Evolution of Water Hazard Control Technology in China

Mine Water and the Environment 40, 334-344 DOI: 10.1007/s10230-020-00744-0

Citation Report

#	ARTICLE	IF	CITATIONS
1	Predicting the Height of the Water-conducting Fractured Zone Based on a Multiple Regression Model and Information Entropy in the Northern Ordos Basin, China. Mine Water and the Environment, 2022, 41, 225-236.	2.0	7
2	Failure evolution of collapse column area in deep mine based on numerical calculation and microseismic monitoring. IOP Conference Series: Earth and Environmental Science, 2021, 861, 052057.	0.3	0
3	Prediction and Treatment of Water Leakage Risk Caused by the Dynamic Evolution of Ground Fissures in Gully Terrain. Frontiers in Earth Science, 2022, 9, .	1.8	3
4	Numerical Simulation of Inrush Water Spreading Through a Mine: A Case Study of the Beixinyao Mine, Shanxi Province, China. Mine Water and the Environment, 2022, 41, 487-503.	2.0	5
5	Monitoring Direct Current Resistivity During Coal Mining Process for Underground Water Detection: An Experimental Case Study. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-8.	6.3	4
6	An analytical method for predicting the groundwater inflow to tunnels in a fractured aquifer. Hydrogeology Journal, 0, , .	2.1	4
7	Study on Characteristic Raman Shift Screening Method Based on MPA for Raman Spectrum of Mine Water Inrush Source. Scientific Programming, 2022, 2022, 1-8.	0.7	0
8	Water Inrush Modes Through a Thick Aquifuge Floor in a Deep Coal Mine and Appropriate Control Technology: A Case Study from Hebei, China. Mine Water and the Environment, 2022, 41, 954-969.	2.0	6
9	Investigation of a Method to Prevent Rock Failure and Disaster Due to a Collapse Column Below the Mine. Mine Water and the Environment, 0, , .	2.0	1
10	Assembled design and compressive performance simulation of mine waterproof wall based on concrete 3D printing. Frontiers in Earth Science, 0, 10, .	1.8	0
11	Microseismic Precursors of Coal Mine Water Inrush Characterized by Different Waveforms Manifest as Dry to Wet Fracturing. International Journal of Environmental Research and Public Health, 2022, 19, 14291.	2.6	3
12	Response and Application of Full-Space Numerical Simulation Based on Finite Element Method for Transient Electromagnetic Advanced Detection of Mine Water. Sustainability, 2022, 14, 15024.	3.2	2
13	Construction and application of mine water inflow prediction model based on multi-factor weighted regression: Wulunshan Coal Mine case. Earth Science Informatics, 2023, 16, 1879-1890.	3.2	4
14	Research and application of downhole drilling depth based on computer vision technique. Chemical Engineering Research and Design, 2023, 174, 531-547.	5.6	1
15	Study of the mining and aquifer interactions in complex geological conditions and its management. Scientific Reports, 2023, 13, .	3.3	2
16	A multi-constraint and multi-objective optimization layout method for a mine water inrush monitoring network. Scientific Reports, 2023, 13, .	3.3	0
17	Temporal and Spatial Analysis of Water Resources under the Influence of Coal Mining: A Case Study of Yangquan Basin, China. Water (Switzerland), 2023, 15, 3058.	2.7	1
18	ä,‹ç»"çɐ̃;'è·ç¦»è–"çıı±,å,¦åŽ‹å¼€é‡‡çªæ°´å±é™©æ€§ç²¾ç»†ç"ç©¶. Mine Water and the Environment, 0, , .	2.0	0

#	Article	IF	CITATIONS
19	Research on the optimal parameters of wind curtain dust control technology based on multi factor disturbance conditions. Journal of Cleaner Production, 2024, 434, 140196.	9.3	1
20	A Mine Water Source Prediction Model Based on LIF Technology and BWO-ELM. Journal of Fluorescence, 0, , .	2.5	0
21	Novel Method on Mixing Degree Quantification of Mine Water Sources: A Case Study. Processes, 2024, 12, 438.	2.8	0
22	Spatial and Temporal Characterization of Mine Water Inrush Accidents in China, 2014–2022. Water (Switzerland), 2024, 16, 656.	2.7	0
23	Um modelo de cálculo de composição quantitativa de fonte de água de mina baseado em "Ãons emblemáticos― Hydrogeology Journal, 2024, 32, 913-923.	2.1	0