STUDIES ON SPECIATION IN MALDANID POLYCHAET COAST. II. DISTRIBUTION AND COMPETITIVE INTERA

Limnology and Oceanography 9, 12-26

DOI: 10.4319/lo.1964.9.1.0012

Citation Report

#	Article	IF	CITATIONS
1	Studies on speciation in maldanid polychaetes of the north american atlantic coastâ€"III. Intraspecific and interspecific divergence in oxygen consumption. Comparative Biochemistry and Physiology, 1963, 10, 335-349.	1.1	37
2	Activity patterns in metabolism and ecology of polychaetes. Comparative Biochemistry and Physiology, 1964, 11, 239-256.	1.1	62
3	Niche Diversity in Five Sympatric Species of Intertidal Amphipods (Crustacea: Haustoriidae). Ecological Monographs, 1967, 37, 173-200.	5.4	76
4	Distribution and feeding in the onuphid polychaete, Diopatra cuprea (Bosc). Marine Biology, 1968, 2, 33-40.	1.5	92
5	Temperature tolerance of the polychaete worms Diopatra cuprea and Clymenella torquata. Marine Biology, 1969, 4, 219-223.	1.5	24
6	Salinity—stress and Desiccation in Intertidal Worms. American Zoologist, 1969, 9, 319-331.	0.7	37
7	ADAPTATIONS TO ENVIRONMENTAL OXYGEN LEVELS IN INFAUNAL AND EPIFAUNAL SEA ANEMONES. Biological Bulletin, 1972, 143, 657-678.	1.8	68
8	Temperature sensitivity of oxygen consumption of latitudinally separated Urosalpinx cinerea (Prosobranchia: Muricidae) populations. Marine Biology, 1972, 13, 276-283.	1.5	10
9	Life histories and the role of disturbance. Deep Sea Research and Oceanographic Abstracts, 1973, 20, 643-659.	0.3	92
10	Resource Partitioning in Ecological Communities. Science, 1974, 185, 27-39.	12.6	3,257
10	Resource Partitioning in Ecological Communities. Science, 1974, 185, 27-39. Particle size-selection of two deposit feeders: the amphipod Corophium volutator and the prosobranch Hydrobia ulvae. Marine Biology, 1975, 30, 119-128.	12.6	3,257 196
	Particle size-selection of two deposit feeders: the amphipod Corophium volutator and the		
11	Particle size-selection of two deposit feeders: the amphipod Corophium volutator and the prosobranch Hydrobia ulvae. Marine Biology, 1975, 30, 119-128. The role of coelomic hemerythrin in the sipunculid worm Phascolopis gouldi. Comparative	1.5	196
11	Particle size-selection of two deposit feeders: the amphipod Corophium volutator and the prosobranch Hydrobia ulvae. Marine Biology, 1975, 30, 119-128. The role of coelomic hemerythrin in the sipunculid worm Phascolopis gouldi. Comparative Biochemistry and Physiology A, Comparative Physiology, 1975, 50, 777-785.	1.5	196 35
11 12 13	Particle size-selection of two deposit feeders: the amphipod Corophium volutator and the prosobranch Hydrobia ulvae. Marine Biology, 1975, 30, 119-128. The role of coelomic hemerythrin in the sipunculid worm Phascolopis gouldi. Comparative Biochemistry and Physiology A, Comparative Physiology, 1975, 50, 777-785. ANNELIDA: POLYCHAETA., 1975, , 1-213. The functional morphology of feeding in three species of maldanid polychaetes. Zoological Journal of	0.6	196 35 129
11 12 13	Particle size-selection of two deposit feeders: the amphipod Corophium volutator and the prosobranch Hydrobia ulvae. Marine Biology, 1975, 30, 119-128. The role of coelomic hemerythrin in the sipunculid worm Phascolopis gouldi. Comparative Biochemistry and Physiology A, Comparative Physiology, 1975, 50, 777-785. ANNELIDA: POLYCHAETA., 1975, , 1-213. The functional morphology of feeding in three species of maldanid polychaetes. Zoological Journal of the Linnean Society, 1977, 60, 95-109. The functional morphology and possible taxonomic significance of the parapodia of the maldanid	1.5 0.6 2.3	196 35 129 11
11 12 13 14	Particle size-selection of two deposit feeders: the amphipod Corophium volutator and the prosobranch Hydrobia ulvae. Marine Biology, 1975, 30, 119-128. The role of coelomic hemerythrin in the sipunculid worm Phascolopis gouldi. Comparative Biochemistry and Physiology A, Comparative Physiology, 1975, 50, 777-785. ANNELIDA: POLYCHAETA., 1975, , 1-213. The functional morphology of feeding in three species of maldanid polychaetes. Zoological Journal of the Linnean Society, 1977, 60, 95-109. The functional morphology and possible taxonomic significance of the parapodia of the maldanid polychaetesClymenella torquata and Euclymene oerstedi. Journal of Morphology, 1977, 152, 281-302. The feeding ecology of Axiothella rubrocincta (Johnson) (Polychaeta: Maldanidae). Journal of	1.5 0.6 2.3	196 35 129 11 15

#	Article	IF	CITATIONS
19	Seasonal changes in feeding types of estuarine benthic invertebrates from delaware bay. Journal of Experimental Marine Biology and Ecology, 1979, 36, 125-155.	1.5	31
20	Persistence and structure of two deep macrobenthic communities in the Skagerrak (west coast of) Tj ETQq1 1 0	.784314 r 1.5	gBŢ <i>J</i> Overlo <mark>ck</mark>
21	Biological factors as a community structuring mechanism for the infaunal, benthic community: a review of recent studies and their problems. Benthos Research, 1981, 1981, 28-47.	0.2	0
22	Polychaete feeding guilds from Georges Bank, USA. Marine Biology, 1981, 62, 161-171.	1.5	39
23	Aspects of deposit-feeding by the Polychaete <i>Clymenella torquata</i> . Ophelia, 1982, 21, 159-166.	0.3	42
24	Siphon nipping: Its importance to small fishes and its impact on growth of the bivalve Protothaca staminea (Conrad). Journal of Experimental Marine Biology and Ecology, 1982, 63, 249-268.	1.5	114
25	Browsing: Important in marine sedimentary environments? spionid polychaete examples. Journal of Experimental Marine Biology and Ecology, 1982, 60, 35-45.	1.5	59
26	REGENERATION OF INJURIES AMONG JAMAICAN GORGONIANS: THE ROLES OF COLONY PHYSIOLOGY AND ENVIRONMENT. Biological Bulletin, 1983, 165, 778-790.	1.8	51
27	EFFECTS OF BROWSING PREDATORS: ACTIVITY CHANGES IN INFAUNA FOLLOWING TISSUE LOSS. Biological Bulletin, 1984, 166, 558-573.	1.8	41
28	Production due to regeneration by Euclymene oerstedi (ClaparÃ'de) (Polychaeta: Maldanidae) in the maritime basin of the Rance (Northern Britanny). Journal of Experimental Marine Biology and Ecology, 1984, 75, 97-106.	1.5	25
29	Effects of defecation by arenicolid polychaete adults on spionid polychaete juveniles in field experiments: Selective settlement or differential mortality. Journal of Experimental Marine Biology and Ecology, 1985, 87, 119-132.	1.5	40
30	Selective deposit-feeding by Lumbrineris cf. latreilli (Polychaeta: Lumbrineridae), with a new method for assessing selectivity by deposit-feeding organisms. Marine Biology, 1986, 93, 443-448.	1.5	22
31	HOLDING ON BY THEIR HOOKS: ANCHORS FOR WORMS. Evolution; International Journal of Organic Evolution, 1987, 41, 427-432.	2.3	25
32	An experimental study of the use of arm regeneration in estimating rates of sublethal injury on brittle-stars. Journal of Experimental Marine Biology and Ecology, 1987, 106, 1-16.	1.5	18
33	Vertical distribution of dissolved sulphur species in coastal marine sediments. Marine Chemistry, 1996, 52, 195-209.	2.3	21
34	Comparison of spatial overlap between the polychaetes Nereis virens and Nephtys caeca in two intertidal estuarine environments. Marine Biology, 1996, 124, 537-550.	1.5	14
35	The macrofauna and main functional interactions in the sill basin sediments of the pristine holandsfjord, Northern Norway, with autecological reviews for some key-species. Sarsia, 1998, 83, 55-68.	0.5	35
36	Ripple formation induced by biogenic mounds. Marine Geology, 1999, 159, 287-301.	2.1	16

#	Article	IF	CITATIONS
37	Effects of a deposit-feeding invertebrate on the entrapment of Zostera marina L. seeds. Aquatic Botany, 1999, 62, 235-247.	1.6	51
38	Possible ecological effects from maldanid (annelida, polychaeta) "super-dominance―in a small North Norwegian sill system. Ophelia, 2001, 55, 69-75.	0.3	11
39	Depthâ€related benthic macrofaunal biodiversity patterns in three undisturbed north Norwegian fjords. Sarsia, 2004, 89, 91-101.	0.5	21
40	Mitochondrial Genomes of Clymenella torquata (Maldanidae) and Riftia pachyptila (Siboglinidae): Evidence for Conserved Gene Order in Annelida. Molecular Biology and Evolution, 2005, 22, 210-222.	8.9	77
41	Soft-bottom fauna and oxygen minima in sub-arctic north Norwegian marine sill basins. Marine Biology Research, 2005, 1, 85-96.	0.7	16
42	Structure and composition of the consolidated mud tube of Maldane sarsi (Polychaeta: Maldanidae). Estuarine, Coastal and Shelf Science, 2008, 78, 360-368.	2.1	23
43	Assessment of the Cape Cod Phylogeographic Break Using the Bamboo Worm Clymenella torquata Reveals the Role of Regional Water Masses in Dispersal. Journal of Heredity, 2009, 100, 86-96.	2.4	25
44	The functional anatomy and histology of the alimentary canal of the maldanid polychaetes Clymenella torquata and Euclymene oerstedi. Proceedings of the Zoological Society of London, 2009, 147, 387-405.	0.1	8
45	Frequency of Injury and the Ecology of Regeneration in Marine Benthic Invertebrates. Integrative and Comparative Biology, 2010, 50, 479-493.	2.0	80
46	Tasselia ordamensis: A biogenic structure of probable deposit-feeding and gardening maldanid polychaetes. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 292, 336-348.	2.3	15
47	An Atlantic infaunal engineer is established in the Northeast Pacific: Clymenella torquata (Polychaeta:) Tj ETQq0	0 0 <u>rg</u> BT /	Overlock 10 1
48	Fine structure of the tubes of Maldanidae (Annelida). Journal of the Marine Biological Association of the United Kingdom, 2017, 97, 1177-1187.	0.8	8
49	Molecular phylogeny of Maldanidae (Annelida): Multiple losses of tube-capping plates and evolutionary shifts in habitat depth. Molecular Phylogenetics and Evolution, 2018, 127, 332-344.	2.7	20
50	Shallow Water Muddy Sands of the North-West Atlantic Ocean. , 2019, , 128-163.		0
51	Sediment-Mediated Biological Disturbance and the Evolution of Marine Benthos. Topics in Geobiology, 1983, , 479-625.	0.5	200
52	New recorded species of Magelonidae and Maldanidae (Annelida: Polychaeta) from EL-Tina Bay, Mediterranean coast of Egypt Egyptian Journal of Aquatic Biology and Fisheries, 2008, 12, 119-141.	0.4	2
53	Bacterial numbers and activity, microalgal biomass and productivity, and meiofaunal distribution in sediments naturally contaminated with biogenic bromophenols. Marine Ecology - Progress Series, 1992, 90, 61-71.	1.9	27
54	The effect of bacteria and bioturbation by Clymenella torquata on oil removal from sediment. Water, Air, and Soil Pollution, 1989, 43, 413-424.	2.4	11

ARTICLE IF CITATIONS

56 Seasonal iron fluxes and iron cycling in sandy bioirrigated sediments. Frontiers in Marine Science, 0, 2.5 1