Photonics for artificial intelligence and neuromorphic of

Nature Photonics 15, 102-114 DOI: 10.1038/s41566-020-00754-y

Citation Report

#	Article	IF	CITATIONS
1	Photonic Perceptron at Gigabit/s Speeds with Kerr Microcombs. SSRN Electronic Journal, 0, , .	0.4	0
2	100 dB/cm broadband optical parametric amplification in dispersion engineered nanophotonic lithium niobate waveguides. , 2021, , .		5
3	System-Level Simulation for Integrated Phase-Change Photonics. Journal of Lightwave Technology, 2021, 39, 6392-6402.	4.6	6
4	Photonic convolutional accelerator and neural network in the Tera-OPs regime based on Kerr microcombs. , 2021, , .		1
7	An efficient mixed-signal dielectric-partitioning model of liquid crystals based shielded coplanar waveguide for electronically reconfigurable delay lines design. , 2021, , .		4
8	Optoelectronic intelligence. Applied Physics Letters, 2021, 118, .	3.3	16
10	Microcombs for ultrahigh bandwidth optical data transmission and neural networks. , 2021, , .		1
11	Perspective on the future of silicon photonics and electronics. Applied Physics Letters, 2021, 118, .	3.3	246
12	Analytical modeling of the static and dynamic response of thermally actuated optical waveguide circuits. Physical Review Research, 2021, 3, .	3.6	4
13	Scalability of All-Optical Neural Networks Based on Spatial Light Modulators. Physical Review Applied, 2021, 15, .	3.8	14
14	Key Technologies of Photonic Artificial Intelligence Chip Structure and Algorithm. Applied Sciences (Switzerland), 2021, 11, 5719.	2.5	3
15	Analysis of Excitability in Resonant Tunneling Diode-Photodetectors. Nanomaterials, 2021, 11, 1590.	4.1	6
16	Photonic Matrix Computing: From Fundamentals to Applications. Nanomaterials, 2021, 11, 1683.	4.1	28
17	A Survey on Silicon Photonics for Deep Learning. ACM Journal on Emerging Technologies in Computing Systems, 2021, 17, 1-57.	2.3	44
18	Aluminium nitride integrated photonics: a review. Nanophotonics, 2021, 10, 2347-2387.	6.0	49
19	Deep learning-based modeling of photonic crystal nanocavities. Optical Materials Express, 2021, 11, 2122.	3.0	11
20	Silicon Photonics for Artificial Intelligence and Neuromorphic Computing. , 2021, , .		0
21	Optoelectronic Synapses Based on Photoâ€Induced Doping in MoS ₂ /hâ€BN Fieldâ€Effect Transistors. Advanced Optical Materials, 2021, 9, 2100937.	7.3	25

#	Article	IF	CITATIONS
22	Silicon photonics phase and intensity modulators for flat frequency comb generation. Photonics Research, 2021, 9, 2068.	7.0	2
23	Low-latency deep-reinforcement learning algorithm for ultrafast fiber lasers. Photonics Research, 2021, 9, 1493.	7.0	35
24	Research on constructing artificial neural networks using genetic circuits to realize neuromorphic computing. Chinese Science Bulletin, 2021, , .	0.7	0
25	Nonlinear optical fullerene and graphene-based polymeric 1D photonic crystals: perspectives for slow and fast optical bistability. Journal of the Optical Society of America B: Optical Physics, 2021, 38, C198.	2.1	2
26	Analog Optical Computing for Artificial Intelligence. Engineering, 2022, 10, 133-145.	6.7	32
27	Towards low loss non-volatile phase change materials in mid index waveguides. Neuromorphic Computing and Engineering, 2021, 1, 014004.	5.9	24
28	Optical neural network based on synthetic photonic lattices. , 2021, , .		0
29	Materials for emergent silicon-integrated optical computing. Journal of Applied Physics, 2021, 130, 070907.	2.5	27
30	All-optical image identification with programmable matrix transformation. Optics Express, 2021, 29, 26474.	3.4	7
31	Energy-Efficient Neural Network Inference with Microcavity Exciton Polaritons. Physical Review Applied, 2021, 16, .	3.8	10
32	Pivotal Role of Quantum Dots in the Advancement of Healthcare Research. Computational Intelligence and Neuroscience, 2021, 2021, 1-9.	1.7	5
33	Quantum networks based on color centers in diamond. Journal of Applied Physics, 2021, 130, .	2.5	105
34	Multi-Stage Mach–Zehnder Based Continuously Tunable Photonic Delay Line. Wireless Personal Communications, 2021, 121, 1221.	2.7	2
35	Reconfigurable metasurface-based 1 × 2 waveguide switch. Photonics Research, 2021, 9, 2104.	7.0	15
36	A free-running dual-comb spectrometer with intelligent temporal alignment algorithm. Optics and Laser Technology, 2021, 141, 107175.	4.6	6
37	Subwavelength neuromorphic nanophotonic integrated circuits for spike-based computing: challenges and prospects. , 2021, , .		1
38	Tunable Ultranarrowband Grating Filters in Thin-Film Lithium Niobate. ACS Photonics, 2021, 8, 2923-2930.	6.6	30
39	Mapping Drug-Induced Neuropathy through In-Situ Motor Protein Tracking and Machine Learning. Journal of the American Chemical Society, 2021, 143, 14907-14915.	13.7	11

#	Article	IF	CITATIONS
40	Perspective paper: Can machine learning become a universal method of laser photonics?. Optical Fiber Technology, 2021, 65, 102626.	2.7	2
41	Photonic processors light the way. Communications of the ACM, 2021, 64, 16-18.	4.5	1
43	Reservoir Computing Based on Mutually Injected Phase Modulated Semiconductor Lasers as a Monolithic Integrated Hardware Accelerator. IEEE Journal of Quantum Electronics, 2021, 57, 1-7.	1.9	4
44	Design of optoelectronic computing circuits with VCSEL-SA based neuromorphic photonic spiking. Optik, 2021, 243, 167344.	2.9	1
45	Spatiotemporal signal processing and device stability based on bi-layer biomimetic memristor. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 178504-178504.	0.5	2
46	Recent progress in artificial synaptic devices: materials, processing and applications. Journal of Materials Chemistry C, 2021, 9, 8372-8394.	5.5	41
47	High-Performance Neuromorphic Computing Based on Photonic Technologies. , 2021, , .		0
48	Weight Pruning Techniques Towards Photonic Implementation of Nonlinear Impairment Compensation Using Neural Networks. Journal of Lightwave Technology, 2022, 40, 1273-1282.	4.6	2
49	Nonlinear Impairment Compensation Using Neural Networks. , 2021, , .		3
50	Neuromorphic Photonics for Optical Communication Systems. , 2021, , .		1
51	Inverse designÂof grating couplers using the policy gradient method from reinforcement learning. Nanophotonics, 2021, 10, 3843-3856.	6.0	17
52	Intelligent designs in nanophotonics: from optimization towards inverse creation. PhotoniX, 2021, 2, .	13.5	38
53	Short-Term to Long-Term Plasticity Transition Behavior of Memristive Devices with Low Power Consumption via Facilitating Ionic Drift of Implanted Lithium. Electronics (Switzerland), 2021, 10, 2564.	3.1	0
54	A four-state programmable mid-infrared band-stop filter exploiting a Ge2Sb2Te5 film and VO2 nanoparticles. Applied Physics Letters, 2021, 119, .	3.3	7
55	Photonic neural field on a silicon chip: large-scale, high-speed neuro-inspired computing and sensing. Optica, 2021, 8, 1388.	9.3	28
56	Prospects and applications of photonic neural networks. Advances in Physics: X, 2022, 7, .	4.1	54
57	Optical coherent dot-product chip for sophisticated deep learning regression. Light: Science and Applications, 2021, 10, 221.	16.6	56
58	Neuromorphic computing: Devices, hardware, and system application facilitated by two-dimensional materials. Applied Physics Reviews, 2021, 8, .	11.3	39

#	Article	IF	Citations
59	Utilization of Unsigned Inputs for NAND Flash Based Parallel and High-Density Synaptic Architecture in Binary Neural Networks. IEEE Journal of the Electron Devices Society, 2021, , 1-1.	2.1	2
60	Neuromorphic Photonic Networks. , 2021, , .		0
61	An analog electronic emulator of non-linear dynamics in optical microring resonators. Chaos, Solitons and Fractals, 2021, 153, 111410.	5.1	7
62	Towards monolithic low-loss silicon nitride waveguides on a mature 200Âmm CMOS platform. Optik, 2022, 250, 168309.	2.9	6
63	Compute with Light: Architectures, Technologies and Training Models for Neuromorphic Photonic Circuits. , 2021, , .		7
64	Silicon-integrated coherent neurons with 32GMAC/sec/axon compute line-rates using EAM-based input and weighting cells. , 2021, , .		20
65	Neuromorphic Photonics for Intelligent Signal Processing. , 2021, , .		1
66	A silicon photonic–electronic neural network for fibre nonlinearity compensation. Nature Electronics, 2021, 4, 837-844.	26.0	110
67	Design Exploration and Scalability Analysis of a CMOS-Integrated, Polymorphic, Nanophotonic Arithmetic-Logic Unit. , 2021, , .		3
68	Comb-based photonic neural population for parallel and nonlinear processing. Photonics Research, 2022, 10, 174.	7.0	3
69	Numerical Investigation and Design of Electrically-Pumped Self-Pulsing Fano Laser Based on III-V/Silicon Integration. Photonics, 2021, 8, 530.	2.0	1
70	Holographic photonic neuron. Neuromorphic Computing and Engineering, 0, , .	5.9	0
71	Low-threshold power and tunable integrated optical limiter based on an ultracompact VO2/Si waveguide. APL Photonics, 2021, 6, .	5.7	9
72	High-Performance Silicon Photonics Using Heterogeneous Integration. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-15.	2.9	52
73	Optical metasurfaces towards multifunctionality and tunability. Nanophotonics, 2022, 11, 1761-1781.	6.0	39
74	An optical neural network using less than 1 photon per multiplication. Nature Communications, 2022, 13, 123.	12.8	77
75	Carrier transport and working mechanism of transparent photovoltaic cells. Applied Materials Today, 2022, 26, 101344.	4.3	9
76	Intrinsically stretchable carbon nanotube synaptic transistors with associative learning ability and mechanical deformation response. Carbon, 2022, 189, 386-394.	10.3	6

5

#	Article	IF	CITATIONS
77	Silicon Photonics for Neuromorphic Computing and Artificial Intelligence. , 2021, , .		0
78	Photonic spiking neuron with coupled degenerate optical parametric oscillators. , 2021, , .		Ο
79	Neuromorphic Integrated Photonics as Hardware Accelerators for Ultra-high Speed Telecom and Imaging Applications. , 2021, , .		1
80	Photonics for Neuromorphic Computing and Artificial Intelligence. , 2021, , .		3
81	Noise and Scalability Investigation of SOA-based All-optical Photonic Deep Neural Network. , 2021, , .		0
82	Noise analysis of SOA-based All-optical Photonic Deep Neural Network with WDM input. , 2021, , .		0
83	Intelligent Optical Signal Processing for Optical Communications. , 2021, , .		0
84	An optical neural network operating with less than 1 photon per multiplication. , 2021, , .		2
85	Subwavelength-Structure-Assisted Ultracompact Polarization-Handling Components on Silicon. Journal of Lightwave Technology, 2022, 40, 1784-1801.	4.6	12
86	Photonic Neural Networks Applications. , 2021, , .		0
87	Photonic neuromorphic technologies in optical communications. Nanophotonics, 2022, 11, 897-916.	6.0	13
88	Nonlinear photonic dynamical systems for unconventional computing. Nonlinear Theory and Its Applications IEICE, 2022, 13, 26-35.	0.6	4
89	Experimental demonstration of adaptive model selection based on reinforcement learning in photonic reservoir computing. Nonlinear Theory and Its Applications IEICE, 2022, 13, 123-138.	0.6	0
90	2022 roadmap on neuromorphic computing and engineering. Neuromorphic Computing and Engineering, 2022, 2, 022501.	5.9	217
91	Photonic crystal integrated logic gates and circuits. Optics Express, 2022, 30, 1976.	3.4	22
92	Inverse Design of High-Dimensional Nanostructured 2×2 Optical Processors Based On Deep Convolutional Neural Networks. Journal of Lightwave Technology, 2022, 40, 2926-2932.	4.6	5
93	Patent Portfolio Analysis of the Synergy between Machine Learning and Photonics. Photonics, 2022, 9, 33.	2.0	1
94	InP photonic integrated multi-layer neural networks: Architecture and performance analysis. APL Photonics, 2022, 7, .	5.7	25

#	Article	IF	CITATIONS
95	Harnessing optoelectronic noises in a photonic generative network. Science Advances, 2022, 8, eabm2956.	10.3	24
96	Photoelectric Logic and <i>In Situ</i> Memory Transistors with Stepped Floating Gates of Perovskite Quantum Dots. ACS Nano, 2022, 16, 2442-2451.	14.6	15
97	Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators. Journal of Electromagnetic Waves and Applications, 2022, 36, 1339-1351.	1.6	3
98	Low-Symmetry Nanophotonics. ACS Photonics, 2022, 9, 2-24.	6.6	13
99	Ultralowâ€Threshold and Highâ€Quality Whisperingâ€Galleryâ€Mode Lasing from Colloidal Core/Hybridâ€Shell Quantum Wells. Advanced Materials, 2022, 34, e2108884.	21.0	28
100	Photonic Spiking Neural Networks and Graphene-on-Silicon Spiking Neurons. Journal of Lightwave Technology, 2022, 40, 2901-2914.	4.6	28
101	Amorphous InGaZnO (a-IGZO) Synaptic Transistor for Neuromorphic Computing. ACS Applied Electronic Materials, 2022, 4, 1427-1448.	4.3	39
102	Low-threshold all-optical nonlinear activation function based on a Ge/Si hybrid structure in a microring resonator. Optical Materials Express, 2022, 12, 970.	3.0	30
103	2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges. Chemical Reviews, 2022, 122, 6514-6613.	47.7	187
104	Optical Neural Network Based on Synthetic Nonlinear Photonic Lattices. Physical Review Applied, 2022, 17, .	3.8	6
105	Scaling up silicon photonic-based accelerators: Challenges and opportunities. APL Photonics, 2022, 7, .	5.7	40
106	Photonic and optoelectronic neuromorphic computing. APL Photonics, 2022, 7, .	5.7	22
107	Fabrication tolerant coupling between silicon strip and subdiffraction V-groove waveguides. , 2022, 1, 453.		2
108	Photonic matrix multiplication lights up photonic accelerator and beyond. Light: Science and Applications, 2022, 11, 30.	16.6	167
109	The Brain-Computer Metaphor Debate Is Useless: A Matter of Semantics. Frontiers in Computer Science, 2022, 4, .	2.8	7
110	A Heuristic Exploration of Retraining-free Weight-Sharing for CNN Compression. , 2022, , .		6
111	ELight: Enabling Efficient Photonic In-Memory Neurocomputing with Life Enhancement. , 2022, , .		3
112	Intelligent metaphotonics empowered by machine learning. Opto-Electronic Advances, 2022, 5, 210147-210147.	13.3	82

#	Article	IF	CITATIONS
114	Flexible neuromorphic transistors for bio-inspired perception application. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.5	0
115	An All-MRR-Based Photonic Spiking Neural Network for Spike Sequence Learning. Photonics, 2022, 9, 120.	2.0	5
116	Resonant Tunneling Diode Nano-Optoelectronic Excitable Nodes for Neuromorphic Spike-Based Information Processing. Physical Review Applied, 2022, 17, .	3.8	15
117	A Non-volatile Quasi-Continuous All-Optical Fiber Programmable Platform Based on GST-Coated Microspheres. ACS Photonics, 2022, 9, 1180-1187.	6.6	7
118	Design and characteristics of reflectivity tunable mirror with MZI and loop waveguide on SOI. Japanese Journal of Applied Physics, 2022, 61, SC1036.	1.5	0
119	Artificial intelligence built on wireless signals. Nature Electronics, 2022, 5, 69-70.	26.0	3
120	Intense optical parametric amplification in dispersion-engineered nanophotonic lithium niobate waveguides. Optica, 2022, 9, 303.	9.3	49
121	11 Tera-OPs/s photonic convolutional accelerator and deep optical neural network based on an integrated Kerr soliton crystal microcomb. , 2022, , .		1
122	A photonic complex perceptron for ultrafast data processing. Scientific Reports, 2022, 12, 4216.	3.3	7
123	All-optical silicon microring spiking neuron. Photonics Research, 2022, 10, 939.	7.0	23
124	Generalized robust training scheme using genetic algorithm for optical neural networks with imprecise components. Photonics Research, 2022, 10, 1868.	7.0	14
125	Spike propagation in a nanolaser-based optoelectronic neuron. Optical Materials Express, 2022, 12, 2679.	3.0	4
126	Photonic dot-product engine for optical signal and information processing. JPhys Photonics, 2022, 4, 024002.	4.6	0
127	Artificial Intelligence in Classical and Quantum Photonics. Laser and Photonics Reviews, 2022, 16, .	8.7	11
128	Graphene microheater for phase change chalcogenides based integrated photonic components [Invited]. Optical Materials Express, 2022, 12, 1991.	3.0	7
129	Photonic reinforcement learning based on optoelectronic reservoir computing. Scientific Reports, 2022, 12, 3720.	3.3	7
130	Silicon photonic neural network applications and prospects. , 2022, , .		2
131	Enhanced 2D Photonic Crystal Sensor for High Sensitivity Sulfuric Acid (H2SO4) and Hydrogen Peroxide (H2O2) Detection. Silicon, 2022, 14, 11001-11006.	3.3	6

#	Article	IF	Citations
132	Phase change materials: the 'silicon' for analog photonic computing?. , 2022, , .		0
133	High-Capacity Space-Division Multiplexing Communications With Silicon Photonic Blind Source Separation. Journal of Lightwave Technology, 2022, 40, 1617-1632.	4.6	12
134	Broadband radio-frequency signal processing with neuromorphic photonics. , 2022, , .		0
135	Coherent photonic neuromorphic computing for high-speed deep learning applications. , 2022, , .		1
136	Emerging devices and packaging strategies for electronic-photonic AI accelerators: opinion. Optical Materials Express, 2022, 12, 1347.	3.0	34
137	Flexible source of correlated photons based on LNOI rib waveguides. JPhys Photonics, 0, , .	4.6	1
138	Artificial Biphasic Synapses Based on Nonvolatile Phaseâ€Change Photonic Memory Cells. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	2.4	11
139	Neuromorphic photonic circuit modeling in Verilog-A. APL Photonics, 2022, 7, .	5.7	5
140	Programmable photonic neural networks combining WDM with coherent linear optics. Scientific Reports, 2022, 12, 5605.	3.3	24
141	At the intersection of optics and deep learning: statistical inference, computing, and inverse design. Advances in Optics and Photonics, 2022, 14, 209.	25.5	23
142	Energy-efficient non-volatile ferroelectric based electrostatic doping multilevel optical readout memory. Optics Express, 2022, 30, 13572.	3.4	5
143	Towards Memory-Efficient Neural Networks via Multi-Level in situ Generation. , 2021, , .		1
144	O-HAS: Optical Hardware Accelerator Search for Boosting Both Acceleration Performance and Development Speed. , 2021, , .		5
145	Size effect of the Ge2Sb2Te5 cell atop the silicon nitride O-ring resonator on the attenuation coefficient. APL Materials, 2021, 9, .	5.1	7
146	Thirty Years in Silicon Photonics: A Personal View. Frontiers in Physics, 2021, 9, .	2.1	11
147	Emergence of Biased Errors in Imperfect Optical Circuits. Physical Review Applied, 2021, 16, .	3.8	0
148	Scalable and compact photonic neural chip with low learning-capability-loss. Nanophotonics, 2022, 11, 329-344.	6.0	26
149	Neuromorphic sensory computing. Science China Information Sciences, 2022, 65, 1.	4.3	33

IF ARTICLE CITATIONS # Fast volatile response in GST/Si waveguides for all-optical modulation., 2021,,. 150 1 Ultrafast all-optical phase switch based on a CdO/Si waveguide., 2021, , . 152 Circuit modeling for neuromorphic photonics in Verilog-A as a scalable simulation platform., 2021, , . 0 All-Optical Nonlinear Activation Function Based on Germanium Silicon Hybrid Asymmetric Coupler. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-6. Design automation of photonic resonator weights. Nanophotonics, 2022, 11, 3805-3822. 154 6.0 8 Smart and Rapid Design of Nanophotonic Structures by an Adaptive and Regularized Deep Neural 4.1 Network. Nanomaterials, 2022, 12, 1372. 156 Silicon microring synapses enable photonic deep learning beyond 9-bit precision. Optica, 2022, 9, 579. 9.3 56 Integrated photonic metasystem for image classifications at telecommunication wavelength. Nature 12.8 37 Communications, 2022, 13, 2131. 158 Applications and Techniques for Fast Machine Learning in Science. Frontiers in Big Data, 2022, 5, 787421. 2.9 20 159 ITO film stack engineering for low-loss silicon optical modulators. Scientific Reports, 2022, 12, 6321. 3.3 Basics and applications of optical interferometers integrated by femtosecond laser., 2022, 1, . 160 1 High-efficiency grating coupler for an ultralow-loss Si₃N₄-based platform. 3.3 Optics Letters, 2022, 47, 2498. Silicon nitride passive and active photonic integrated circuits: trends and prospects. Photonics 162 7.0 60 Research, 2022, 10, A82. Nonvolatile Plasmonics Based on Optically Reprogrammable Phase Change Materials. IEEE Photonics Journal, 2022, 14, 1-8. Neuromorphic Silicon Photonics and Hardware-Aware Deep Learning for High-Speed Inference. Journal 164 4.6 32 of Lightwave Technology, 2022, 40, 3243-3254. Comparison of Models for Training Optical Matrix Multipliers in Neuromorphic PICs., 2022, , . Photonic Neuromorphic Computing: Architectures, Technologies, and Training Models., 2022, , . 166 5 Forecasts on Future Evolution of Artificial Intelligence and Intelligent Systems. IEEE Access, 2022, 10, 4.2 45280-45288.

#	Article	IF	CITATIONS
168	Photonic-aware neural networks. Neural Computing and Applications, 2022, 34, 15589-15601.	5.6	17
169	BER Minimization by User Pairing in Downlink NOMA Using Laser Chaos Decision-Maker. Electronics (Switzerland), 2022, 11, 1452.	3.1	3
170	A Bidirectional LSTM-RNN and GRU Method to Exon Prediction Using Splice-Site Mapping. Applied Sciences (Switzerland), 2022, 12, 4390.	2.5	3
171	Photonic neuromorphic computing using vertical cavity semiconductor lasers. Optical Materials Express, 2022, 12, 2395.	3.0	25
172	Enhanced Artificial Synaptic Properties Enabled by Arrays of Electrolyte-Gated Electrospun InZnO Nanowires. ACS Applied Electronic Materials, 2022, 4, 2570-2579.	4.3	20
173	Emerging Optical Inâ€Memory Computing Sensor Synapses Based on Lowâ€Dimensional Nanomaterials for Neuromorphic Networks. Advanced Intelligent Systems, 2022, 4, .	6.1	13
174	Accelerating deep learning with high energy efficiency: From microchip to physical systems. Innovation(China), 2022, 3, 100252.	9.1	4
175	Light in Al: Toward Efficient Neurocomputing With Optical Neural Networks—A Tutorial. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 2581-2585.	3.0	4
176	Photonic (computational) memories: tunable nanophotonics for data storage and computing. Nanophotonics, 2022, 11, 3823-3854.	6.0	37
177	Polarization multiplexed diffractive computing: all-optical implementation of a group of linear transformations through a polarization-encoded diffractive network. Light: Science and Applications, 2022, 11, .	16.6	42
178	Neural Networks Based on Ultrafast Time-Delayed Effects in Exciton Polaritons. Physical Review Applied, 2022, 17, .	3.8	3
179	Monadic Pavlovian associative learning in a backpropagation-free photonic network. Optica, 2022, 9, 792.	9.3	13
180	Nanophotonic Cavity Based Synapse for Scalable Photonic Neural Networks. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-8.	2.9	7
181	Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible. Light: Science and Applications, 2022, 11, .	16.6	84
182	Optical and optoelectronic neuromorphic devices based on emerging memory technologies. Nanotechnology, 2022, 33, 372001.	2.6	5
183	A ferroelectric multilevel non-volatile photonic phase shifter. Nature Photonics, 2022, 16, 491-497.	31.4	39
184	Unbiased Plasmonic-Assisted Integrated Graphene Photodetectors. ACS Photonics, 2022, 9, 1992-2007.	6.6	4
185	A Review of Capabilities and Scope for Hybrid Integration Offered by Silicon-Nitride-Based Photonic Integrated Circuits. Sensors, 2022, 22, 4227.	3.8	15

#	ARTICLE	IF	CITATIONS
186	Flexible Artificial Optoelectronic Synapse based on Leadâ€Free Metal Halide Nanocrystals for Neuromorphic Computing and Color Recognition. Advanced Science, 2022, 9, .	11.2	56
187	An on-chip photonic deep neural network for image classification. Nature, 2022, 606, 501-506.	27.8	160
188	Flexible Terahertz Photonic Light-Cage Modules for In-Core Sensing and High Temperature Applications. ACS Photonics, 2022, 9, 2128-2141.	6.6	5
189	Frequency-switched photonic spiking neurons. Optics Express, 2022, 30, 21599.	3.4	6
190	An integrated photonics engine for unsupervised correlation detection. Science Advances, 2022, 8, .	10.3	8
191	Silicon photonics for high-capacity data communications. Photonics Research, 2022, 10, A106.	7.0	55
192	ELight: Toward Efficient and Aging-Resilient Photonic In-Memory Neurocomputing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42, 820-833.	2.7	1
193	A Robust, Quantization-Aware Training Method forÂPhotonic Neural Networks. Communications in Computer and Information Science, 2022, , 427-438.	0.5	8
194	Silicon Photonics for Neuromorphic Computing and Artificial Intelligence: Applications and Roadmap. , 2022, , .		3
195	Rigorous dynamic model of a silicon ring resonator with phase change material for a neuromorphic node. Optics Express, 2022, 30, 25177.	3.4	5
196	Si-integrated ferroelectrics for photonics and optical computing. MRS Bulletin, 2022, 47, 485-493.	3.5	8
197	Inverse design of a nano-photonic wavelength demultiplexer with a deep neural network approach. Optics Express, 2022, 30, 26201.	3.4	11
198	Indium-Gallium-Zinc-Oxide-Based Photoelectric Neuromorphic Transistors for Spiking Morse Coding. Chinese Physics Letters, 2022, 39, 068501.	3.3	3
199	Fock state-enhanced expressivity of quantum machine learning models. EPJ Quantum Technology, 2022, 9, .	6.3	8
200	Deep learning in light–matter interactions. Nanophotonics, 2022, 11, 3189-3214.	6.0	10
201	Broadband nonreciprocal spoof plasmonic phase shifter based on transverse Faraday effects. Optics Express, 2022, 30, 24000.	3.4	5
202	2D layered MSe ₂ (M = Hf, Ti and Zr) for compact lasers: nonlinear optical properties and GHz lasing. Nanophotonics, 2022, 11, 3383-3394.	6.0	3
203	On-chip mid-IR octave-tunable Raman soliton laser. Optics Express, 2022, 30, 25356.	3.4	1

#	Article	IF	CITATIONS
204	Hybrid training of optical neural networks. Optica, 2022, 9, 803.	9.3	16
205	All-optical graph representation learning using integrated diffractive photonic computing units. Science Advances, 2022, 8, .	10.3	35
206	Polarization-selective reconfigurability in hybridized-active-dielectric nanowires. Science Advances, 2022, 8, .	10.3	15
207	SqueezeLight: A Multi-Operand Ring-Based Optical Neural Network With Cross-Layer Scalability. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42, 807-819.	2.7	2
208	Programmable photonic circuits. Journal of Physics: Conference Series, 2022, 2274, 012008.	0.4	3
209	A Method Executing Optical Real-Valued Matrix Multiplication. , 2022, , .		0
210	<i>LiteCON</i> : An All-Photonic Neuromorphic Accelerator for Energy-efficient Deep Learning. Transactions on Architecture and Code Optimization, 0, , .	2.0	0
211	Topologically Protected Allâ€Optical Memory. Advanced Electronic Materials, 0, , 2200579.	5.1	3
212	On-chip bacterial foraging training in silicon photonic circuits for projection-enabled nonlinear classification. Nature Communications, 2022, 13, .	12.8	15
213	Optical processor for a binarized neural network. Optics Letters, 2022, 47, 3892.	3.3	6
214	Reconfigurable InP waveguide components using the Sb ₂ S ₃ phase change material. Journal of Optics (United Kingdom), 2022, 24, 094001.	2.2	6
215	Separating arbitrary free-space beams with an integrated photonic processor. Light: Science and Applications, 2022, 11, .	16.6	26
216	What Models and Tools can Contribute to a Better Understanding of Brain Activity?. Frontiers in Network Physiology, 0, 2, .	1.8	8
217	Non-volatile MWIR/LWIR beam reconfigurability with all-dielectric metagratings comprising phase-change materials with a high-refractive-index shift. Optical Materials Express, 2022, 12, 3187.	3.0	5
218	In‣ensor Computing: Materials, Devices, and Integration Technologies. Advanced Materials, 2023, 35, .	21.0	63
219	Polymer modulators in silicon photonics: review and projections. Nanophotonics, 2022, 11, 3855-3871.	6.0	14
220	Neuronlike spiking dynamics in asymmetrically driven dissipative nonlinear photonic dimers. Physical Review A, 2022, 106, .	2.5	3
221	Silicon–organic hybrid thermo-optic switch based on a slot waveguide directional coupler. Optics Letters, 2022, 47, 3940	3.3	2

#	Article	IF	CITATIONS
222	Memristive, Spintronic, and 2Dâ€Materialsâ€Based Devices to Improve and Complement Computing Hardware. Advanced Intelligent Systems, 2022, 4, .	6.1	13
223	Surface Passivation of Ill–V GaAs Nanopillars by Low-Frequency Plasma Deposition of Silicon Nitride for Active Nanophotonic Devices. ACS Applied Electronic Materials, 0, , .	4.3	8
224	Inductive and Capacitive Hysteresis of Halide Perovskite Solar Cells and Memristors Under Illumination. Frontiers in Energy Research, 0, 10, .	2.3	21
225	Metamaterials: From fundamental physics to intelligent design. , 2023, 2, 5-29.		30
226	A review of tunable photonics: Optically active materials and applications from visible to terahertz. IScience, 2022, 25, 104727.	4.1	22
227	Self-assembly of 2D coordination complex of cytidine monophosphate to boost up the optical phenomena. Journal of Molecular Structure, 2022, 1268, 133655.	3.6	5
228	Photonic-aware Neural Networks for Packet Classification in URLLC scenarios. , 2022, , .		0
229	Si Microring Resonator Crossbar Array for On-Chip Inference and Training of the Optical Neural Network. ACS Photonics, 2022, 9, 2614-2622.	6.6	31
230	Enabling Active Nanotechnologies by Phase Transition: From Electronics, Photonics to Thermotics. Chemical Reviews, 2022, 122, 15450-15500.	47.7	14
231	Applications of a novel electron energy filter combined with a hybrid-pixel direct electron detector for the analysis of functional oxides by STEM/EELS and energy-filtered imaging. Micron, 2022, 160, 103331.	2.2	5
232	Simulation of Highly Coupled Programmable Photonic Circuits. Journal of Lightwave Technology, 2022, , 1-12.	4.6	1
233	Time Series Prediction and Classification using Silicon Photonic Neuron with a Self-Connection. , 2022, , .		0
234	Fidelity-Restorable Universal Linear Optics and Neuromorphic Photonics. , 2022, , .		0
235	Phase-change materials for energy-efficient photonic memory and computing. MRS Bulletin, 2022, 47, 502-510.	3.5	13
236	Nonlinear synthetic photonic lattices for optical neural networks. , 2022, , .		0
237	Photonic Approach to Reinforcement Learning. , 2022, , .		0
238	Firing patterns in a fractional-order FithzHugh–Nagumo neuron model. Nonlinear Dynamics, 2022, 110, 1807-1822.	5.2	15
239	A Photonics-Inspired Compact Network: Toward Real-Time Al Processing in Communication Systems. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-17.	2.9	2

#	Article	IF	Citations
240	Performance Estimation of Photonic Neural Network Accelerator with Magneto-optical Switch Array. , 2022, , .		0
241	Meta-optic accelerators for object classifiers. Science Advances, 2022, 8, .	10.3	17
242	Thin film photonic resonator weight stacks. , 2022, , .		0
243	Broad-Band Ultrafast All-Optical Switching Based on Enhanced Nonlinear Absorption in Corrugated Indium Tin Oxide Films. ACS Nano, 2022, 16, 12878-12888.	14.6	16
244	Training a Neural Network with Exciton-Polariton Optical Nonlinearity. Physical Review Applied, 2022, 18, .	3.8	4
245	Shortwave Infrared Single-Pixel Spectral Imaging based on GSST Phase-Change Metasurface. Optics Express, 0, , .	3.4	3
246	Theory of Acceleration of Decision-Making by Correlated Time Sequences. Complexity, 2022, 2022, 1-13.	1.6	4
247	Boolean logic gates implemented by a single photonic neuron based on a semiconductor Fano laser. , 2022, 1, 1859.		3
248	Co-assembled perylene/graphene oxide photosensitive heterobilayer for efficient neuromorphics. Nature Communications, 2022, 13, .	12.8	17
249	Special topic on photonics and AI in information technologies. APL Photonics, 2022, 7, 080401.	5.7	0
250	Stability of Self-Configuring Large Multiport Interferometers. Physical Review Applied, 2022, 18, .	3.8	12
251	Design of plasmonic enhanced all-optical phase-change memory for secondary storage applications. Nanotechnology, 0, , .	2.6	0
252	Motion detection and direction recognition in a photonic spiking neural network consisting of VCSELs-SA. Optics Express, 2022, 30, 31701.	3.4	6
253	Artificial optoelectronic synaptic characteristics of Bi2FeMnO6 ferroelectric memristor for neuromorphic computing. Materials and Design, 2022, 222, 111046.	7.0	10
254	Multi-Level Encoding and Decoding in a Scalable Photonic Tensor Processor With a Photonic General Matrix Multiply (GeMM) Compiler. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-14.	2.9	7
255	Scalable simulation of programmable photonic integrated waveguide meshs. Optics and Laser Technology, 2022, 156, 108550.	4.6	2
256	Artificial synapses enabled neuromorphic computing: From blueprints to reality. Nano Energy, 2022, 103, 107744.	16.0	20
257	Data-driven machine learning for disposal of high-level nuclear waste: A review. Annals of Nuclear Energy, 2023, 180, 109452.	1.8	13

#	Article	IF	CITATIONS
258	A Hybrid-Integrated Photonic Spiking Neural Network Framework Based on an MZI Array and VCSELs-SA. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-11.	2.9	5
259	Dynamics of a Photochromic-Actuated Slot Microring Photonic Memristor. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-10.	2.9	0
260	Packaging and Interconnect Considerations in Neuromorphic Photonic Accelerators. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-11.	2.9	8
261	Electrical switching of Ge2Sb2Te5 memory cells based on silicon photonic waveguide microheaters. , 2022, , .		0
262	On-chip Training Silicon Photonic Circuits to Perform Digital and Analog Computing. , 2022, , .		0
263	Photonic Spiking Neural Network with Resonant Tunnelling Diode Optoelectronic Neurons. , 2022, , .		0
264	â€~Plug-and-play' plasmonic metafibers for ultrafast fibre lasers. , 2022, 3, 1.		5
265	Convolution Neural Network Based Degenerated Mode Decomposition Via Near-Field Images from Linear and Circular Polarizers. SSRN Electronic Journal, 0, , .	0.4	0
266	Design and Testing of Integrated Photonic Chip for Convolution Neural Network. , 2022, , .		9
267	Light-stimulated artificial synapses based on Si-doped GaN thin films. Journal of Materials Chemistry C, 2022, 10, 13099-13106.	5.5	11
268	Scalable Networks of Neuromorphic Photonic Integrated Circuits. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-9.	2.9	3
269	Demonstrating Analog Inference on the BrainScaleS-2 Mobile System. IEEE Open Journal of Circuits and Systems, 2022, 3, 252-262.	1.9	5
270	Convolution neural network based degenerated mode decomposition via near-field images from linear and circular polarizers. Optics and Lasers in Engineering, 2023, 160, 107310.	3.8	0
271	Neuromorphic Computing Based on Wavelength-Division Multiplexing. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-12.	2.9	17
272	GHz Rate Neuromorphic Photonic Spiking Neural Network With a Single Vertical-Cavity Surface-Emitting Laser (VCSEL). IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-10.	2.9	13
273	All-optical nonlinear activation function based on Germanium Silicon composite waveguide. , 2022, , .		0
274	Initial Work on the Development of a Hardware-Based Gradient Descent Trained Expert System. Systems, 2022, 10, 160.	2.3	2
275	Noise-resilient and high-speed deep learning with coherent silicon photonics. Nature Communications, 2022, 13, .	12.8	29

#	Article	IF	Citations
276	Optimize performance of a diffractive neural network by controlling the Fresnel number. Photonics Research, 2022, 10, 2667.	7.0	10
277	Spectral graph theory-based virtual network embedding for vehicular fog computing: A deep reinforcement learning architecture. Knowledge-Based Systems, 2022, 257, 109931.	7.1	14
278	A New Strategy of Coupling Pyroelectric and Piezoelectric Effects for Photoresponse Enhancement of a Cu(In,Ga)Se ₂ Heterojunction Photodetector. Advanced Functional Materials, 2022, 32, .	14.9	15
279	Imaging and computing with disorder. Nature Physics, 2022, 18, 980-985.	16.7	14
280	Silicon Photonic Phase Shifters and Their Applications: A Review. Micromachines, 2022, 13, 1509.	2.9	9
281	Multidimensional Convolution Operation with Synthetic Frequency Dimensions in Photonics. Physical Review Applied, 2022, 18, .	3.8	8
282	A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing. Nature Electronics, 2022, 5, 672-681.	26.0	75
283	A thermally crosslinked ion-gel gated artificial synapse. Chinese Chemical Letters, 2023, 34, 107842.	9.0	2
284	Proposal for low-power atom trapping on a GaN-on-sapphire chip. Physical Review A, 2022, 106, .	2.5	6
285	Massively scalable wavelength diverse integrated photonic linear neuron. Neuromorphic Computing and Engineering, 2022, 2, 034012.	5.9	3
286	Optically controllable magnetism in atomically thin semiconductors. Science Advances, 2022, 8, .	10.3	4
287	Synaptic delay plasticity based on frequency-switched VCSELs for optical delay-weight spiking neural networks. Optics Letters, 2022, 47, 5587.	3.3	3
288	Wavelength tunable resonant phase-change synaptic weights for photonic neuromorphic computing. , 2022, , .		0
289	Parallel optical coherent dot-product architecture for large-scale matrix multiplication with compatibility for diverse phase shifters. Optics Express, 2022, 30, 42057.	3.4	5
290	Emerging Optical Materials, Devices and Systems for Photonic Neuromorphic Computing: Introduction to Special Issue. Optical Materials Express, 0, , .	3.0	0
291	Highâ€Throughput Multichannel Parallelized Diffraction Convolutional Neural Network Accelerator. Laser and Photonics Reviews, 2022, 16, .	8.7	6
292	Reconfigurable nonlinear photonic activation function for photonic neural network based on non-volatile opto-resistive RAM switch. Light: Science and Applications, 2022, 11, .	16.6	11
293	Quantization-aware training for low precision photonic neural networks. Neural Networks, 2022, 155, 561-573.	5.9	8

#	Article	IF	CITATIONS
294	Multi-Wavelength Photonic Neuromorphic Computing for Intra and Inter-Channel Distortion Compensations in WDM Optical Communication Systems. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-12.	2.9	1
295	In situ training with silicon photonics neural networks. , 2022, , .		0
296	Fast Inverse Design of 3D Nanophotonic Devices Using Boundary Integral Methods. ACS Photonics, 0, , .	6.6	2
297	Ultra-compact nonvolatile phase shifter based on electrically reprogrammable transparent phase change materials. PhotoniX, 2022, 3, .	13.5	73
298	CMOS-Compatible Optoelectronic Imagers. Coatings, 2022, 12, 1609.	2.6	1
299	Dynamical properties of neuromorphic Josephson junctions. Physical Review E, 2022, 106, .	2.1	9
300	Design of Mode-Locked Fibre Laser with Non-Linear Power and Spectrum Width Transfer Functions with a Power Threshold. Applied Sciences (Switzerland), 2022, 12, 10318.	2.5	1
301	Robust Organic–Inorganic Heterosynapses with High PPF and Broad Photoperception. Advanced Materials Technologies, 2023, 8, .	5.8	9
302	On-chip ultra-compact nonvolatile photonic synapse. Applied Physics Letters, 2022, 121, .	3.3	1
303	Phase-resolved all-fiber reflection-based s-NSOM for on-chip characterization. Optics Express, 2022, 30, 41118.	3.4	1
304	Nonlinear germanium-silicon photodiode for activation and monitoring in photonic neuromorphic networks. Nature Communications, 2022, 13, .	12.8	20
305	Reconfigurable matrix multiplier with on-site reinforcement learning. Optics Letters, 2022, 47, 5897.	3.3	3
306	Programmable Parallel Optical Logic Gates on a Multimode Waveguide Engine. Photonics, 2022, 9, 736.	2.0	4
307	Dual sampling neural network: Learning without explicit optimization. Physical Review Research, 2022, 4, .	3.6	1
309	Large-scale photonic natural language processing. Photonics Research, 2022, 10, 2846.	7.0	9
310	Ultrafast Demagnetization Control in Magnetophotonic Surface Crystals. Nano Letters, 2022, 22, 9773-9780.	9.1	8
311	Two-stage conductivity switching of GST thin films induced by femtosecond laser radiation. Optics and Laser Technology, 2023, 157, 108773.	4.6	4
312	Silicon Photonics Neural Networks for Training and Inference. , 2022, , .		0

ARTICLE IF CITATIONS Spiking Neural Network Equalization for IM/DD Optical Communication., 2022,,. 313 3 314 Highly Integrated Photonic Tensor Core for imagining processing., 2022, , . Dynamic Precision Analog Computing for Neural Networks. IEEE Journal of Selected Topics in 315 2.9 7 Quantum Electronics, 2023, 29, 1-12. Photonic Bayesian Neural Network Using Programmed Optical Noises. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-6. Reconfigurable Low-Threshold All-Optical Nonlinear Activation Functions Based on an Add-Drop 317 2.0 3 Silicon Microring Resonator. IEEE Photonics Journal, 2022, 14, 1-7. Universal Linear Optics for Ultra-Fast Neuromorphic Silicon Photonics Towards fJ/MAC and TMAC/sec/mm² Engines. IEEE Journal of Selected Topics in Quantum Electronics, 2022, , 1-15. Phase-Change Nanophotonic Circuits With Crossbar Electrodes and Integrated Microheaters. IEEE 319 3.9 2 Electron Device Letters, 2022, 43, 2192-2195. Design and Testing of Integrated 4F System into Silicon Photonics Chip for Convolutional Neural Network., 2022,,. 321 Towards the full integration of Silicon Photonic Chip for Deep Neural Networks., 2022, , . 0 Toward Large Scale All-Optical Spiking Neural Networks., 2022, , . Experimental demonstration of coherent photonic neural computing based on a Fabryâ€"Perot laser 323 7.0 6 with a saturable absorber. Photonics Research, 2023, 11, 65. First-Passage-Time Analysis of the Pulse-Timing Statistics in a Two-Section Semiconductor Laser under 324 Excitable and Noisy Conditions. Photonics, 2022, 9, 860. Chip-Based High-Dimensional Optical Neural Network. Nano-Micro Letters, 2022, 14, . 325 27.0 21 All optical Q-switched laser based spiking neuron. Frontiers in Physics, 0, 10, . 2.1 Programmable low-power consumption all-optical nonlinear activation functions using a micro-ring 327 3.4 8 resonator with phase-change materials. Optics Express, 2022, 30, 44943. Synaptic plasticity in electro-polymerized PEDOT based memristors for neuromorphic application. 2.2 Journal of Materials Science: Materials in Electronics, 2022, 33, 27053-27061. 329 Applications of optical microcombs. Advances in Optics and Photonics, 2023, 15, 86. 25.5 37 Silicon photonic architecture for training deep neural networks with direct feedback alignment. Optica, 2022, 9, 1323.

#	Article	IF	CITATIONS
331	Optoelectronic integrated circuits for analog optical computing: Development and challenge. Frontiers in Physics, 0, 10, .	2.1	3
332	â€~Dial up' Photonic Integrated Circuit Filter. Journal of Lightwave Technology, 2023, 41, 1775-1783.	4.6	2
333	Silicon photonics interfaced with microelectronics for integrated photonic quantum technologies: a new era in advanced quantum computers and quantum communications?. Nanoscale, 2023, 15, 4682-4693.	5.6	11
334	A HrS <mml:math xmins:mml="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math</td"><td>6.1</td><td>1</td></mml:math>	6.1	1
335	Spiking Behaviour in Laterally-Coupled Pairs of VCSELs With Applications in Neuromorphic Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-10.	2.9	1
336	Measurements and Modeling of a Monolithically Integrated Self-Spiking Two-Section Laser in InP. IEEE Journal of Quantum Electronics, 2023, 59, 1-7.	1.9	3
337	Low-Divergence hBN Single-Photon Source with a 3D-Printed Low-Fluorescence Elliptical Polymer Microlens. Nano Letters, 2023, 23, 407-413.	9.1	7
338	Near-Infrared Artificial Optical Synapse Based on the P(VDF-TrFE)-Coated InAs Nanowire Field-Effect Transistor. Materials, 2022, 15, 8247.	2.9	1
339	A Compact Butterfly-Style Silicon Photonic–Electronic Neural Chip for Hardware-Efficient Deep Learning. ACS Photonics, 2022, 9, 3906-3916.	6.6	15
340	Multi-Wavelength Silicon Photonic Neural Network for WDM Optical Communication Systems. , 2022,		0
341	Modeling of Optical Matrix Multipliers Using Transposed Convolutional Neural Networks. , 2022, , .		3
342	Enhanced coupling between ballistic exciton-polariton condensates through tailored pumping. Physical Review B, 2022, 106, .	3.2	0
343	Hardware-algorithm collaborative computing with photonic spiking neuron chip based on an integrated Fabry–Perot laser with a saturable absorber. Optica, 2023, 10, 162.	9.3	27
344	Analog-to-spike encoding and time-efficient RF signal processing with photonic neurons. Optics Express, 2022, 30, 46541.	3.4	3
345	Ultrahigh-responsivity waveguide-coupled optical power monitor for Si photonic circuits operating at near-infrared wavelengths. Nature Communications, 2022, 13, .	12.8	7
346	Computation at the speed of light: metamaterials for all-optical calculations and neural networks. Advanced Photonics, 2022, 4, .	11.8	24
347	Controlling chaotic itinerancy in laser dynamics for reinforcement learning. Science Advances, 2022, 8, .	10.3	10
348	Conflict-Free Joint Sampling for Preference Satisfaction through Quantum Interference. Physical Review Applied, 2022, 18, .	3.8	2

#	Article	IF	CITATIONS
349	Predicting the bandgap energy of distorted GaSbxAs1-x and InSbxAs1-x using design of experiment (DoE) and artificial intelligence (Al): A comparative study. Journal of Physics and Chemistry of Solids, 2023, 175, 111180.	4.0	9
350	Ultrafast silicon threshold circuitry for chaotic laser time series. AIP Advances, 2022, 12, 125225.	1.3	0
351	An Array of Lightâ€Stimulated Twoâ€Terminal Synaptic Devices with the Modulation of Electric Polarity. Advanced Functional Materials, 2023, 33, .	14.9	3
352	Optical multi-imaging–casting accelerator for fully parallel universal convolution computing. Photonics Research, 2023, 11, 299.	7.0	4
353	Physical deep learning with biologically inspired training method:Âgradient-free approach for physical hardware. Nature Communications, 2022, 13, .	12.8	23
354	TARDYS Quantifiers: Extracting Temporal and Reversible DYnamical Symmetries. Photonics, 2022, 9, 938.	2.0	2
355	Flexible Floating-Gate Electric-Double-Layer Organic Transistor for Neuromorphic Computing. ACS Applied Materials & Interfaces, 2022, 14, 57102-57112.	8.0	6
356	Self-calibrating microring synapse with dual-wavelength synchronization. Photonics Research, 2023, 11, 347.	7.0	8
357	Hybrid training of optical neural networks. , 2022, , .		2
358	Structure and Crystallization Kinetics of Asâ€Deposited Films of the GeTe Phase Change Compound from Atomistic Simulations. Physica Status Solidi - Rapid Research Letters, 2023, 17, .	2.4	4
359	Intelligent Computing: The Latest Advances, Challenges, and Future. , 2023, 2, .		26
360	Electro- and Thermo-Optics Response of X-Cut Thin Film LiNbO ₃ Waveguides. IEEE Journal of Quantum Electronics, 2023, 59, 1-8.	1.9	3
361	Photonic online learning: a perspective. Nanophotonics, 2023, 12, 833-845.	6.0	6
362	Massively parallel universal linear transformations using a wavelength-multiplexed diffractive optical network. Advanced Photonics, 2023, 5, .	11.8	17
363	Constraints on the design of neuromorphic circuits set by the properties of neural population codes. Neuromorphic Computing and Engineering, 2023, 3, 012001.	5.9	2
364	Cavity dumping using a microscopic Fano laser. Optica, 2023, 10, 248.	9.3	4
365	Low-Loss and High-Confinement Photonic Platform based on Germanium-on-Insulator at Mid-Infrared Range for Optical Sensing. Journal of Lightwave Technology, 2023, , 1-11.	4.6	2
366	Solving integral equations in free space with inverse-designed ultrathin optical metagratings. Nature Nanotechnology, 2023, 18, 365-372.	31.5	21

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
367	Photonic multiplexing techniques for neuromorphic computing. Nanophotonics, 2023, 12, 795-817.	6.0	27
368	Prospects and applications of on-chip lasers. ELight, 2023, 3, .	23.9	56
369	Perspective on 3D vertically-integrated photonic neural networks based on VCSEL arrays. Nanophotonics, 2023, 12, 827-832.	6.0	4
370	Optical Neural Network With Complementary Decomposition to Overcome the Phase Insensitive Constrains. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-8.	2.9	2
371	Microcomb-based integrated photonic processing unit. Nature Communications, 2023, 14, .	12.8	49
372	A universal metasurface transfer technique for heterogeneous integration. Nanophotonics, 2023, .	6.0	2
373	MXene-Based Memristor for Artificial Optoelectronic Neuron. IEEE Transactions on Electron Devices, 2023, 70, 1359-1365.	3.0	4
374	Why optics needs thickness. Science, 2023, 379, 41-45.	12.6	20
375	MXeneâ€Nanoflakesâ€Enabled Allâ€Optical Nonlinear Activation Function for Onâ€Chip Photonic Deep Neura Networks. Advanced Materials, 2023, 35, .	l 21.0	5
376	Compact non-volatile ferroelectric electrostatic doping optical memory based on epsilon-near-zero effect. Applied Optics, 0, , .	1.8	0
377	High-NA polarization-independent isotropic spatial differential metasurface. Photonics and Nanostructures - Fundamentals and Applications, 2023, 53, 101107.	2.0	2
378	High-order tensor flow processing using integrated photonic circuits. Nature Communications, 2022, 13, .	12.8	33
379	Normalized Post-training Quantization for Photonic Neural Networks. , 2022, , .		1
380	Applications of Graphene in Five Senses, Nervous System, and Artificial Muscles. ACS Sensors, 2023, 8, 482-514.	7.8	24
381	Imperfect Quantum Photonic Neural Networks. Advanced Quantum Technologies, 2023, 6, .	3.9	2
382	Structural plasticityâ€based hydrogel optical Willshaw model for oneâ€shot onâ€theâ€fly edge learning. InformaÄnA-Materiály, 2023, 5, .	17.3	1
383	Metric Learning: Harnessing the Power of Machine Learning in Nanophotonics. ACS Photonics, 2023, 10, 900-909.	6.6	8
385	Towards a high-density photonic tensor core enabled by intensity-modulated microrings and photonic wire bonding. Scientific Reports, 2023, 13, .	3.3	7

#	Article	IF	CITATIONS
386	Optimally designed tunable phase change material-based narrowband perfect absorber. Journal of Nanophotonics, 2023, 17, .	1.0	2
387	Coherent optical neuron control based on reinforcement learning. Optics Letters, 2023, 48, 1084.	3.3	2
388	3D Integrated Laser Attach Technology on a 300-mm Monolithic CMOS Silicon Photonics Platform. IEEE Journal of Selected Topics in Quantum Electronics, 2023, , 1-19.	2.9	6
389	Tuned band offset in homogenous TMDs via asymmetric ferroelectric semiconductor gates toward simultaneous rectification and memory. Applied Physics Letters, 2023, 122, .	3.3	3
390	Monostable stochastic resonance activation unit-based physical reservoir computing. Journal of the Korean Physical Society, 2023, 82, 798-806.	0.7	2
391	Autonomous vehicles decision-making enhancement using self-determination theory and mixed-precision neural networks. Multimedia Tools and Applications, 0, , .	3.9	9
392	Fabrication of Graphene Oxide-Based Resistive Switching Memory by the Spray Pyrolysis Technique for Neuromorphic Computing. ACS Applied Nano Materials, 2023, 6, 2236-2248.	5.0	5
393	A Survey on Optical Phase-Change Memory: The Promise and Challenges. IEEE Access, 2023, 11, 11781-11803.	4.2	10
394	Neuromorphic Speech Recognition With Photonic Convolutional Spiking Neural Networks. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-7.	2.9	3
395	å‰è®¡ç®—çš"åʿ展趋åŠ;:模拟æ^–æ•°å—?. Zhongguo Jiguang/Chinese Journal of Lasers, 2023, 50, 05	00001.	0
396	Photonic reservoir computing using a self-injection locked semiconductor laser under narrowband optical feedback. Optics Letters, 2023, 48, 2006.	3.3	3
397	Heavy tails and pruning in programmable photonic circuits for universal unitaries. Nature Communications, 2023, 14, .	12.8	6
398	A Novel Working Scheme for Robust Optical Coupler Unit for Programable Unitary Matrices. IEEE Photonics Journal, 2023, 15, 1-5.	2.0	0
399	CHARLES: A C++ fixed-point library for Photonic-Aware Neural Networks. Neural Networks, 2023, 162, 531-540.	5.9	1
400	Sophisticated deep learning with on-chip optical diffractive tensor processing. Photonics Research, 2023, 11, 1125.	7.0	4
401	Engineered octave frequency comb in integrated chalcogenide dual-ring microresonators. Frontiers in Photonics, 0, 4, .	2.4	2
402	Optical and Electrical Memories for Analog Optical Computing. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-12.	2.9	10
403	Parallel photonic accelerator for decision making using optical spatiotemporal chaos. Optica, 2023, 10, 339.	9.3	4

ARTICLE IF CITATIONS # Operating Principle and Device Configuration Driven Mechanisms in Lowâ€Dimensional Materials for 404 6.1 0 Neuromorphics. Advanced Intelligent Systems, 2023, 5, . Evolving scattering networks for engineering disorder. Nature Computational Science, 2023, 3, 128-138. 8.0 Foundry manufacturing of tight-confinement, dispersion-engineered, ultralow-loss silicon nitride 406 7.0 14 photonic integrated circuits. Photonics Research, 2023, 11, 558. Neuromorphic processor-oriented hybrid Q-format multiplication with adaptive quantization for tiny YOLO3. Neural Computing and Applications, 0, , . Wafer-Scale Fabrication of CMOS-Compatible Trapping-Mode Infrared Imagers with Colloidal Quantum 408 19 6.6 Dots. ACS Photonics, 2023, 10, 673-682. Photonic unsupervised learning variational autoencoder for high-throughput and low-latency image transmission. Science Advances, 2023, 9, . 409 10.3 Reconfigurable multichannel amplitude equalizer based on cascaded silicon photonic microrings. 410 7.0 1 Photonics Research, 2023, 11, 742. MoS₂ as Nonlinear Optical Material for Optical Neural Networks. IEEE Journal of 2.9 Selected Topics in Quantum Electronics, 2023, 29, 1-7. Networks of random lasers: current perspective and future challenges [Invited]. Optical Materials 412 3.0 3 Express, 2023, 13, 1060. Merging and disconnecting resonance tongues in a pulsing excitable microlaser with delayed optical 2.5 feedback. Chaos, 2023, 33, Scalable Channel Allocation in Downlink NOMA Using Parallel Array of Laser Chaos Decision-Maker., 414 1 2023,,. Broadband physical layer cognitive radio with an integrated photonic processor for blind source 12.8 separation. Nature Communications, 2023, 14, . Integrated Photonic Computing beyond the von Neumann Architecture. ACS Photonics, 0, , . 416 6.6 1 Neural network learning with photonics and for photonic circuit design. Nanophotonics, 2023, 12, 6.0 773-775. Spiking Neural Network Nonlinear Demapping on Neuromorphic Hardware for IM/DD Optical 418 2 4.6 Communication. Journal of Lightwave Technology, 2023, 41, 3424-3431. On-chip photonic spatial-temporal descrambler., 2023, 2, 100043. Phenomenological model of superconducting optoelectronic loop neurons. Physical Review 420 3.6 1 Research, 2023, 5, . Automatic configuration of programmable photonic digital circuits based on genetic algorithms., 421 2023,,.

ARTICLE IF CITATIONS # Process Development of Low-Loss LPCVD Silicon Nitride Waveguides on 8-Inch Wafer. Applied Sciences 422 2.5 6 (Switzerland), 2023, 13, 3660. Implementation of input correlation learning with an optoelectronic dendritic unit. Frontiers in 423 2.1 Physics, 0, 11, . 424 Photonic tensor core machine learning accelerator., 2023,,. 0 Michelson interferometric methods for full optical complex convolution., 2023,,. Dual Optical Frequency Comb Neuron: Coâ€Developing Hardware and Algorithm. Advanced Intelligent 426 6.1 0 Systems, 2023, 5, . Design and testing of silicon photonic 4F system for convolutional neural networks., 2023, ,. 428 Integrated silicon photonic MEMS. Microsystems and Nanoengineering, 2023, 9, . 7.0 19 Image sensing with multilayer nonlinear optical neural networks. Nature Photonics, 2023, 17, 408-415. 31.4 Colloidal Ternary Telluride Quantum Dots for Tunable Phase Change Optics in the Visible and 430 14.6 7 Near-Infrared. ACS Nano, 2023, 17, 6985-6997. Nanophotonic and Optical Platforms for Deep Learning. Springer Series in Optical Sciences, 2023, , 157-172. Experimental demonstration of bandwidth enhancement in photonic time delay reservoir computing. 432 0 3.3 Optics Letters, 0, , . Metavalent Bonding in Layered Phaseâ€Change Memory Materials. Advanced Science, 2023, 10, . 11.2 Short-term memory capacity analysis of Lu3Fe4Co0.5Si0.5O12-based spin cluster glass towards 434 3.3 2 reservoir computing. Scientific Reports, 2023, 13, . Software-defined nanophotonic devices and systems empowered by machine learning. Progress in Quantum Electronics, 2023, 89, 100469. Imaging-based intelligent spectrometer on a plasmonic rainbow chip. Nature Communications, 2023, 14, 436 12.8 6 Robots, people, or some combinationâ€"What or whom should we send to the stars?. , 2023, , 83-100. Plasmonic Nonlinear Metasurfaces for Building an Optical Spiking Neuron., 2022, , . 438 0 Allâ€Opticalâ€Controlled Excitatory and Inhibitory Synaptic Signaling through Bipolar Photoresponse of 439 an Oxideâ€Based Phototransistor. Advanced Optical Materials, 2023, 11, .

~			~	
CI	TAT	ION	Repo)RT

#	Article	IF	CITATIONS
440	Nonvolatile Reconfigurable Phase-Shifted Bragg Grating Filter With Tunable Wavelength and Extinction Ratio. IEEE Photonics Journal, 2023, 15, 1-7.	2.0	0
441	Highâ€Precision Wavelength Tuning of GeSn Nanobeam Lasers via Dynamically Controlled Strain Engineering. Advanced Science, 2023, 10, .	11.2	3
442	Nonlinear absorption of 2D materials and their application in optical neural networks. Journal of the Optical Society of America B: Optical Physics, 0, , .	2.1	0
443	Lithography-free reconfigurable integrated photonic processor. Nature Photonics, 2023, 17, 710-716.	31.4	9
444	Using surface plasmons to create programmable neural networks. Nature Electronics, 2023, 6, 266-267.	26.0	1
445	Fully Integrated Silicon Photonic Tensor Core for Next-Generation Applications. , 2023, , .		0
446	Probing switching mechanism of memristor for neuromorphic computing. Nano Express, 2023, 4, 022001.	2.4	3
447	Spiking Neural Network Linear Equalization: Experimental Demonstration of 2km 100Gb/s IM/DD PAM4 Optical Transmission. , 2023, , .		0
448	VCSEL Based Neuromorphic Computing. , 2023, , .		0
449	In-memory photonic dot-product engine with electrically programmable weight banks. Nature Communications, 2023, 14, .	12.8	27
450	Data-Driven Modeling of Mach-Zehnder Interferometer-Based Optical Matrix Multipliers. Journal of Lightwave Technology, 2023, 41, 5425-5436.	4.6	7
451	Enhancement of second-order optical nonlinearities and nanoscale periodic domain patterning in ferroelectric boron-substituted aluminum nitride thin films. Optical Materials Express, 2023, 13, 1522.	3.0	2
452	Easily Scalable Photonic Tensor Core Based on Tunable Units with Single Internal Phase Shifters. Laser and Photonics Reviews, 2023, 17, .	8.7	5
453	Hexagonal boron nitride nanophotonics: a record-breaking material for the ultraviolet and visible spectral ranges. Materials Horizons, 2023, 10, 2427-2435.	12.2	9
454	Nonlinear semiconductor laser dynamics. , 2023, , 57-84.		1
455	Analysis of Integration Technologies for High-Speed Analog Neuromorphic Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-9.	2.9	2
456	Microring-based programmable coherent optical neural networks. Optics Express, 2023, 31, 18871.	3.4	4

#	Article	IF	CITATIONS
458	Monte Carlo characterization of Si ring modulator PAM-4 eye diagram performance. Japanese Journal of Applied Physics, 2023, 62, 066502.	1.5	0
459	Cross Department's Elective Course Recommendation for University Students using Hybrid Filtering. , 2022, , .		0
460	A Controller for Si MZI-Based Spanke-Benes Optical Switch Fabric With Automatic Calibration Capability. IEEE Photonics Journal, 2023, 15, 1-6.	2.0	1
461	Ultra-Degree-of-Freedom Structured Light for Ultracapacity Information Carriers. ACS Photonics, 2023, 10, 2149-2164.	6.6	16
462	Scalable High-Precision Trimming of Photonic Resonances by Polymer Exposure to Energetic Beams. Nano Letters, 2023, 23, 4800-4806.	9.1	3
463	Photonic integrated spiking neuron chip based on a self-pulsating DFB laser with a saturable absorber. Photonics Research, 2023, 11, 1382.	7.0	5
464	Programmable Tanh-, ELU-, Sigmoid-, and Sin-Based Nonlinear Activation Functions for Neuromorphic Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-10.	2.9	8
465	Calculating with Phase Opens up the High-Precision and High-Reconfigurability Integrated Photonic Computing. , 2023, , .		0
466	Experimental Demonstration of Optical Modulation Format Identification Using SOI-based Photonic Reservoir. , 2023, , .		1
467	Controlling optical properties of GST thin films by ultrashort laser pulses series impact. Optical Materials, 2023, 141, 113925.	3.6	0
468	Bimodal ionic photomemristor based on a high-temperature oxide superconductor/semiconductor junction. Nature Communications, 2023, 14, .	12.8	2
469	Optically Readable Organic Electrochemical Synaptic Transistors for Neuromorphic Photonic Image Processing. Nano Letters, 2023, 23, 5264-5271.	9.1	6
470	Enhanced ultrafast dynamics and saturable absorption response of Nb2SiTe4/graphene heterostructure for femtosecond mode-locked bulk lasers. Optics and Laser Technology, 2023, 166, 109635.	4.6	4
471	Integrated optical memristors. Nature Photonics, 2023, 17, 561-572.	31.4	30
472	Neuromorphic Photonics Based on Phase Change Materials. Nanomaterials, 2023, 13, 1756.	4.1	5
473	Hashing for secure optical information compression in a heterogeneous convolutional neural network. Applied Physics Reviews, 2023, 10, .	11.3	5
474	High-Speed and Energy-Efficient Non-Binary Computing with Polymorphic Electro-Optic Circuits and Architectures. , 2023, , .		0
475	Unconventional Integrated Photonic Accelerators for High-Throughput Convolutional Neural Networks. , 2023, 2, .		1

# 476	ARTICLE Ultrafast dynamic machine vision with spatiotemporal photonic computing. Science Advances, 2023, 9,	IF 10.3	CITATIONS 8
477	Reconfigurable Neuromorphic Computing: Materials, Devices, and Integration. Advanced Materials, 2023, 35, .	21.0	5
478	Fully Integrated Photonic Dot-product Engine in 45-nm SOI CMOS for Photonic Computing. , 2023, , .		0
479	Design and testing of a Silicon Photonic Tensor Core with integrated lasers. , 2023, , .		0
480	Spin Glass Behavior in Amorphous Cr ₂ Ge ₂ Te ₆ Phaseâ€Change Alloy. Advanced Science, 2023, 10, .	11.2	4
481	AnalogVNN: A fully modular framework for modeling and optimizing photonic neural networks. , 2023, 1, .		Ο
482	Fully-integrated photonic tensor core for image convolutions. Nanotechnology, 2023, 34, 395201.	2.6	2
483	Brain-inspired nanophotonic spike computing: challenges and prospects. Neuromorphic Computing and Engineering, 0, , .	5.9	2
484	Nonâ€Volatile Optical Switch Element Enabled by Low‣oss Phase Change Material. Advanced Functional Materials, 2023, 33, .	14.9	10
485	Performing photonic nonlinear computations by linear operations in a high-dimensional space. Nanophotonics, 2023, 12, 3189-3197.	6.0	1
486	Enhancement of the linear electro-optic effect by high pressure. Physical Review B, 2023, 107, .	3.2	1
487	基于激å‰è°æŒ⁻è"的智èf½å‰å计算ç"ç©¶èį›å±•与挑æ~. Zhongguo Jiguang/Chinese Journ	al 📭 🛛 🗠 al	s, @023, 50
488	Perovskite micro-/nanoarchitecture for photonic applications. Matter, 2023, 6, 3165-3219.	10.0	4
489	Functional Materials for Memristorâ€Based Reservoir Computing: Dynamics and Applications. Advanced Functional Materials, 2023, 33, .	14.9	7
490	Photonic Neural Networks with Kramers–Kronig Activation. Advanced Photonics Research, 0, , .	3.6	0
491	420 Gbit/s optical signal reception enabled by an inductive gain peaking Ge-Si photodetector with 80â€GHz bandwidth. Optics Express, 2023, 31, 17987.	3.4	Ο
492	Learning photons go backward. Science, 2023, 380, 341-342.	12.6	1
493	Hardware Error Correction for MZI-Based Matrix Computation. Micromachines, 2023, 14, 955.	2.9	0

		CITATION REPORT		
#	Article		IF	Citations
494	Spintronics intelligent devices. Science China: Physics, Mechanics and Astronomy, 202	23, 66, .	5.1	5
495	A Large-Scale Photonic CNN Based on Spike Coding and Temporal Integration. IEEE Jou Topics in Quantum Electronics, 2023, 29, 1-10.	ırnal of Selected	2.9	2
496	Integrated Photonic Tensor Processing Unit for a Matrix Multiply: A Review. Journal of Technology, 2023, 41, 3704-3716.	Lightwave	4.6	15
497	Choose your tools carefully: a comparative evaluation of deterministic vs. stochastic a analog neuron models for implementing emerging computing paradigms. Frontiers in Nanotechnology, 0, 5, .	nd binary vs.	4.8	0
498	High-performance end-to-end deep learning IM/DD link using optics-informed neural neural neural neural neural n	etworks. Optics	3.4	4
499	Ultracompact Integrated Mode-Order Converter and Reciprocal Optical Diode with Etc Subwavelength Structures. Photonics, 2023, 10, 563.	hed	2.0	0
500	Ultra ompact and NonVolatile Nanophotonic Neural Networks. Advanced Optical N	1aterials, 2023, 11, .	7.3	2
501	Investigation of the site-specific binding interactions and sensitivity of ochratoxin with nitride (Al12N12) nanoclusters. An intuition from Quantum Chemical Calculations. Ch Impact, 2023, 6, 100221.	aluminum emical Physics	3.5	4
502	Experimental Demonstration of Optical Modulation Format Identification Using SOI-ba Reservoir. , 2023, , .	ased Photonic		0
503	Fully Integrated Silicon Photonic Tensor Core for Next- Generation Applications. , 2023	3, , .		0
504	Calculating with Phase Opens up the High-Precision and High-Reconfigurability Integra Computing. , 2023, , .	ited Photonic		0
505	VCSEL Based Neuromorphic Computing. , 2023, , .			0
506	All-optical nonvolatile optical modulator for in-fiber operation. Nanophotonics, 2023, 1	12, 3179-3187.	6.0	0
507	Organic multilevel (opto)electronic memories towards neuromorphic applications. Nat 15, 11434-11456.	noscale, 2023,	5.6	0
508	Optical Convolutional Neural Networks: Methodology and Advances (Invited). Applied (Switzerland), 2023, 13, 7523.	Sciences	2.5	2
509	A quantum-inspired online spiking neural network for time-series predictions. Nonlinea 2023, 111, 15201-15213.	ır Dynamics,	5.2	1
510	A High-Stability All-Optical Nonlinear Activator for Optical Computing. Journal of Light Technology, 2023, 41, 6817-6823.	wave	4.6	0
512	Photonics approaches to the implementation of neuromorphic computing. Physics-Us 1211-1223.	pekhi, 2023, 66,	2.2	2

#	Article	IF	CITATIONS
513	An Electro-Photonic System for Accelerating Deep Neural Networks. ACM Journal on Emerging Technologies in Computing Systems, 2023, 19, 1-31.	2.3	6
514	Silicon Photonics for Training Deep Neural Networks. , 2022, , .		0
515	Advances in fabrication of micro-optical components by femtosecond laser with etching technology. Optics and Laser Technology, 2023, 167, 109793.	4.6	6
516	Electrically programmable phase-change photonic memory for optical neural networks with nanoseconds in situ training capability. Advanced Photonics, 2023, 5, .	11.8	10
519	Silicon electro-optic modulators based on microscopic photonic structures: From principles to advanced modulation formats. Journal Physics D: Applied Physics, 0, , .	2.8	0
522	Photonic-accelerated AI for cybersecurity in sustainable 6G networks. , 2023, , .		0
523	Data-efficient Modeling of Optical Matrix Multipliers Using Transfer Learning. , 2023, , .		3
524	In situ Training of Silicon Photonic Neural Networks: from Classical to Quantum. , 2023, , .		0
525	Microring-based programmable coherent optical neural networks. , 2023, , .		0
526	Time-stretch optical neural network with time-division multiplexing. Optical Fiber Technology, 2023, 80, 103438.	2.7	0
527	All-function Integrated Silicon Photonic Tensor Core (PTC) Al Accelerator. , 2023, , .		0
528	An optical scheme of on-chip matrixing by phase-change based tunable weighting of photonic tensor unit. Journal Physics D: Applied Physics, 2023, 56, 455104.	2.8	0
529	Neuromorphic regenerative memory optoelectronic oscillator. Optics Express, 2023, 31, 27529.	3.4	0
530	Optical Neural Network in Free-Space and Nanophotonics. IEEE Access, 2023, 11, 88656-88669.	4.2	0
531	Artificial neural networks for photonic applications—from algorithms to implementation: tutorial. Advances in Optics and Photonics, 2023, 15, 739.	25.5	6
532	Sequential minimum optimization algorithm with small sample size estimators. AVS Quantum Science, 2023, 5, .	4.9	0
533	Chromatic Plasmonic Polarizer-Based Synapse for All-Optical Convolutional Neural Network. Nano Letters, 2023, 23, 9651-9656.	9.1	5
534	Multiscale simulations of growth-dominated Sb2Te phase-change material for non-volatile photonic applications. Npj Computational Materials, 2023, 9, .	8.7	5

#	Article	IF	Citations
535	Reflection sensitivity of dual-state quantum dot lasers. Photonics Research, 0, , .	7.0	0
536	Silicon Ring Resonator with Phase-Change Material as a Plastic Dynamical Node for Scalable All-Optical Neural Networks with Synaptic Plasticity. , 2023, , .		0
537	Low-dimensional wide-bandgap semiconductors for UV photodetectors. Nature Reviews Materials, 2023, 8, 587-603.	48.7	124
538	Non-volatile tunable optics by design: From chalcogenide phase-change materials to device structures. Materials Today, 2023, 68, 334-355.	14.2	2
539	Research Progress in Intelligent Design of On-Chip Optical Interconnection Devices. Wuli Xuebao/Acta Physica Sinica, 2023, .	0.5	0
540	Hybrid Spiking Fully Convolutional Neural Network for Semantic Segmentation. Electronics (Switzerland), 2023, 12, 3565.	3.1	0
541	Self-pulsing and dual-mode lasing in a square microcavity semiconductor laser. Optics Letters, 0, , .	3.3	0
542	Beyond Weights: Deep learning in Spiking Neural Networks with pure synaptic-delay training. , 2023, , .		0
543	Flexible optoelectronic synaptic transistors for neuromorphic visual systems. , 2023, 1, .		0
545	Stretchable, skinâ€conformable neuromorphic system for tactile sensory recognizing and encoding. InformaÄnĀ-Materiály, 2023, 5, .	17.3	1
546	In-memory computing based on photonic-electronic hybrid phase-change cells. Science Bulletin, 2023, ,	9.0	0
547	CMOS-compatible neuromorphic devices for neuromorphic perception and computing: a review. International Journal of Extreme Manufacturing, 2023, 5, 042010.	12.7	5
548	Optically-triggered deterministic spiking regimes in nanostructure resonant tunnelling diode-photodetectors. Neuromorphic Computing and Engineering, 2023, 3, 034012.	5.9	0
549	Artificial nanophotonic neuron with internal memory for biologically inspired and reservoir network computing. Neuromorphic Computing and Engineering, 2023, 3, 034011.	5.9	0
550	Surface effects on the crystallization kinetics of amorphous antimony. Nanoscale, 2023, 15, 15259-15267.	5.6	1
551	Present and future of terahertz integrated photonic devices. APL Photonics, 2023, 8, .	5.7	3
552	Analog Programmableâ€Photonic Computation. Laser and Photonics Reviews, 2023, 17, .	8.7	0
553	Light-stimulated long-term potentiation behavior enhanced in a HfO2/InGaZnO photonic synapse. Applied Materials Today, 2023, 34, 101919.	4.3	1

#	Article	IF	CITATIONS
554	Mixed-precision quantization-aware training for photonic neural networks. Neural Computing and Applications, 2023, 35, 21361-21379.	5.6	2
555	Amorphous gallium oxide homojunction-based optoelectronic synapse for multi-functional signal processing. Journal of Semiconductors, 2023, 44, 074101.	3.7	6
556	On-chip optical matrix-vector multiplier based on mode division multiplexing. , 2023, 2, 100061.		1
557	Time-domain photonic image processor based on speckle projection and reservoir computing. Communications Physics, 2023, 6, .	5.3	1
558	Analog Photonics Computing for Information Processing, Inference, and Optimization. Advanced Quantum Technologies, 2023, 6, .	3.9	5
559	Electrical programmable multilevel nonvolatile photonic random-access memory. Light: Science and Applications, 2023, 12, .	16.6	13
560	Recent Progress in Siliconâ€Based Photonic Integrated Circuits and Emerging Applications. Advanced Optical Materials, 2023, 11, .	7.3	2
561	Toward monolithic growth integration of nanowire electronics in 3D architecture: a review. Science China Information Sciences, 2023, 66, .	4.3	1
562	Comparison of Microcomb-Based Radio-Frequency Photonic Transversal Signal Processors Implemented with Discrete Components Versus Integrated Chips. Micromachines, 2023, 14, 1794.	2.9	0
563	Deeply subwavelength integrated excitonic van der Waals nanophotonics. Optica, 2023, 10, 1345.	9.3	3
564	Electric Field Control of Chiral Magnonic Resonators for Spin-Wave Manipulation. Physical Review Applied, 2023, 20, .	3.8	1
565	The physics of optical computing. Nature Reviews Physics, 2023, 5, 717-734.	26.6	5
566	Experimental realization of convolution processing in photonic synthetic frequency dimensions. Science Advances, 2023, 9, .	10.3	2
567	Multifunctional Two-Terminal Optoelectronic Synapse Based on an Organic Semiconductor Film. ACS Applied Polymer Materials, 2023, 5, 8764-8773.	4.4	0
568	Automated Optical Accelerator Search Toward Superior Acceleration Efficiency, Inference Robustness and Development Speed. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, , 1-1.	2.7	0
569	Hybrid photonic deep convolutional residual spiking neural networks for text classification. Optics Express, 2023, 31, 28489.	3.4	0
570	Lithography-free reconfigurable photonic processor. Nature Photonics, 2023, 17, 644-645.	31.4	0
571	A 7-bit Precision Linearized Mach-Zehnder Interferometer for High Accuracy Optical Neural Networks. , 2023, , .		Ο

		PORT	
#	Article	IF	CITATIONS
572	Self-Learning Machines Based on Hamiltonian Echo Backpropagation. Physical Review X, 2023, 13, .	8.9	2
573	Unconventional Monolithic Electronics in a Conventional Silicon Photonics Platform. IEEE Transactions on Electron Devices, 2023, 70, 4993-4998.	3.0	0
574	Applications of Double Injection Photonic Devices. , 2023, , .		0
575	Multimode nonlinear integrated optics for quantum and machine learning-assisted signal processing. , 2023, , .		0
576	Integrated diffractive neural networks performing optical inference. , 2023, , .		0
577	Aluminum Nitride Thin Film Acousto-Optic Modulator based on Single-Phase Unidirectional Transducers. , 2023, , .		0
578	Online Image Recognition with Ultrafast Spiking Microlaser Neurons. , 2023, , .		0
579	Scalable Delay Line-Free All-Optical Reservoir. , 2023, , .		0
580	Impact of Photonic Integration Platforms on the Performance of Neuromorphic Accelerators. , 2023, ,		0
581	III-V Nanowire Based Neuromorphic Nanophotonic Circuits. , 2023, , .		0
582	Order of Magnitude Increase in Storage Time of Brillouin-based Memory. , 2023, , .		0
583	Unmixing Data Lanes in Mode-Division Multiplexing Optical Fiber Transmission Using an Integrated Photonic Processor. Journal of Lightwave Technology, 2023, , 1-6.	4.6	0
584	Multi-wavelength diffractive neural network with the weighting method. Optics Express, 2023, 31, 33113.	3.4	1
585	Two-photon lithography for integrated photonic packaging. , 2023, 4, 1.		0
586	An array of microresonators as a photonic extreme learning machine. APL Photonics, 2023, 8, .	5.7	2
587	On-chip multifunctional self-configurable quadrilateral MZI network. Optical Materials Express, 2023, 13, 3138.	3.0	1
588	Sustainable Global Democratic e-Governance System Using Vedic Scripture, Artificial Intelligence, Cloud Computing and Augmented Reality. , 2023, , .		7
589	Electro-optically programmable photonic circuits enabled by wafer-scale integration on thin-film lithium niobate. Physical Review Research, 2023, 5, .	3.6	3

#	Article	IF	CITATIONS
590	Device-scale atomistic modelling of phase-change memory materials. Nature Electronics, 2023, 6, 746-754.	26.0	10
591	Brain-inspired nanophotonic spike-based devices for neuromorphic light-emitting and sensing Al applications. , 2023, , .		0
592	Machine learning meets photonics. , 2023, , .		0
593	Human emotion recognition with a microcomb-enabled integrated optical neural network. Nanophotonics, 2023, 12, 3883-3894.	6.0	1
594	Silicon Programmable Photonic Circuits Based on Periodic Bimodal Waveguides. Laser and Photonics Reviews, 2024, 18, .	8.7	2
595	Spiking information processing in a single fabricated photonic spiking neuron with double integrated electronic dendrites. Photonics Research, 0, , .	7.0	0
596	Neuromorphic Computing via Fissionâ€based Broadband Frequency Generation. Advanced Science, 2023, 10, .	11.2	3
597	A comprehensive analysis of electronic transitions in naphthalene and perylene diimide derivatives through computational methods. International Journal of Quantum Chemistry, 2024, 124, .	2.0	1
598	PhotoFourier: silicon photonics joint transfer correlator for convolution neural network. , 2023, , .		0
599	Programmable photonic chips and applications. , 2023, , .		0
600	Nonlinear activation function-free artificial neural network enabled optical performance monitoring. IEEE Communications Magazine, 2023, , 1-5.	6.1	0
601	In-sensor Computing Based on Two-terminal Optoelectronic Memristors. , 2023, , 339-372.		0
602	Stimulated Amplification of Propagating Spin Waves. Physical Review Letters, 2023, 131, .	7.8	3
603	Thermal Crosstalk Effects in a Silicon Photonics Neuromorphic Network. , 2023, , .		0
604	Working Dynamics in Low-dimensional Material-based Neuromorphic Devices. , 2023, , 458-497.		0
605	Programmable MZI based on a silicon photonic MEMS-tunable delay line. Optics Letters, 2023, 48, 5611.	3.3	0
606	Thermally-robust spatiotemporal parallel reservoir computing by frequency filtering in frustrated magnets. Scientific Reports, 2023, 13, .	3.3	0
607	Enhanced BaTiOâ,ƒ/Siâ,ƒNâ," integrated photonic platform with VOâ,, technology for large-scale neuromorphic computing. Optical Materials Express, 0, , .	3.0	1

#	Article	IF	CITATIONS
608	Bipolar segmented photonic digital-to-analog converter with wavelength multiplexing and balanced detection. Optics Letters, 2023, 48, 5859.	3.3	2
609	Optical and thermal properties of Ge ₂ Sb ₂ Te ₅ , Sb ₂ Se ₃ , and Sb ₂ S ₃ for reconfigurable photonic devices [Invited]. Optical Materials Express, 2023, 13, 3277.	3.0	1
610	Spatial Photonic Ising Machine with Time/Space Division Multiplexing. , 2024, , 153-174.		0
612	A Reconfigurable Photonic Computing Chip with Easily Scalable Topology. , 2023, , .		0
613	Computing of Neuromorphic Materials: An Emerging Approach for Bioengineering Solutions. Materials Advances, 0, , .	5.4	0
614	Fundamentals and applications of photonic waveguides with bound states in the continuum. Journal of Semiconductors, 2023, 44, 101301.	3.7	0
616	Receptive Field-Based All-Optical Spiking Neural Network for Image Processing. IEEE Journal of Quantum Electronics, 2024, 60, 1-11.	1.9	0
617	Higher-dimensional processing using a photonic tensor core with continuous-time data. Nature Photonics, 2023, 17, 1080-1088.	31.4	4
618	Adaptive Photochemical Nonlinearities for Optical Neural Networks. Advanced Intelligent Systems, 2023, 5, .	6.1	1
619	Reconfigurable nonlinear losses of nanomaterial covered waveguides. Nanophotonics, 2023, 12, 4229-4238.	6.0	1
620	Quantization-Aware Training for Mixed Precision Photonic Neural Networks. , 2023, , .		1
621	Fullâ€Fourierâ€Component Tailorable Optical Neural Metaâ€Transformer. Laser and Photonics Reviews, 2023, 17, .	8.7	0
622	Transduction modality near instability in domain engineered relaxor ferroelectric single crystals. Smart Materials and Structures, 2024, 33, 013001.	3.5	1
623	Hardware Implementation of Ultraâ€Fast Obstacle Avoidance Based on a Single Photonic Spiking Neuron. Laser and Photonics Reviews, 2023, 17, .	8.7	2
624	Recognition of Noisy Digital Images Using the Asymmetric Coupling Semiconductor Chaotic Lasers Network. Photonics, 2023, 10, 1191.	2.0	0
625	Implementation of all-optical single qubit gates using Si3N4 based micro ring resonator. Optics and Laser Technology, 2024, 170, 110263.	4.6	0
626	Programmable optical switching integrated chip for 4-bit binary true/inverse/complement code conversions based on fluorinated photopolymers. Optics Express, 2023, 31, 39140.	3.4	0
627	Spatial and temporal control of glassy rystalline domains in optical phase change materials. Journal of the American Ceramic Society, 0, , .	3.8	0

#	ARTICLE A Simple Nonlinear Classifier Using a Multimode Optical Chip. Advanced Photonics Research, 0, , .	IF 3.6	CITATIONS
629	Training large-scale optoelectronic neural networks with dual-neuron optical-artificial learning. Nature Communications, 2023, 14, .	12.8	4
630	Design principles for lifelong learning Al accelerators. Nature Electronics, 2023, 6, 807-822.	26.0	1
631	Hybrid photonic integrated circuits for neuromorphic computing [Invited]. Optical Materials Express, 2023, 13, 3553.	3.0	0
632	Multiâ€Level Optical Switching by Amorphization in Single―and Multiâ€Phase Change Material Structures. Advanced Optical Materials, 2024, 12, .	7.3	2
633	The Features of the Optical Traps Formation Using Silicon Ring Gratings with Variable Height. Photonics, 2023, 10, 1264.	2.0	0
635	Higher-Accuracy Photonic Neural Networks via Duplication Schemes for Noise Reduction. , 2023, , .		0
636	Validation of Photonic Neural Networks in Health Scenarios. , 2023, , .		0
637	All-Fiber Synapse Utilizing Phase Change Materials for Information Recognition and Processing. ACS Photonics, 0, , .	6.6	0
638	Order of Magnitude Increase in Storage Time of Photonic-Phononic Memory. , 2023, , .		0
639	Photonic Activation Function Using Sound Waves. , 2023, , .		0
640	Microdisk modulator-assisted optical nonlinear activation functions for photonic neural networks. Optics Communications, 2024, 553, 130121.	2.1	0
641	Integrated WDM-compatible optical mode division multiplexing neural network accelerator. Optica, 0,	9.3	1
642	Integrating 2D Materials and Plasmonics on Lithium Niobate Platforms for Pulsed Laser Operation at the Nanoscale. Laser and Photonics Reviews, 2024, 18, .	8.7	Ο
643	Addressing Data Scarcity in Optical Matrix Multiplier Modeling Using Transfer Learning. Optics Letters, 0, , .	3.3	0
644	Photonic optical accelerators: The future engine for the era of modern Al?. APL Photonics, 2023, 8, .	5.7	Ο
645	Photonic integrated neuro-synaptic core for convolutional spiking neural network. Opto-Electronic Advances, 2023, 6, 230140-230140.	13.3	3
646	Ultra-compact silicon on-chip polarization controller. Photonics Research, 0, , .	7.0	0

#	Article	IF	CITATIONS
647	Persistent photoconductivity of polycrystalline Pb1â^' <i>x</i> Sn <i>x</i> Te:In films on an amorphous substrate in the telecom wavelength range. Journal of Applied Physics, 2023, 134, .	2.5	1
648	Scalable Nonâ€Volatile Tuning of Photonic Computational Memories by Automated Silicon Ion Implantation. Advanced Materials, 2024, 36, .	21.0	0
649	Transparent conductive oxides and low-loss nitride-rich silicon waveguides as building blocks for neuromorphic photonics. Applied Physics Letters, 2023, 123, .	3.3	2
650	Photoelectric Synaptic Device Based on Bilayerd OR/OP-InGaZnO for Neuromorphic Computing. IEEE Electron Device Letters, 2023, , 1-1.	3.9	Ο
651	Highâ€Resolution 2D Quasiâ€Distributed Optical Sensing with Onâ€Chip Multiplexed FSRâ€Free Nanobeam Cavity Array. Laser and Photonics Reviews, 2024, 18, .	8.7	0
652	å‰å¦ç¥žç»ç¼2'络è®ç»ƒç®—法ä¸è¶åıæ•°å⁻¹ç¼2'络性胼2çš"å¼2±å"ı Laser and Optoelectronics Progre	2023,	6 0) 22200 <mark>0</mark> 1
653	Integrated photonic convolution acceleration core for wearable devices. , 2023, 2, 230017-230017.		1
654	Machine Learning Training in Silicon Photonic Circuits. , 2023, , .		0
655	Fully Integrated Photonic Tensor Core Accelerator for Neural Network Applications. , 2023, , .		0
656	Advances in Solid-State Nonlinear Optical Materials: From Fundamentals to Applications. , 0, , .		0
657	Sigmoid activation function generation by photonic artificial neuron (PAN). Optical and Quantum Electronics, 2024, 56, .	3.3	0
658	Waveguide-integrated plasmonic photodetectors and activation function units with phase change materials. IEEE Photonics Journal, 2023, , 1-11.	2.0	0
659	Cascadable excitability and inhibition in DFB laser-based photonic spiking neurons. Optics Communications, 2024, 554, 130207.	2.1	0
660	Fabrication and integration of photonic devices for phase-change memory and neuromorphic computing. International Journal of Extreme Manufacturing, 0, , .	12.7	0
661	Delay-based reservoir computing using Mackey–Glass oscillator and Arduino board for edge intelligence applications. AIP Advances, 2023, 13, .	1.3	0
662	Analysis and Compensation of Nonlinear Dynamics in Optical Fiber Transmission with the Optoelectronic Reservoir Computing. , 2023, , .		0
663	Neuromorphic Photonics Circuits: Contemporary Review. Nanomaterials, 2023, 13, 3139.	4.1	0
664	Compact hybrid silicon nitride and lithium niobate nano-film photoelectronic reversible logic gate. AEU - International Journal of Electronics and Communications, 2024, 174, 155076.	2.9	0

#	Article	IF	CITATIONS
665	Slimmed Optical Neural Networks with Multiplexed Neuron Sets and a Corresponding Backpropagation Training Algorithm. , 2024, 3, .		0
666	Resonant scattering of surface acoustic waves by arrays of magnetic stripes. Journal of Applied Physics, 2023, 134, .	2.5	0
667	Magnonic demultiplexer-switch based on the cluster of coupled ferrimagnetic Mach–Zehnder interferometers. Journal of Magnetism and Magnetic Materials, 2023, , 171644.	2.3	0
668	Self-pulsation and synchronization of optical neurons based on microrings. Optics and Laser Technology, 2024, 172, 110479.	4.6	0
669	Fully Integrated Photonic Tensor Core for Neural Network Applications. , 2023, , .		0
670	Neuromorphic Photonics for Digital Signal Processing. , 2023, , .		0
671	Sparse coherent photonic processor for solving eigenmode problems. , 2023, , .		0
672	Heterogeneous integration in silicon photonics: opportunities and challenges: opinion. Optical Materials Express, 2023, 13, 3439.	3.0	1
673	Advancements in Artificial Intelligence Circuits and Systems (AICAS). Electronics (Switzerland), 2024, 13, 102.	3.1	0
674	Ferroelectric-controlled graphene plasmonic surfaces for all-optical neuromorphic vision. Science China Technological Sciences, 0, , .	4.0	0
675	On the use of deep learning for phase recovery. Light: Science and Applications, 2024, 13, .	16.6	3
676	Multichannel meta-imagers for accelerating machine vision. Nature Nanotechnology, 2024, 19, 471-478.	31.5	3
677	A system-on-chip microwave photonic processor solves dynamic RF interference in real time with picosecond latency. Light: Science and Applications, 2024, 13, .	16.6	2
678	Reconfigurable multifunctional neuromorphic memristor fabricated from two-dimensional ReSe2 ferroelectric nanosheet films. Applied Physics Reviews, 2024, 11, .	11.3	1
679	High-speed and energy-efficient non-volatile silicon photonic memory based on heterogeneously integrated memresonator. Nature Communications, 2024, 15, .	12.8	3
680	Tuning of graphene plasmons by ferroelectric superdomain for mid-infrared photodetector with high responsivity. Japanese Journal of Applied Physics, 2023, 62, 085001.	1.5	0
681	Subâ€1â€Volt Electrically Programmable Optical Modulator Based on Active Tamm Plasmon. Advanced Materials, 2024, 36, .	21.0	0
682	Compact, efficient, and scalable nanobeam core for photonic matrix-vector multiplication. Optica, 2024, 11, 190.	9.3	Ο

#	Article	IF	CITATIONS
683	Freeform direct-write and rewritable photonic integrated circuits in phase-change thin films. Science Advances, 2024, 10, .	10.3	0
684	Integrated multi-operand optical neurons for scalable and hardware-efficient deep learning. Nanophotonics, 2024, .	6.0	1
685	Onâ€Chip Optical Power Limiter for Quantum Communications. Advanced Quantum Technologies, 2024, 7, .	3.9	0
686	Holographic gratings for 90% power-efficient excitation of optical surface waves. Journal of the Optical Society of America B: Optical Physics, 2024, 41, A92.	2.1	0
687	Enhancing plasticity in optoelectronic artificial synapses: A pathway to efficient neuromorphic computing. Applied Physics Letters, 2024, 124, .	3.3	3
688	Special issue on digital and intelligent optics. , 2023, 2, 230050-230050.		0
689	Seven Bit Nonvolatile Electrically Programmable Photonics Based on Phase-Change Materials for Image Recognition. ACS Photonics, 2024, 11, 723-730.	6.6	0
690	Optoelectronic Synapse Based on 2D Electron Gas in Stoichiometryâ€Controlled Oxide Heterostructures. Small, 0, , .	10.0	0
691	Role of all-optical neural networks. Physical Review Applied, 2024, 21, .	3.8	0
692	Parallel edge extraction operators on chip speed up photonic convolutional neural networks. Optics Letters, 2024, 49, 838.	3.3	0
693	Neuromorphic photonics: development of the field. , 2024, , 69-110.		0
694	Large-scale neuromorphic systems enabled by integrated photonics. , 2024, , 191-220.		0
695	2D neuromorphic photonics. , 2024, , 141-165.		0
696	Accurate vertical nanoelectromechanical measurements. Journal of Applied Physics, 2024, 135, .	2.5	Ο
697	Inverse design of high-dimensional quantum optical circuits in a complex medium. Nature Physics, 2024, 20, 232-239.	16.7	0
698	Complex-valued universal linear transformations and image encryption using spatially incoherent diffractive networks. , 2024, 3, .		Ο
699	3D neuromorphic photonics. , 2024, , 167-189.		0
700	Perspective on photonic neuromorphic computing. , 2024, , 353-375.		0

#	Article	IF	Citations
701	Photonic matrix computing accelerators. , 2024, , 257-293.		0
702	M3ICRO: Machine learning-enabled compact photonic tensor core based on programmable multi-operand multimode interference. , 2024, 2, .		0
703	Reconfigurable application-specific photonic integrated circuit for solving partial differential equations. Nanophotonics, 2024, .	6.0	1
704	Photonic computing: an introduction. , 2024, , 37-65.		0
705	Roadmapping the next generation of silicon photonics. Nature Communications, 2024, 15, .	12.8	1
706	CMOS-compatible 6-inch wafer integration of photonic waveguides and uniformity analysis. Optics Express, 2024, 32, 7197.	3.4	0
707	Experimental Study of a Prototype of a Superconducting Sigma Neuron for Adiabatic Neural Networks. Journal of Experimental and Theoretical Physics, 2023, 137, 888-898.	0.9	0
708	Grand challenges in neuromorphic photonics and photonic computing. Frontiers in Photonics, 0, 4, .	2.4	0
709	Photonic neural networks and optics-informed deep learning fundamentals. APL Photonics, 2024, 9, .	5.7	1
710	Precision medicine in sports application based on photonics and quantum computing with artificial intelligence. Optical and Quantum Electronics, 2024, 56, .	3.3	0
711	Full-function Pavlov associative learning photonic neural networks based on SOA and DFB-SA. APL Photonics, 2024, 9, .	5.7	0
712	EEG Opto-Processor: Epileptic Seizure Detection Using Diffractive Photonic Computing Units. Engineering, 2024, , .	6.7	0
713	Application of a reconfigurable all-optical activation unit based on optical injection into a bistable Fabry–Perot laser in multilayer perceptron neural networks. Optics Letters, 2024, 49, 1153.	3.3	0
714	2D materials–based electronics enabled by transfer printing technologies. , 2024, , 475-493.		0
715	High-efficiency reinforcement learning with hybrid architecture photonic integrated circuit. Nature Communications, 2024, 15, .	12.8	0
716	Harness Background Lighting for Separability Enhancement in Optical Sensing Reservoir for Temporal Signal Processing Utilizing Amorphous IGZO Neuromorphic Transistors. ACS Photonics, 2024, 11, 660-672.	6.6	0
717	Polarization-based all-optical logic gates using diffractive neural networks. Journal of Optics (United) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf

718	Electrochemical Analysis of Ion Effects on Electrolyte-Gated Synaptic Transistor Characteristics. ACS Nano, 0, , .	14.6	0
-----	---	------	---

#	Article	IF	CITATIONS
719	Physical Reservoir Computing Enabled by Solitary Waves and Biologically Inspired Nonlinear Transformation of Input Data. Dynamics, 2024, 4, 119-134.	1.2	1
720	Integrated Photonics for Quantum Communications and Metrology. PRX Quantum, 2024, 5, .	9.2	0
721	Analog spatiotemporal feature extraction for cognitive radio-frequency sensing with integrated photonics. Light: Science and Applications, 2024, 13, .	16.6	0
722	New Applications of Integrated Optics in Quantum Photonics and Machine Learning. , 2023, , .		0
723	Multi-scroll hidden hyperchaotic attractor and extreme multistability with offset boosting in a memristor-coupled complex-valued laser network. European Physical Journal Plus, 2024, 139, .	2.6	0
724	Deep photonic network platform enabling arbitrary and broadband optical functionality. Nature Communications, 2024, 15, .	12.8	0
725	Inverse-designed low-index-contrast structures on a silicon photonics platform for vector–matrix multiplication. Nature Photonics, 0, , .	31.4	1
726	The Roadmap of 2D Materials and Devices Toward Chips. Nano-Micro Letters, 2024, 16, .	27.0	0
727	General-purpose programmable photonic processor for advanced radiofrequency applications. Nature Communications, 2024, 15, .	12.8	0
728	Experimental demonstration of a photonic spiking neuron based on a DFB laser subject to side-mode optical pulse injection. Science China Information Sciences, 2024, 67, .	4.3	0
729	Scalable and efficient grating couplers on low-index photonic platforms enabled by cryogenic deep silicon etching. Scientific Reports, 2024, 14, .	3.3	0
730	Non-orthogonal optical multiplexing empowered by deep learning. Nature Communications, 2024, 15, .	12.8	0
731	Application of machine learning in optical fiber sensors. Measurement: Journal of the International Measurement Confederation, 2024, 228, 114391.	5.0	0
732	Phase-field model of filament formation and growth in percolating memristive systems of nanoparticles. Materials Today Communications, 2024, 38, 108464.	1.9	0
733	Photonic neuromorphic architecture for tens-of-task lifelong learning. Light: Science and Applications, 2024, 13, .	16.6	0
734	Tailoring Classical Conditioning Behavior in TiO2 Nanowires: ZnO QDs-Based Optoelectronic Memristors for Neuromorphic Hardware. Nano-Micro Letters, 2024, 16, .	27.0	0
735	Decoding Epileptic Seizures: Exploring In Vitro Approaches to Unravel Pathophysiology and Propel Future Therapeutic Breakthroughs. , 0, , .		0
736	Nonlinear erasing of propagating spin-wave pulses in thin-film Ga:YIG. Applied Physics Letters, 2024, 124,	3.3	0

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
737	Advanced visual components inspired by animal eyes. Nanophotonics, 2024, 13, 859-879.	6.0	0
738	Decomposing large unitaries into multimode devices of arbitrary size. Physical Review Research, 2024, 6, .	3.6	0
739	History-dependent nano-photoisomerization by optical near-field in photochromic single crystals. Communications Materials, 2024, 5, .	6.9	0
740	Conflict-free joint decision by lag and zero-lag synchronization in laser network. Scientific Reports, 2024, 14, .	3.3	0
741	Neural network methods for radiation detectors and imaging. Frontiers in Physics, 0, 12, .	2.1	0
742	Fiber optic computing using distributed feedback. Communications Physics, 2024, 7, .	5.3	0
743	Design of a Convolutional Neural Network Accelerator Based on On-Chip Data Reordering. Electronics (Switzerland), 2024, 13, 975.	3.1	0
744	Neuromorphic Optical Data Storage Enabled by Nanophotonics: A Perspective. ACS Photonics, 2024, 11, 874-891.	6.6	0
745	Nonlinear dynamics in neuromorphic photonic networks: Physical simulation in Verilog-A. Physical Review Applied, 2024, 21, .	3.8	0
746	Coherent General-Purpose Photonic Matrix Processor. ACS Photonics, 2024, 11, 1189-1196.	6.6	0
747	Hybrid parallel photonic reservoir computing with accelerated data processing speed. Optics and Laser Technology, 2024, 175, 110830.	4.6	0
748	Energy efficient photonic memory based on electrically programmable embedded III-V/Si memristors: switches and filters. , 2024, 3, .		0
749	A collective AI via lifelong learning and sharing at the edge. Nature Machine Intelligence, 2024, 6, 251-264.	16.0	0
750	Spatial Writing of Ultrafast All-Optical Switching. ACS Nano, 2024, 18, 9535-9542.	14.6	0
751	Tuning the Electroâ€Optic Properties of BaTiO ₃ Epitaxial Thin Films via Buffer Layerâ€Controlled Polarization Rotation Paths. Advanced Functional Materials, 0, , .	14.9	0
752	Artificial synapse based on a tri-layer AlN/AlScN/AlN stacked memristor for neuromorphic computing. Nano Energy, 2024, 124, 109473.	16.0	0
753	Energy-efficient integrated photonics for next-generation computing. , 2024, , .		0
754	基于ç>,å•̃ææ–™çš"éžæ~"å≝å‰ååı̈ँ值器件ç"ç©¶. Guangzi Xuebao/Acta Photonica Sinica, 2024, 53, 012	.3001.	0

ARTICLE

IF CITATIONS

756	Optics-informed neural networks towards accelerating linear operations. , 2024, , .		0
757	Optimization of 3x3 neuromorphic photonic network for programmable Boolean operations. , 2024, , .		0
758	Fano Resonance Thermo-Optic Modulator Based on Double T-Bus Waveguides-Coupled Micro-Ring Resonator. Photonics, 2024, 11, 255.	2.0	0
759	Solving multi-armed bandit problems using a chaotic microresonator comb. APL Photonics, 2024, 9, .	5.7	0
760	Reservoir Computing Using Measurement-Controlled Quantum Dynamics. Electronics (Switzerland), 2024, 13, 1164.	3.1	0
761	Multilevel Ferroelectric Domain Wall Memory for Neuromorphic Computing. Advanced Functional Materials, 0, , .	14.9	0
762	Compact leak-integrate-fire neuron with auto-reset functionality based on a single spin–orbit torque magnetic tunnel junction device. Applied Physics Letters, 2024, 124, .	3.3	0
763	Photonic delay reservoir computer based on ring resonator for reconfigurable microwave waveform generator. Optics Express, 2024, 32, 12092.	3.4	0
764	Ultra-compact exciton polariton modulator based on van der Waals semiconductors. Nature Communications, 2024, 15, .	12.8	0