Using satellite data to identify the methane emission co

Biogeosciences 18, 557-572 DOI: 10.5194/bg-18-557-2021

Citation Report

#	Article	IF	CITATIONS
1	A tale of two regions: methane emissions from oil and gas production in offshore/onshore Mexico. Environmental Research Letters, 2021, 16, 024019.	5.2	30
2	Attribution of the accelerating increase in atmospheric methane during 2010–2018 by inverse analysis of GOSAT observations. Atmospheric Chemistry and Physics, 2021, 21, 3643-3666.	4.9	68
3	Development of the global dataset of Wetland Area and Dynamics for Methane Modeling (WAD2M). Earth System Science Data, 2021, 13, 2001-2023.	9.9	47
4	Estimates of North African Methane Emissions from 2010 to 2017 Using GOSAT Observations. Environmental Science and Technology Letters, 2021, 8, 626-632.	8.7	13
5	Modeling riparian flood plain wetland water richness in pursuance of damming and linking it with a methane emission rate. Geocarto International, 2022, 37, 7954-7982.	3.5	9
6	Improving Representation of Tropical Wetland Methane Emissions With CYGNSS Inundation Maps. Global Biogeochemical Cycles, 2021, 35, e2020GB006890.	4.9	17
7	Anthropogenic emission is the main contributor to the rise of atmospheric methane during 1993–2017. National Science Review, 2022, 9, nwab200.	9.5	20
8	Isotopic signatures of methane emissions from tropical fires, agriculture and wetlands: the MOYA and ZWAMPS flights. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20210112.	3.4	6
9	Effect of Assimilating SMAP Soil Moisture on CO2 and CH4 Fluxes through Direct Insertion in a Land Surface Model. Remote Sensing, 2022, 14, 2405.	4.0	6
10	Large Methane Emission Fluxes Observed From Tropical Wetlands in Zambia. Global Biogeochemical Cycles, 2022, 36, .	4.9	14
11	Monitoring greenhouse gases (GHGs) in China: status and perspective. Atmospheric Measurement Techniques, 2022, 15, 4819-4834.	3.1	6
12	Role of space station instruments for improving tropical carbon flux estimates using atmospheric data. Npj Microgravity, 2022, 8, .	3.7	1
13	Evaluation of wetland CH ₄ in the Joint UK Land Environment Simulator (JULES) land surface model using satellite observations. Biogeosciences, 2022, 19, 5779-5805.	3.3	0
14	Using Orbiting Carbon Observatory-2 (OCO-2) column CO ₂ retrievals to rapidly detect and estimate biospheric surface carbon flux anomalies. Atmospheric Chemistry and Physics, 2023, 23, 1545-1563.	4.9	4
15	Comparison of Methane Detection Using Shortwave and Longwave Infrared Hyperspectral Sensors Under Varying Environmental Conditions. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 2517-2531.	4.9	0
16	Investigating high methane emissions from urban areas detected by TROPOMI and their association with untreated wastewater. Environmental Research Letters, 2023, 18, 044004.	5.2	7
17	Drivers and impacts of Eastern African rainfall variability. Nature Reviews Earth & Environment, 2023, 4, 254-270.	29.7	43
18	RadWet: An Improved and Transferable Mapping of Open Water and Inundated Vegetation Using Sentinel-1. Remote Sensing, 2023, 15, 1705.	4.0	2

#	Article	IF	CITATIONS
19	Data driven analysis of atmospheric methane concentrations as function of geographic, land cover type and season. Frontiers in Earth Science, 0, 11, .	1.8	1
20	Methane emissions are predominantly responsible for record-breaking atmospheric methane growth rates in 2020 and 2021. Atmospheric Chemistry and Physics, 2023, 23, 4863-4880.	4.9	13
21	Challenges and opportunities in the global methane cycle. IScience, 2023, 26, 106878.	4.1	0
22	Toward a versatile spaceborne architecture for immediate monitoring of the global methane pledge. Atmospheric Chemistry and Physics, 2023, 23, 5233-5249.	4.9	0
23	Satellite data reveal how Sudd wetland dynamics are linked with globally-significant methane emissions. Environmental Research Letters, 2023, 18, 074044.	5.2	1
24	Atmospheric data support a multi-decadal shift in the global methane budget towards natural tropical emissions. Atmospheric Chemistry and Physics, 2023, 23, 8429-8452.	4.9	5
25	Automated detection and monitoring of methane super-emitters using satellite data. Atmospheric Chemistry and Physics, 2023, 23, 9071-9098.	4.9	8
26	Underestimated Dry Season Methane Emissions from Wetlands in the Pantanal. Environmental Science & Technology, 0, , .	10.0	0