The phase changes of M1/M2 phenotype of microglia/m retinopathy in mice

Inflammation Research 70, 183-192 DOI: 10.1007/s00011-020-01427-w

Citation Report

#	Article	IF	CITATIONS
1	The Metaflammatory and Immunometabolic Role of Macrophages and Microglia in Diabetic Retinopathy. Human Cell, 2021, 34, 1617-1628.	1.2	18
2	The potential protective effects of miR-497 on corneal neovascularization are mediated via macrophage through the IL-6/STAT3/VEGF signaling pathway. International Immunopharmacology, 2021, 96, 107745.	1.7	11
3	Axonal Injuries Cast Long Shadows: Long Term Glial Activation in Injured and Contralateral Retinas after Unilateral Axotomy. International Journal of Molecular Sciences, 2021, 22, 8517.	1.8	13
4	Ginsenoside Rb1 induces a pro-neurogenic microglial phenotype via PPARÎ ³ activation in male mice exposed to chronic mild stress. Journal of Neuroinflammation, 2021, 18, 171.	3.1	26
5	Immunization with neural-derived peptides as a neuroprotective therapy for spinal cord injury. , 2021, 1, 111-120.		0
6	Macrophage and cardiovascular diseases. , 2022, , 255-264.		0
7	Melatonin Maintains Inner Blood–Retinal Barrier by Regulating Microglia via Inhibition of PI3K/Akt/Stat3/NF-κB Signaling Pathways in Experimental Diabetic Retinopathy. Frontiers in Immunology, 2022, 13, 831660.	2.2	21
8	ALKBH5-Mediated m6A Modification of A20 Regulates Microglia Polarization in Diabetic Retinopathy. Frontiers in Immunology, 2022, 13, 813979.	2.2	15
9	Interplay between Müller cells and microglia aggravates retinal inflammatory response in experimental glaucoma. Journal of Neuroinflammation, 2021, 18, 303.	3.1	34
10	Shaping the Microglia in Retinal Degenerative Diseases Using Stem Cell Therapy: Practice and Prospects. Frontiers in Cell and Developmental Biology, 2021, 9, 741368.	1.8	6
11	Retinal microglia: Functions and diseases. Immunology, 2022, 166, 268-286.	2.0	24
12	Th22 Cells Induce Müller Cells Activation Via the Act1/Traf6 Pathway in Diabetic Retinopathy. SSRN Electronic Journal, 0, , .	0.4	0
13	Harnessing retinal phagocytes to combat pathological neovascularization in ischemic retinopathies?. Pflugers Archiv European Journal of Physiology, 2022, 474, 575-590.	1.3	4
14	Exploring the Immune Infiltration Landscape and M2 Macrophage-Related Biomarkers of Proliferative Diabetic Retinopathy. Frontiers in Endocrinology, 2022, 13, .	1.5	8
15	Tetraspanin CD82 restrains phagocyte migration but supports macrophage activation. IScience, 2022, 25, 104520.	1.9	5
16	A Novel Hypoxia-inducible Factor $1 \hat{l} \pm$ Inhibitor KC7F2 Attenuates Oxygen-induced Retinal Neovascularization. , 2022, 63, 13.		7
17	Kir2.1 channel regulates macrophage polarization via the Ca2+/CaMK II/ERK/NF-κB signaling pathway. Journal of Cell Science, 2022, 135, .	1.2	7
18	Immunomodulation of MiRNA-223-based nanoplatform for targeted therapy in retinopathy of prematurity. Journal of Controlled Release, 2022, 350, 789-802.	4.8	6

CITATION REPORT

#	Article	IF	CITATIONS
19	Ferulic acid alleviates retinal neovascularization by modulating microglia/macrophage polarization through the ROS/NF-κB axis. Frontiers in Immunology, 0, 13, .	2.2	6
20	Th22 cells induce Müller cell activation via the Act1/TRAF6 pathway in diabetic retinopathy. Cell and Tissue Research, 2022, 390, 367-383.	1.5	2
21	Multitarget Activities of Müller Glial Cells and Low-Density Lipoprotein Receptor-Related Protein 1 in Proliferative Retinopathies. ASN Neuro, 2022, 14, 175909142211363.	1.5	3
22	A Narrative Review of STAT Proteins in Diabetic Retinopathy: From Mechanisms to Therapeutic Prospects. Ophthalmology and Therapy, 2022, 11, 2005-2026.	1.0	3
23	The role of NAD+ metabolism in macrophages in age-related macular degeneration. Mechanisms of Ageing and Development, 2023, 209, 111755.	2.2	2
24	Modulation of cGAS-STING signaling by PPARα in a mouse model of ischemia-induced retinopathy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
25	Microglia: The breakthrough to treat neovascularization and repair blood-retinal barrier in retinopathy. Frontiers in Molecular Neuroscience, 0, 16, .	1.4	6
26	RIP3-mediated microglial necroptosis promotes neuroinflammation and neurodegeneration in the early stages of diabetic retinopathy. Cell Death and Disease, 2023, 14, .	2.7	11
27	YY1 lactylation in microglia promotes angiogenesis through transcription activation-mediated upregulation of FGF2. Genome Biology, 2023, 24, .	3.8	19