in light–matter interactions. Nanophotonics, 2022, 11, 3189-3214.	2.9	10
47	Silicon-Based Metastructure Optical Scattering Multiply–Accumulate Computation Chip. Nanomaterials, 2022, 12, 2136.	1.9	2
48	Hybrid training of optical neural networks. Optica, 2022, 9, 803.	4.8	16
48 49	Hybrid training of optical neural networks. Optica, 2022, 9, 803. All-optical graph representation learning using integrated diffractive photonic computing units. Science Advances, 2022, 8, .	4.8 4.7	16 35
48 49 50	Hybrid training of optical neural networks. Optica, 2022, 9, 803. All-optical graph representation learning using integrated diffractive photonic computing units. Science Advances, 2022, 8, . Deep Learning-Based Hybrid Analog-Digital Signal Processing in mmWave Massive-MIMO Systems. IEEE Access, 2022, 10, 72348-72362.	4.8 4.7 2.6	16 35 3
48 49 50 51	Hybrid training of optical neural networks. Optica, 2022, 9, 803. All-optical graph representation learning using integrated diffractive photonic computing units. Science Advances, 2022, 8, . Deep Learning-Based Hybrid Analog-Digital Signal Processing in mmWave Massive-MIMO Systems. IEEE Access, 2022, 10, 72348-72362. A Method Executing Optical Real-Valued Matrix Multiplication. , 2022, , .	4.8 4.7 2.6	16 35 3 0
48 49 50 51 52	Hybrid training of optical neural networks. Optica, 2022, 9, 803. All-optical graph representation learning using integrated diffractive photonic computing units. Science Advances, 2022, 8, . Deep Learning-Based Hybrid Analog-Digital Signal Processing in mmWave Massive-MIMO Systems. IEEE Access, 2022, 10, 72348-72362. A Method Executing Optical Real-Valued Matrix Multiplication. , 2022, , . Optical Computing: Status and Perspectives. Nanomaterials, 2022, 12, 2171.	4.8 4.7 2.6 1.9	16 35 3 0 28
48 49 50 51 52 53	Hybrid training of optical neural networks. Optica, 2022, 9, 803. All-optical graph representation learning using integrated diffractive photonic computing units. Science Advances, 2022, 8, . Deep Learning-Based Hybrid Analog-Digital Signal Processing in mmWave Massive-MIMO Systems. IEEE Access, 2022, 10, 72348-72362. A Method Executing Optical Real-Valued Matrix Multiplication. , 2022, , . Optical Computing: Status and Perspectives. Nanomaterials, 2022, 12, 2171. On-chip bacterial foraging training in silicon photonic circuits for projection-enabled nonlinear classification. Nature Communications, 2022, 13, .	4.8 4.7 2.6 1.9 5.8	16 35 3 0 28 15
48 49 50 51 52 53 54	Hybrid training of optical neural networks. Optica, 2022, 9, 803. All-optical graph representation learning using integrated diffractive photonic computing units. Science Advances, 2022, 8, . Deep Learning-Based Hybrid Analog-Digital Signal Processing in mmWave Massive-MIMO Systems. IEEE Access, 2022, 10, 72348-72362. A Method Executing Optical Real-Valued Matrix Multiplication. , 2022, , . Optical Computing: Status and Perspectives. Nanomaterials, 2022, 12, 2171. On-chip bacterial foraging training in silicon photonic circuits for projection-enabled nonlinear classification. Nature Communications, 2022, 13, . Reconfigurable InP waveguide components using the Sb ₂ \$ ₃ phase change material. Journal of Optics (United Kingdom), 2022, 24, 094001.	4.8 4.7 2.6 1.9 5.8 1.0	16 35 3 0 28 15 6
 48 49 50 51 52 53 54 55 	Hybrid training of optical neural networks. Optica, 2022, 9, 803. All-optical graph representation learning using integrated diffractive photonic computing units. Science Advances, 2022, 8, . Deep Learning-Based Hybrid Analog-Digital Signal Processing in mmWave Massive-MIMO Systems. IEEE Access, 2022, 10, 72348-72362. A Method Executing Optical Real-Valued Matrix Multiplication., 2022, ,. Optical Computing: Status and Perspectives. Nanomaterials, 2022, 12, 2171. On-chip bacterial foraging training in silicon photonic circuits for projection-enabled nonlinear classification. Nature Communications, 2022, 13, . Reconfigurable InP waveguide components using the Sb ₂ S ₃ phase change material. Journal of Optics (United Kingdom), 2022, 24, 094001. Using Deep Learning Networks to Identify Cyber Attacks on Intrusion Detection for In-Vehicle Networks. Electronics (Switzerland), 2022, 11, 2180.	4.8 4.7 2.6 1.9 5.8 1.0 1.8	16 35 3 0 28 15 6 13

#	Article	IF	CITATIONS
57	Photonic Emulator for Inverse Design. ACS Photonics, 2023, 10, 2173-2181.	3.2	9
58	Si Microring Resonator Crossbar Array for On-Chip Inference and Training of the Optical Neural Network. ACS Photonics, 2022, 9, 2614-2622.	3.2	31
59	Optical Neural Network with Reduced Phase Shifters Using Multi-Plane Light Conversion. , 2022, , .		1
60	Optical-Electrical Nonlinear Feedback Assisted Photonic Circuits for Temporal Pattern Recognition. , 2022, , .		0
61	Meta-optic accelerators for object classifiers. Science Advances, 2022, 8, .	4.7	17
62	Seven-channel all-optical reconfigurable canonical logic units multicasting at 40 Gb/s based on a nonlinearity-enhanced silicon waveguide. Optics Express, 2022, 30, 32650.	1.7	6
63	Complex-Valued Neural Networks: A Comprehensive Survey. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 1406-1426.	8.5	38
64	Boolean logic gates implemented by a single photonic neuron based on a semiconductor Fano laser. , 2022, 1, 1859.		3
65	Multilayer Radial Basis Function Neural Network for Symbol Timing Recovery. Neural Processing Letters, 0, , .	2.0	0
66	Two-layer integrated photonic architectures with multiport photodetectors for high-fidelity and energy-efficient matrix multiplications. Optics Express, 2022, 30, 33940.	1.7	7
67	Optical manipulation with metamaterial structures. Applied Physics Reviews, 2022, 9, .	5.5	57
68	Adversarial Attacks on an Optical Neural Network. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-6.	1.9	2
69	On-chip Training Silicon Photonic Circuits to Perform Digital and Analog Computing. , 2022, , .		0
70	Error-Tolerant Integrated Optical Neural Network Processor based on Multi-Plane Light Conversion. , 2022, , .		2
71	Photonic Reconfigurable Accelerators for Efficient Inference of CNNs With Mixed-Sized Tensors. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 4337-4348.	1.9	2
72	Characterizing Coherent Integrated Photonic Neural Networks Under Imperfections. Journal of Lightwave Technology, 2023, 41, 1464-1479.	2.7	6
73	Memory Consolidation: Neural Data Analysis and Mathematical Modeling. , 2022, , 1-37.		0
74	Neuromorphic Computing Based on Wavelength-Division Multiplexing. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-12.	1.9	17

#	Article	IF	CITATIONS
75	Iterative photonic processor for fast complex-valued matrix inversion. Photonics Research, 2022, 10, 2488.	3.4	2
76	Noise-resilient and high-speed deep learning with coherent silicon photonics. Nature Communications, 2022, 13, .	5.8	29
77	Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics. Nature Communications, 2022, 13, .	5.8	9
78	Silicon Photonic Phase Shifters and Their Applications: A Review. Micromachines, 2022, 13, 1509.	1.4	9
79	Massively scalable wavelength diverse integrated photonic linear neuron. Neuromorphic Computing and Engineering, 2022, 2, 034012.	2.8	3
80	Resource-efficient high-dimensional subspace teleportation with a quantum autoencoder. Science Advances, 2022, 8, .	4.7	9
81	Photonic tensor core for machine learning: a review. , 2022, , .		1
82	Memory Consolidation: Neural Data Analysis and Mathematical Modeling. , 2022, , 973-1009.		0
83	Nonlinear germanium-silicon photodiode for activation and monitoring in photonic neuromorphic networks. Nature Communications, 2022, 13, .	5.8	20
84	Mechanical neural networks: Architected materials that learn behaviors. Science Robotics, 2022, 7, .	9.9	24
85	Large-scale photonic natural language processing. Photonics Research, 2022, 10, 2846.	3.4	9
86	Reconfigurable Low-Threshold All-Optical Nonlinear Activation Functions Based on an Add-Drop Silicon Microring Resonator. IEEE Photonics Journal, 2022, 14, 1-7.	1.0	3
87	Universal Linear Optics for Ultra-Fast Neuromorphic Silicon Photonics Towards fJ/MAC and TMAC/sec/mm ² Engines. IEEE Journal of Selected Topics in Quantum Electronics, 2022, , 1-15.	1.9	9
88	Experimental demonstration of coherent photonic neural computing based on a Fabry–Perot laser with a saturable absorber. Photonics Research, 2023, 11, 65.	3.4	6
89	Characterizing optical phase-change materials with spectroscopic ellipsometry and polarimetry. Thin Solid Films, 2022, 763, 139580.	0.8	3
90	Optoelectronic integrated circuits for analog optical computing: Development and challenge. Frontiers in Physics, 0, 10, .	1.0	3
91	High-Speed Waveguide-Integrated Avalanche Photodiodes for Near-Infrared Wavelengths on SiN-on-SOI Photonic Platform. Journal of Lightwave Technology, 2023, 41, 1811-1819.	2.7	2
92	AirNN: Over-the-Air Computation for Neural Networks via Reconfigurable Intelligent Surfaces. IEEE/ACM Transactions on Networking, 2023, 31, 2470-2482.	2.6	3

		FORT	
#	Article	IF	CITATIONS
93	â€~Dial up' Photonic Integrated Circuit Filter. Journal of Lightwave Technology, 2023, 41, 1775-1783.	2.7	2
94	Universal Linear Optics Revisited: New Perspectives for Neuromorphic Computing With Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-16.	1.9	5
95	On-Demand Reconfigurable Incoherent Optical Matrix Operator for Real-Time Video Image Display. Journal of Lightwave Technology, 2023, 41, 1637-1648.	2.7	6
96	Quantum Photonic Chip for Binary Classification of Financial Data. , 2022, , .		1
97	Investigation of expressive power of a neural network architecture suited for optical neural networks. , 2022, , .		0
98	Molecular Property Prediction with Photonic Chipâ€Based Machine Learning. Laser and Photonics Reviews, 2023, 17, .	4.4	5
99	Computation at the speed of light: metamaterials for all-optical calculations and neural networks. Advanced Photonics, 2022, 4, .	6.2	24
100	On the effect of the thermal cross-talk in a photonic feed-forward neural network based on silicon microresonators. Frontiers in Physics, 0, 10, .	1.0	7
101	Multi-wavelength dual-polarization optical unitary processor using integrated multi-plane light converter. Japanese Journal of Applied Physics, 0, , .	0.8	2
102	Revealing the Formation Mechanism and Optimizing the Synthesis Conditions of Layered Double Hydroxides for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	7
103	Analog nanophotonic computing going practical: silicon photonic deep learning engines for tiled optical matrix multiplication with dynamic precision. Nanophotonics, 2023, 12, 963-973.	2.9	13
104	Massively parallel universal linear transformations using a wavelength-multiplexed diffractive optical network. Advanced Photonics, 2023, 5, .	6.2	17
105	Photonic machine learning with on-chip diffractive optics. Nature Communications, 2023, 14, .	5.8	41
106	Photonic multiplexing techniques for neuromorphic computing. Nanophotonics, 2023, 12, 795-817.	2.9	27
107	Prospects and applications of on-chip lasers. ELight, 2023, 3, .	11.9	56
108	Optical Neural Network With Complementary Decomposition to Overcome the Phase Insensitive Constrains. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-8.	1.9	2
109	Microcomb-based integrated photonic processing unit. Nature Communications, 2023, 14, .	5.8	49
110	MXeneâ€Nanoflakesâ€Enabled Allâ€Optical Nonlinear Activation Function for Onâ€Chip Photonic Deep Neural Networks. Advanced Materials, 2023, 35, .	11.1	5

#	Article	IF	CITATIONS
111	Revealing the Formation Mechanism and Optimizing the Synthesis Conditions of Layered Double Hydroxides for the Oxygen Evolution Reaction. Angewandte Chemie, 0, , .	1.6	0
112	A Coherent Photonic Crossbar for Scalable Universal Linear Optics. Journal of Lightwave Technology, 2023, 41, 2425-2442.	2.7	6
113	MMSE Signal Detection for MIMO Systems based on Ordinary Differential Equation. , 2022, , .		1
114	Nanowire-based integrated photonics for quantum information and quantum sensing. Nanophotonics, 2023, 12, 339-358.	2.9	16
115	Towards a high-density photonic tensor core enabled by intensity-modulated microrings and photonic wire bonding. Scientific Reports, 2023, 13, .	1.6	7
116	Coherent optical neuron control based on reinforcement learning. Optics Letters, 2023, 48, 1084.	1.7	2
117	Active Erbiumâ€Ðoped Silicon Nanoantenna. Laser and Photonics Reviews, 2023, 17, .	4.4	1
118	Aluminum Nitride Thin Film Based Reconfigurable Integrated Photonic Devices. IEEE Journal of Selected Topics in Quantum Electronics, 2023, , 1-18.	1.9	3
119	Integrated Microwave Photonics Coherent Processor for Massive-MIMO Systems in Wireless Communications. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-12.	1.9	1
120	Heavy tails and pruning in programmable photonic circuits for universal unitaries. Nature Communications, 2023, 14, .	5.8	6
121	Sophisticated deep learning with on-chip optical diffractive tensor processing. Photonics Research, 2023, 11, 1125.	3.4	4
122	Using binary-stiffness beams within mechanical neural-network metamaterials to learn. Smart Materials and Structures, 2023, 32, 035015.	1.8	1
123	Co-designed metaoptoelectronic deep learning. Optics Express, 2023, 31, 6453.	1.7	0
124	Optically Readable Electrochromic-Based Microfiber Synaptic Device for Photonic Neuromorphic Systems. ACS Applied Materials & amp; Interfaces, 2023, 15, 9705-9713.	4.0	1
125	Evolving scattering networks for engineering disorder. Nature Computational Science, 2023, 3, 128-138.	3.8	10
126	Black-box simulation method: train the optical model from output. , 2023, , .		0
127	Training on the optical system: local search method. , 2023, , .		0
128	Design and testing of silicon photonic 4F system for convolutional neural networks. , 2023, , .		0

~			_	
C	ITA'	τιον	IKF	PORT
\sim	11/1			

#	Article	IF	CITATIONS
129	Nanophotonic and Optical Platforms for Deep Learning. Springer Series in Optical Sciences, 2023, , 157-172.	0.5	0
130	Proposal of fully augmented complex-valued neural networks. Nonlinear Theory and Its Applications IEICE, 2023, 14, 175-192.	0.4	0
131	å‰å¦ç¥žç»ç½'络åŠå¶å²"ç" Laser and Optoelectronics Progress, 2023, 60, 0600001.	0.2	3
132	Photonic-assisted Modulation Format Identification Using Convolutional Neural Networks. , 2022, , .		0
133	Cyber Attack Detection for Self-Driving Vehicle Networks Using Deep Autoencoder Algorithms. Sensors, 2023, 23, 4086.	2.1	8
134	Nonlinear absorption of 2D materials and their application in optical neural networks. Journal of the Optical Society of America B: Optical Physics, 0, , .	0.9	0
137	WDM-compatible integrated photonic computing core for implementing a neural network. , 2023, , .		0
140	Semiconductor Multilayer Nanometrology with Machine Learning. Nanomanufacturing and Metrology, 2023, 6, .	1.5	4
145	Incoherent Fiber-based Optical Neuromorphic Computing Circuit. , 2023, , .		0
154	Building Blocks for a Complex-Valued Transformer Architecture. , 2023, , .		0
157	WDM-compatible integrated photonic computing core for implementing a neural network. , 2023, , .		0
160	An Optical XNOR-Bitcount Based Accelerator for Efficient Inference of Binary Neural Networks. , 2023, , .		1
164	Entropy of Mode Mixers for Optical Unitary Converter based on Multi-Plane Light Conversion. , 2022, ,		0
166	SCONNA: A Stochastic Computing Based Optical Accelerator for Ultra-Fast, Energy-Efficient Inference of Integer-Quantized CNNs. , 2023, , .		2
173	Calibration-free reconfigurable silicon optical signal processor. , 2023, , .		0
186	On-chip Training Silicon Photonic Circuits for Novel Classification Computing. , 2023, , .		0
187	High-Extinction Reconfigurable Mach-Zehnder Interferometer Based on Silicon Photonic MEMS. , 2023,		0
202	Experimental Demonstration of a Photonic Extreme Learning Machine with an Array of Microresonators. , 2023, , .		0

#	Article	IF	CITATIONS
203	Heterogeneous III-V-on-Silicon photonic Non-Linear Activation Function for Scalable Photonic Neural Networks. , 2023, , .		1
214	An implementation of complex-valued matrix-vector multiplication based on MZI array for photonic neural networks. , 2023, , .		0
215	Complex-valued Optical Neural Networks Enabled by Multimode Interferometers and Phase Shifters. , 2023, , .		0
216	On the Computational Complexities of Complex-Valued Neural Networks. , 2023, , .		0
221	FIONA: Photonic-Electronic CoSimulation Framework and Transferable Prototyping for Photonic Accelerator. , 2023, , .		0
222	Photonics-Assisted Complex-Valued Discrete Fourier Transform Processor Based on Temporal Computing. , 2023, , .		0
225	Economical optical matrix to vector multiplier. , 2024, , .		0
229	Large-scale neuromorphic systems enabled by integrated photonics. , 2024, , 191-220.		0
230	Photonic matrix computing accelerators. , 2024, , 257-293.		0
234	An Integrated All-Optical Multimodal Learning Engine Built by Reconfigurable Phase-Change Meta-Atoms. Lecture Notes in Computer Science, 2024, , 442-451.	1.0	0
246	Entropy of Mode Mixers for Optical Unitary Converter Based on Multi-Plane Light Conversion. , 2022, ,		0
250	Exploring nonlinear activation function within microring resonators for all-photonic neuromorphic computing. , 2024, , .		0
251	Diffractive Optical Neural Networks. , 2024, , 73-94.		0

Diffractive Optical Neural Networks. , 2024, , 73-94. 251