The Drone Revolution of Shark Science: A Review

Drones

5,8

DOI: 10.3390/drones5010008

Citation Report

#	Article	IF	CITATIONS
1	Seasonal aggregations of blacktip sharks Carcharhinus limbatus at a marine protected area in the Gulf of California, assessed by unoccupied aerial vehicle surveys. Marine Ecology - Progress Series, 2021, 678, 95-107.	1.9	9
2	Going Batty: The Challenges and Opportunities of Using Drones to Monitor the Behaviour and Habitat Use of Rays. Drones, 2021, 5, 12.	4.9	27
3	Drones, Gulls and Urbanity: Interaction between New Technologies and Human Subsidized Species in Coastal Areas. Drones, 2021, 5, 30.	4.9	6
4	Identifying optimal wavelengths to maximise the detection rates of marine fauna from aerial surveys. Biological Conservation, 2021, 257, 109102.	4.1	10
5	The emergence of marine recreational drone fishing: Regional trends and emerging concerns. Ambio, 2022, 51, 638-651.	5.5	5
6	High-Throughput Tracking of Social Networks in Marine Fish Populations. Frontiers in Marine Science, 2021, 8, .	2.5	13
7	The use of an unoccupied aerial vehicle to survey shark species over sand and rockyâ€reef habitats in a marine protected area. Journal of Fish Biology, 2021, 99, 1735-1740.	1.6	7
9	Unmanned Aerial Vehicles for Crowd Monitoring and Analysis. Electronics (Switzerland), 2021, 10, 2974.	3.1	8
10	New technologies to improve bycatch mitigation in industrial tuna fisheries. Fish and Fisheries, 2022, 23, 545-563.	5. 3	11
11	Optimal Navigation of an Unmanned Surface Vehicle and an Autonomous Underwater Vehicle Collaborating for Reliable Acoustic Communication with Collision Avoidance. Drones, 2022, 6, 27.	4.9	8
12	Effects of environmental factors on the detection of subsurface green turtles in aerial drone surveys. Wildlife Research, 2022, 49, 79-88.	1.4	5
14	Characterizing the suckling behavior by video and 3D-accelerometry in humpback whale calves on a breeding ground. Peerl, 2022, 10, e12945.	2.0	4
15	How Big Is That Manta Ray? A Novel and Non-Invasive Method for Measuring Reef Manta Rays Using Small Drones. Drones, 2022, 6, 63.	4.9	16
16	Social networks and the conservation of fish. Communications Biology, 2022, 5, 178.	4.4	10
17	Drones can reliably, accurately and with high levels of precision, collect large volume water samples and physio-chemical data from lakes. Science of the Total Environment, 2022, 824, 153875.	8.0	8
18	Perspectives on the Use of Unmanned Aerial Vehicle Systems as Tools for Smallâ€6cale Fisheries Research and Management. Fisheries, 2022, 47, 78-89.	0.8	2
19	UAV remote sensing applications in marine monitoring: Knowledge visualization and review. Science of the Total Environment, 2022, 838, 155939.	8.0	83
20	Using Drones to Assess Volitional Swimming Kinematics of Manta Ray Behaviors in the Wild. Drones, 2022, 6, 111.	4.9	1

#	Article	IF	CITATIONS
21	Scientific response to a cluster of shark bites. People and Nature, 2022, 4, 963-982.	3.7	7
22	The challenges and opportunities of using small drones to monitor fishing activities in a marine protected area. Fisheries Management and Ecology, 2022, 29, 745-752.	2.0	4
23	Unoccupied aerial video (UAV) surveys as alternatives to BRUV surveys for monitoring elasmobranch species in coastal waters. ICES Journal of Marine Science, 2022, 79, 1604-1613.	2.5	11
24	Aerial photogrammetry of whale sharks (Rhincodon typus) in the Bay of La Paz, using an unoccupied aerial vehicle. Marine Biology, 2022, 169, .	1.5	4
25	The Future of Artificial Intelligence in Monitoring Animal Identification, Health, and Behaviour. Animals, 2022, 12, 1711.	2.3	9
26	Warm beach, warmer turtles: Using drone-mounted thermal infrared sensors to monitor sea turtle nesting activity. Frontiers in Conservation Science, 0, 3, .	1.9	5
28	Diving into the vertical dimension of elasmobranch movement ecology. Science Advances, 2022, 8, .	10.3	21
29	The influence of bait position on the catch of target and non-target sharks in a SMART drumline bather protection program. Fisheries Research, 2023, 257, 106501.	1.7	2
30	Transhistoricizing the Drone: A Comparative Visual Social Semiotic Analysis of Pigeon and Domestic Drone Photography. Photography and Culture, 2022, 15, 327-351.	0.3	4
31	Remotely Operated Vehicle Taxonomy and Emerging Methods of Inspection, Maintenance, and Repair Operations: An Overview and Outlook. Journal of Offshore Mechanics and Arctic Engineering, 2023, 145, .	1.2	4
32	Factors Affecting Shark Detection from Drone Patrols in Southeast Queensland, Eastern Australia. Biology, 2022, 11, 1552.	2.8	1
33	Assessing the ability of deep learning techniques to perform real-time identification of shark species in live streaming video from drones. Frontiers in Marine Science, 0, 9, .	2.5	4
34	The Relative Abundance and Occurrence of Sharks off Ocean Beaches of New South Wales, Australia. Biology, 2022, 11, 1456.	2.8	2
35	Identification of salmon redds using <scp>RPV</scp> â€based imagery produces comparable estimates to ground counts with high interâ€observer variability. River Research and Applications, 2023, 39, 35-45.	1.7	3
36	A content analysis of 32 years of Shark Week documentaries. PLoS ONE, 2022, 17, e0256842.	2.5	3
37	Long-range electric deterrents not as effective as personal deterrents for reducing risk of shark bite. ICES Journal of Marine Science, 2022, 79, 2656-2666.	2.5	2
38	Individual identification and photographic techniques in mammalian ecological and behavioural researchâ€"Part 1: Methods and concepts. Mammalian Biology, 2022, 102, 545-549.	1.5	25
39	How Many Reindeer? UAV Surveys as an Alternative to Helicopter or Ground Surveys for Estimating Population Abundance in Open Landscapes. Remote Sensing, 2023, 15, 9.	4.0	0

#	ARTICLE	IF	CITATIONS
40	Experimentally Determining Optimal Conditions for Mapping Forage Fish with RPAS. Drones, 2022, 6, 426.	4.9	0
41	Drones for Flood Monitoring, Mapping and Detection: A Bibliometric Review. Drones, 2023, 7, 32.	4.9	13
42	The drivers of anguillid eel movement in lentic water bodies: a systematic map. Reviews in Fish Biology and Fisheries, 0, , .	4.9	1
43	Estuary Stingray (Dasyatis fluviorum) Behaviour Does Not Change in Response to Drone Altitude. Drones, 2023, 7, 164.	4.9	1
44	Synergistic use of <scp>UAV</scp> surveys, satellite tracking data, and markâ€recapture to estimate abundance of elusive species. Ecosphere, 2023, 14, .	2.2	8
45	Drone Technology in Waste Management: A Review. Lecture Notes in Civil Engineering, 2023, , 157-172.	0.4	0
46	Evaluation of an Innovative Rosette Flight Plan Design for Wildlife Aerial Surveys with UAS. Drones, 2023, 7, 208.	4.9	2
47	Blockchain for unmanned underwater drones: Research issues, challenges, trends and future directions. Journal of Network and Computer Applications, 2023, 215, 103649.	9.1	9
48	The geneticsâ€morphologyâ€behavior trifecta: Unraveling the single greatest limitation affecting our understanding of chondrichthyan evolution. Ecology and Evolution, 2023, 13, .	1.9	2
49	A review of new and existing non-extractive techniques for monitoring marine protected areas. Frontiers in Marine Science, 0, 10 , .	2.5	1
50	Drones Assist in the First Report of a Mixed-Species Group of Tursiops truncatus (Common Bottlenose) Tj ETQq0 Southeastern Naturalist, 2023, 22, .	0 0 rgBT / 0.4	Overlock 10 0
51	Drone-Based Assessment of Marine Megafauna off Wave-Exposed Sandy Beaches. Remote Sensing, 2023, 15, 4018.	4.0	0
52	Bull Shark (Carcharhinus leucas) Occurrence along Beaches of South-Eastern Australia: Understanding Where, When and Why. Biology, 2023, 12, 1189.	2.8	3
53	Spatial and temporal characterization of a recurrent scalloped hammerhead shark <i>Sphyrna lewini</i> aggregation using drones. ICES Journal of Marine Science, 0, , .	2.5	0
54	Advancements and Applications of Drone-Integrated Geographic Information System Technology—A Review. Remote Sensing, 2023, 15, 5039.	4.0	6
55	The biology and ecology of the basking shark: A review. Advances in Marine Biology, 2023, , 113-257.	1.4	O
56	Recent Developments and Trends in Unconventional UAVs Control: A Review. Journal of Intelligent and Robotic Systems: Theory and Applications, 2023, 109, .	3.4	0
57	Utility of Spectral Filtering to Improve the Reliability of Marine Fauna Detections from Drone-Based Monitoring. Sensors, 2023, 23, 9193.	3.8	2

#	Article	IF	CITATIONS
58	Shifts in the incidence of shark bites and efficacy of beach-focussed mitigation in Australia. Marine Pollution Bulletin, 2024, 198, 115855.	5.0	1
59	Flapping about: trends and drivers of Australian cownose ray (Rhinoptera neglecta) coastal sightings at their southernmost distribution range. , 0, 1 , .		0
60	Using waterâ€landing, fixedâ€wing <scp>UAVs</scp> and computer vision to assess seabird nutrient subsidy effects on sharks and rays. Remote Sensing in Ecology and Conservation, 0, , .	4.3	0
61	A review of data collection methods used to monitor the associations of wild species with marine aquaculture sites. Reviews in Aquaculture, 0, , .	9.0	0
62	Novel aerial observations of a possible newborn white shark (Carcharodon carcharias) in Southern California. Environmental Biology of Fishes, 2024, 107, 249-254.	1.0	0
63	A Unified Approach to Modeling and Simulation of Underwater Vehicle Multi-Manipulator Systems. Machines, 2024, 12, 94.	2.2	0
64	Risks of Drone Use in Light of Literature Studies. Sensors, 2024, 24, 1205.	3.8	0
65	Advancing Sea Turtle Monitoring at Nesting and Near Shore Habitats with UAVs, Data Loggers, and State of the Art Technologies. Diversity, 2024, 16, 153.	1.7	0
66	Method for inspection of atmospheric discharge protection systems: Grain storage plants. Revista Brasileira De Engenharia Agricola E Ambiental, 2024, 28, .	1.1	О