Potassium-ion batteries: outlook on present and future

Energy and Environmental Science 14, 2186-2243 DOI: 10.1039/d0ee02917c

Citation Report

#	Article	IF	CITATIONS
1	Synthesis of morphology-improved single-crystalline iron silicide nanowires with enhanced physical characteristics. CrystEngComm, 2021, 23, 3270-3275.	2.6	7
2	A vanadium-based oxide-phosphate-pyrophosphate framework as a 4 V electrode material for K-ion batteries. Chemical Science, 2021, 12, 12383-12390.	7.4	10
3	Hollow sphere structured Co ₃ V ₂ O ₈ as a half-conversion anode material with ultra-high pseudocapacitance effect for potassium ion batteries. Journal of Materials Chemistry A, 2021, 9, 21995-22001.	10.3	7
4	17% efficiency all-small-molecule organic solar cells enabled by nanoscale phase separation with a hierarchical branched structure. Energy and Environmental Science, 2021, 14, 5903-5910.	30.8	116
5	Boosting Efficient K-Ion Storage of Sb ₂ S ₃ -Based Conversion-Alloying Dual Mechanism Anode via Synergistic Effect of Physical Protection and Chemical Bonding. SSRN Electronic Journal, 0, , .	0.4	0
6	Preparation and Characterization of a Composite Phase-Change Material with Silicone Rubber Foam as Carrier. Energy & Fuels, 2021, 35, 9683-9691.	5.1	8
7	Biodegradable Polyurethane Solidâ€Solid Phase Change Materials. ChemistrySelect, 2021, 6, 6280-6285.	1.5	7
8	Modified Melamine Foam-Based Flexible Phase Change Composites: Enhanced Photothermal Conversion and Shape Memory Properties. ACS Applied Polymer Materials, 2021, 3, 3321-3333.	4.4	24
9	Anchoring Carbon-Coated CoSe Nanoparticles on Hollow Carbon Nanocapsules for Efficient Potassium Storage. ACS Applied Energy Materials, 2021, 4, 6356-6363.	5.1	11
10	Perspective on Carbon Anode Materials for K ⁺ Storage: Balancing the Intercalationâ€Controlled and Surfaceâ€Driven Behavior. Advanced Energy Materials, 2021, 11, 2100856.	19.5	60
11	Harmonized edge/graphiticâ€nitrogen doped carbon nanopolyhedron@nanosheet composite via saltâ€confined strategy for advanced <scp>K</scp> â€ion hybrid capacitors. InformaÄnA-MateriÃily, 2021, 3, 891-903.	17.3	18
12	Recent Developments of Antimony-Based Anodes for Sodium- and Potassium-Ion Batteries. Transactions of Tianjin University, 2022, 28, 6-32.	6.4	14
13	Shape-stabilized and antibacterial composite phase change materials based on wood-based cellulose micro-framework, erythritol-urea or erythritol-thiourea for thermal energy storage. Solar Energy, 2021, 223, 19-32.	6.1	17
14	High internal phase emulsion templated-polystyrene/carbon nano fiber/hexadecanol composites phase change materials for thermal management applications. Journal of Energy Storage, 2021, 39, 102674.	8.1	21
15	Realizing Fast Diffusion Kinetics Based on Three-Dimensional Ordered Macroporous Cu ₉ S ₅ @C for Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 36982-36991.	8.0	27
16	Structural Evaluation of Coal-Tar-Pitch-Based Carbon Materials and Their Na+ Storage Properties. Coatings, 2021, 11, 948.	2.6	9
17	Large-scale synthesis of few-layered copper antimony sulfide nanosheets as electrode materials for high-rate potassium-ion storage. Journal of Colloid and Interface Science, 2022, 608, 984-994.	9.4	17
18	Bright Red-Emitting Ca ₃ LuAl ₃ B ₄ O ₁₅ :Ce ³⁺ ,Sm ³⁺ Phosphors with High Thermal Stability for Elevating the Color Rendering of Near-Ultraviolet-Based White-Light-Emitting Diodes. ACS Applied Electronic Materials. 2021. 3. 4218-4227.	4.3	9

#	Article	IF	Citations
" 19	Bio-Based Dual-Functionalized Phase Change Composite: Ultrafast Solar-to-Thermal Conversion and Reinforced Heat Storage Capacity. Energy & Amp; Fuels, 2021, 35, 16162-16173.	5.1	13
20	Balsa wood derived three-dimensional hierarchical porous carbon materials as an anode material for K-ion batteries. Ionics, 2021, 27, 5197-5206.	2.4	3
21	In situ formed robust submicron-sized nanocrystalline aggregates enable highly-reversible potassium ion storage. Nano Energy, 2021, 88, 106233.	16.0	16
22	Development and characterization of NaCl-KCl/Kaolin composites for thermal energy storage. Solar Energy, 2021, 227, 468-476.	6.1	23
23	Red phosphorus: A rising star of anode materials for advanced K-ion batteries. Energy Storage Materials, 2021, 42, 193-208.	18.0	22
24	Protein-derived 3D amorphous carbon with N, O doping as high rate and long lifespan anode for potassium ion batteries. Journal of Power Sources, 2021, 512, 230530.	7.8	20
25	Synergistical coupling Janus SnS-Fe1-xS heterostructure cell and polydopamine-derived S doped carbon as high-rate anodes for sodium-ion batteries. Chemical Engineering Journal, 2021, 425, 130534.	12.7	32
26	Bio-based flexible phase change composite film with high thermal conductivity for thermal energy storage. Composites Part A: Applied Science and Manufacturing, 2021, 151, 106638.	7.6	38
27	Molten-salt synthesis of crystalline C3N4/C nanosheet with high sodium storage capability. Chemical Engineering Journal, 2021, 425, 131591.	12.7	20
28	Mechanism insights into the facet-dependent photocatalytic degradation of perfluorooctanoic acid on BiOCl nanosheets. Chemical Engineering Journal, 2021, 425, 130672.	12.7	43
29	3D shape-stable temperature-regulated macro-encapsulated phase change material: KAI(SO4)2·12H2O-C2H2O4·2H2O-CO(NH2)2 eutectic/polyurethane foam as core and carbon modified silicone resin as shell. Journal of Materials Science and Technology, 2022, 100, 27-35.	10.7	17
30	Monoclinic Cu3(OH)2V2O7·2H2O nanobelts/reduced graphene oxide: A novel high-capacity and long-life composite for potassium-ion battery anodes. Journal of Energy Chemistry, 2022, 66, 140-151.	12.9	7
31	Heterostructure engineering of ultrathin SnS2/Ti3C2T nanosheets for high-performance potassium-ion batteries. Journal of Colloid and Interface Science, 2022, 606, 167-176.	9.4	28
32	Manganese phosphoxide/Ni ₅ P ₄ hybrids as an anode material for high energy density and rate potassium-ion storage. Journal of Materials Chemistry A, 2021, 9, 13936-13949.	10.3	5
33	Porous polyimide framework based on perylene and triazine for reversible potassium-ion storage. Materials Chemistry Frontiers, 2021, 5, 7184-7190.	5.9	12
34	Luminescence and energy transfer of warm white-emitting phosphor Mg ₂ Y ₂ Al ₂ Si ₂ O ₁₂ :Dy ³⁺ ,Eu ^{3 for white LEDs. RSC Advances, 2021, 11, 32707-32716.}	+3./6up>	17
35	Designing core–shell metal–organic framework hybrids: toward high-efficiency electrochemical potassium storage. Journal of Materials Chemistry A, 2021, 9, 26181-26188.	10.3	10
36	Carbon Hollow Tube-Confined Sb/Sb ₂ S ₃ Nanorod Fragments as Highly Stable Anodes for Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 51066-51077.	8.0	44

#	Article	IF	CITATIONS
37	Zn Metal Anodes for Zn-Ion Batteries in Mild Aqueous Electrolytes: Challenges and Strategies. Nanomaterials, 2021, 11, 2746.	4.1	31
38	Processable and recyclable polyurethane/ <scp>HNTs</scp> @ <scp>Fe₃O₄</scp> solid–solid phase change materials with excellent thermal conductivity for thermal energy storage. Polymer Composites, 2021, 42. 6816-6826.	4.6	9
39	Cage-Confinement Pyrolysis Strategy to Synthesize Hollow Carbon Nanocage-Coated Copper Phosphide for Stable and High-Capacity Potassium-Ion Storage. ACS Applied Materials & Interfaces, 2021, 13, 52697-52705.	8.0	10
40	Inâ€Depth Mechanism Understanding for Potassiumâ€lon Batteries by Electroanalytical Methods and Advanced In Situ Characterization Techniques. Small Methods, 2021, 5, e2101130.	8.6	18
41	Application of expanded graphite-based materials for rechargeable batteries beyond lithium-ions. Nanoscale, 2021, 13, 19291-19305.	5.6	29
42	Bi2S3 nanorods encapsulated in iodine-doped graphene frameworks with enhanced potassium storage properties. Chinese Chemical Letters, 2022, 33, 3212-3216.	9.0	15
43	Temperature-Dependent Growth of 36 Inner Nanotubes inside Nickelocene, Cobaltocene and Ferrocene-Filled Single-Walled Carbon Nanotubes. Nanomaterials, 2021, 11, 2984.	4.1	4
44	Experimental investigation for the thermal management of a coaxial electrical cable system using a form-stable low temperature phase change material. Journal of Energy Storage, 2021, 44, 103450.	8.1	7
45	Strategies to reduce the flammability of organic phase change Materials: A review. Solar Energy, 2022, 231, 115-128.	6.1	52
46	Tuning anion chemistry enables high-voltage and stable potassium-based tellurium-graphite batteries. Nano Energy, 2022, 92, 106744.	16.0	15
47	Manganese fluoride as non-battery type anode for high performance Li-ion capacitors. Journal of Energy Storage, 2021, , 103594.	8.1	2
48	Defectâ€Selectivity and "Orderâ€inâ€Disorder―Engineering in Carbon for Durable and Fast Potassium Storage. Advanced Materials, 2022, 34, e2108621.	21.0	96
49	Sb2S3-based conversion-alloying dual mechanism anode for potassium-ion batteries. IScience, 2021, 24, 103494.	4.1	20
50	Rational Design of Tungsten Selenide @ Nâ€Doped Carbon Nanotube for Highâ€Stable Potassiumâ€ŀon Batteries. Small, 2022, 18, e2104363.	10.0	20
51	Thermal conductivity prediction of nano enhanced phase change materials: A comparative machine learning approach. Journal of Energy Storage, 2022, 46, 103633.	8.1	17
52	Bismuth nanorods confined in hollow carbon structures for high performance sodium- and potassium-ion batteries. Journal of Energy Chemistry, 2022, 67, 787-796.	12.9	28
53	Prospects of Electrode Materials and Electrolytes for Practical Potassiumâ€Based Batteries. Small Methods, 2021, 5, e2101131.	8.6	129
54	Polyethylene glycol-based phase change materials with high photothermal conversion efficiency and shape stability in an aqueous environment for solar water heater. Composites Part A: Applied Science and Manufacturing, 2022, 154, 106778.	7.6	27

	DT
CITATION REPC	ואו

#	Article	IF	CITATIONS
55	Design and preparation of salt hydrate/ graphene oxide@SiO2/ SiC composites for efficient solar thermal utilization. Solar Energy Materials and Solar Cells, 2022, 236, 111524.	6.2	20
56	Neutron imaging of lithium batteries. Joule, 2022, 6, 35-52.	24.0	29
57	Crystal Facet and Architecture Engineering of Metal Oxide Nanonetwork Anodes for High-Performance Potassium Ion Batteries and Hybrid Capacitors. ACS Nano, 2022, 16, 1486-1501.	14.6	63
58	Review—Nanomaterials Green Synthesis for High-Performance Secondary Rechargeable Batteries: Approaches, Challenges, and Perspectives. Journal of the Electrochemical Society, 2022, 169, 010534.	2.9	4
59	Realization of Sn2P2S6-carbon nanotube anode with high K+/Na+ storage performance via rational interface manipulation–induced shuttle-effect inhibition and self-healing. Chemical Engineering Journal, 2022, 435, 134965.	12.7	19
60	Mica-stabilized polyethylene glycol composite phase change materials for thermal energy storage. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 168-176.	4.9	43
61	Design of Flexible Films Based on Kinked Carbon Nanofibers for High Rate and Stable Potassium-Ion Storage. Nano-Micro Letters, 2022, 14, 47.	27.0	41
62	Assembly of flower-like VS2/N-doped porous carbon with expanded (001) plane on rGO for superior Na-ion and K-ion storage. Nano Research, 2022, 15, 4108-4116.	10.4	23
63	Preparation of K2Fe[Fe(CN)6] nanoparticles by improved electrostatic spray assisted precipitation technology as potassium-ion battery cathodes. Journal of Alloys and Compounds, 2022, 904, 164049.	5.5	9
64	Artificial Heterogeneous Interphase Layer with Boosted Ion Affinity and Diffusion for Na/Kâ€Metal Batteries. Advanced Materials, 2022, 34, e2109439.	21.0	73
65	Heterogeneous interface containing selenium vacancies space-confined in double carbon to induce superior electronic/ionic transport dynamics for sodium/potassium-ion half/full batteries. Energy Storage Materials, 2022, 46, 394-405.	18.0	49
66	Rational design of highly porous carbon nanofibers with outstanding potassium storage. Journal of Alloys and Compounds, 2022, 902, 163734.	5.5	9
67	Nature of bismuth and antimony based phosphate nanobundles/graphene for superior potassium ion batteries. Chemical Engineering Journal, 2022, 435, 134746.	12.7	18
68	Rational design of hierarchical Ni-Mo bimetallic Selenide/N-doped carbon microspheres toward high–performance potassium ion batteries. Applied Surface Science, 2022, 583, 152491.	6.1	9
69	Creation of a rigid host framework with optimum crystal structure and interface for zero-strain K-ion storage. Energy and Environmental Science, 2022, 15, 1529-1535.	30.8	12
70	High entropy oxide nanofiber by electrospun method and its application for lithium battery anode material. International Journal of Applied Ceramic Technology, 2022, 19, 2004-2015.	2.1	14
71	Enhanced thermal performance of phase change materials supported by hierarchical porous carbon modified with polydopamine/nano-Ag for thermal energy storage. Journal of Energy Storage, 2022, 49, 104129.	8.1	22
72	WO3-x@W2N heterogeneous nanorods cross-linked in carbon nanosheets for electrochemical potassium storage. Chemical Engineering Journal, 2022, 435, 135188.	12.7	10

#	Article	IF	CITATIONS
73	Recent Advances and Perspectives of Battery-Type Anode Materials for Potassium Ion Storage. ACS Nano, 2021, 15, 18931-18973.	14.6	160
74	High-yielding preparation of hierarchically branched carbon nanotubes derived from zeolitic imidazolate frameworks for enhanced electrochemical K ⁺ storage. Dalton Transactions, 2022, 51, 5441-5447.	3.3	4
75	In-Situ Synthesis of Antimony Nanoparticles Encapsulated in Nitrogen-Doped Porous Carbon Framework as High Performance Anode Material for Potassium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
76	Environmentally Benign Humic Acid for Potassium-Ion Hybrid Capacitors. SSRN Electronic Journal, 0, , .	0.4	0
77	Double network hydrogels for energy/environmental applications: challenges and opportunities. Journal of Materials Chemistry A, 2022, 10, 9215-9247.	10.3	46
78	Ultra-stable potassium storage and hybrid mechanism of perovskite fluoride KFeF ₃ /rGO. Nanoscale, 2022, 14, 5347-5355.	5.6	4
79	Anion Doping for Layered Oxides with a Solid-Solution Reaction for Potassium-Ion Battery Cathodes. ACS Applied Materials & Interfaces, 2022, 14, 13379-13387.	8.0	11
80	Constructing oxygen-deficient V2O3@C nanospheres for high performance potassium ion batteries. Chinese Chemical Letters, 2023, 34, 107372.	9.0	4
81	Poly(ethylene oxide)-Based Electrolytes for Solid-State Potassium Metal Batteries with a Prussian Blue Positive Electrode. ACS Applied Polymer Materials, 2022, 4, 2734-2746.	4.4	13
82	Heteroatom-doped carbon anode materials for potassium-ion batteries: From mechanism, synthesis to electrochemical performance. APL Materials, 2022, 10, .	5.1	8
83	Ionogelâ€Based Membranes for Safe Lithium/Sodium Batteries. Advanced Materials, 2022, 34, e2200945.	21.0	41
84	Hexagonal δ-MnO2 nanoplates as efficient cathode material for potassium-ion batteries. Ceramics International, 2022, 48, 28856-28863.	4.8	30
85	A comprehensive review on batteries and supercapacitors: Development and challenges since their inception. Energy Storage, 2023, 5, .	4.3	63
86	Inorganic cathode materials for potassium ion batteries. Materials Today Energy, 2022, 25, 100982.	4.7	18
87	High-Energy Batteries: Beyond Lithium-Ion and Their Long Road to Commercialisation. Nano-Micro Letters, 2022, 14, 94.	27.0	79
88	N-doped carbon coated NaV3O8 cathodes towards high-capacity and ultrafast Na-ion storage. Ceramics International, 2022, 48, 19776-19788.	4.8	4
89	3D zirconium phosphate/polyvinyl alcohol composite aerogels for form-stable phase change materials with brilliant thermal energy storage capability. Solar Energy Materials and Solar Cells, 2022, 239, 111681.	6.2	18
90	The influence of crystal growth mechanism based on various sulfur sources on the morphology, component and electrochemical performance of cobalt sulfide as anode material for sodium-ion batteries. Journal of Alloys and Compounds, 2022, 907, 164483.	5.5	2

	CITATION R	EPORT	
#	Article	IF	CITATIONS
91	Kinetically boosted potassium ion storage capability of 1D K2Ti6O13 nanobelts by 3D porous carbon framework for fiber-shaped potassium ion capacitors. Journal of Power Sources, 2022, 533, 231419.	7.8	5
92	Polymer nanofibers framework composite solid electrolyte with lithium dendrite suppression for long life all-solid-state lithium metal battery. Chemical Engineering Journal, 2022, 440, 135816.	12.7	29
93	Fe3C encapsulated in N-doped carbon as potassium ion battery anode with high capacity and long-term cycling performance. Journal of Alloys and Compounds, 2022, 910, 164845.	5.5	11
94	Boosting K ⁺ Capacitive Storage in Dualâ€Doped Carbon Crumples with B–N Moiety via a General Proticâ€Salt Synthetic Strategy. Advanced Functional Materials, 2022, 32, .	14.9	35
95	Confining MoSe ₂ Nanosheets into N-Doped Hollow Porous Carbon Microspheres for Fast-Charged and Long-Life Potassium-Ion Storage. ACS Applied Materials & Interfaces, 2021, 13, 59882-59891.	8.0	18
96	Puffing Up Hollow Carbon Nanofibers with Highâ€Energy Metalâ€Organic Frameworks for Capacitiveâ€Dominated Potassiumâ€ion Storage. Small, 2022, 18, e2105767.	10.0	13
98	Recent Progress on Sb―and Biâ€based Chalcogenide Anodes for Potassiumâ€Ion Batteries. Chemistry - an Asian Journal, 2022, 17, .	3.3	10
99	In-situ construction of vacancies and schottky junctions in nickel-iron selenide within N-graphene porous matrix for enhanced sodium/potassium storage. Journal of Alloys and Compounds, 2022, , 165091.	5.5	4
100	Amine-Wetting-Enabled Dendrite-Free Potassium Metal Anode. ACS Nano, 2022, 16, 7291-7300.	14.6	36
101	Stabilizing BiOCl/Ti ₃ C ₂ T _{<i>x</i>} hybrids for potassium-ion batteries <i>via</i> solid electrolyte interphase reconstruction. Inorganic Chemistry Frontiers, 2022, 9, 3165-3175.	6.0	5
102	Recent progress and prospective on layered anode materials for potassium-ion batteries. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1037-1052.	4.9	4
103	Recent Advances in Layered Metalâ€Oxide Cathodes for Application in Potassiumâ€Ion Batteries. Advanced Science, 2022, 9, e2105882.	11.2	35
104	pâ€Type Redoxâ€Active Organic Electrode Materials for Nextâ€Generation Rechargeable Batteries. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	35
105	Ultrastable Bioderived Organic Anode Induced by Synergistic Coupling of Binder/Carbon-Network for Advanced Potassium-Ion Storage. Nano Letters, 2022, 22, 4115-4123.	9.1	17
106	Ultra-high N-doped open hollow carbon nano-cage with excellent Na+ and K+ storage performances. Materials Today Nano, 2022, 18, 100217.	4.6	5
107	Fundamental Understanding and Research Progress on the Interfacial Behaviors for Potassiumâ€ l on Battery Anode. Advanced Science, 2022, 9, e2200683.	11.2	53
108	FeSb ₂ Nanoparticles Embedded in 3D Porous Carbon Framework: An Robust Anode Material for Potassium Storage with Long Activation Process. Small, 2022, 18, e2201934.	10.0	28
109	Plasma-enabled synthesis and modification of advanced materials for electrochemical energy storage. Energy Storage Materials, 2022, 50, 161-185.	18.0	28

#	Article	IF	CITATIONS
110	Highly Potassiophilic Graphdiyne Skeletons Decorated with Cu Quantum Dots Enable Dendriteâ€Free Potassiumâ€Metal Anodes. Advanced Materials, 2022, 34, e2202685.	21.0	26
111	Synergetic Effect of Alkaliâ€Site Substitution and Oxygen Vacancy Boosting Vanadate Cathode for Superâ€Stable Potassium and Zinc Storage. Advanced Functional Materials, 2022, 32, .	14.9	28
112	Low-cost and high-rate porous carbon anode material for potassium-ion batteries. Solid State Ionics, 2022, 381, 115944.	2.7	5
113	An α-MnSe nanorod as anode for superior potassium-ion storage via synergistic effects of physical encapsulation and chemical bonding. Chemical Engineering Journal, 2022, 446, 137152.	12.7	20
114	In-situ synthesis of antimony nanoparticles encapsulated in nitrogen-doped porous carbon framework as high performance anode material for potassium-ion batteries. Chemical Engineering Journal, 2022, 446, 137302.	12.7	12
115	High-performance, three-dimensional and porous K3V2(PO4)3/C cathode material for potassium-ion batteries. Ionics, 2022, 28, 3817-3831.	2.4	6
116	Advances and perspectives on one-dimensional nanostructure electrode materials for potassium-ion batteries. Materials Today, 2022, 56, 114-134.	14.2	26
117	Incorporating Nearâ€Pseudocapacitance Insertion Ni/Coâ€Based Hexacyanoferrate and Lowâ€Cost Metallic Zn for Aqueous Kâ€ion Batteries. ChemSusChem, 2022, 15, .	6.8	7
118	Dualâ€Ion Stabilized Layered Structure of OVO for Zeroâ€Strain Potassium Insertion and Extraction. Advanced Science, 0, , 2202550.	11.2	4
119	A novel high pseudo-capacitive contribution anode in K-ion battery: Porous TiNbO4/C nanofibers. Journal of Power Sources, 2022, 541, 231635.	7.8	5
120	Sn― Sb―and Biâ€Based Anodes for Potassium Ion Battery. Chemical Record, 2022, 22, .	5.8	13
121	Weak Cation–Solvent Interactions in Etherâ€Based Electrolytes Stabilizing Potassiumâ€ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	70
122	Weak Cation–Solvent Interactions in Etherâ€Based Electrolytes Stabilizing Potassiumâ€ion Batteries. Angewandte Chemie, 2022, 134, .	2.0	43
123	Insight into a Nitrogen-Doping Mechanism in a Hard-Carbon-Microsphere Anode Material for the Long-Term Cycling of Potassium-Ion Batteries. Materials, 2022, 15, 4249.	2.9	5
124	Expanding the ReS ₂ Interlayer Promises High-Performance Potassium-Ion Storage. ACS Applied Materials & Interfaces, 0, , .	8.0	9
125	Antiâ€Aggregation of Nanosized CoS ₂ for Stable Kâ€ion Storage: Insights into Aggregationâ€induced Electrode Failures. Advanced Energy Materials, 2022, 12, .	19.5	21
126	Nitrogen and phosphorus co-doped carbon for improving capacity and rate performances of potassium ion batteries. FlatChem, 2022, , 100398.	5.6	7
127	First-principle study of highly controllable boron-doped graphene (BC ₂₀) as a high-capacity anode for potassium-ion batteries. Materials Research Express, 2022, 9, 065604.	1.6	2

	CITATION RI	PORT	
# 128	ARTICLE In-situ imaging techniques for advanced battery development. Materials Today, 2022, 57, 279-294.	IF 14.2	CITATIONS
129	Form-stable phase change materials enhanced photothermic conversion and thermal conductivity by Ag-expanded graphite. Journal of Energy Storage, 2022, 52, 105060.	8.1	19
130	Rational designing of MoSe2 nanosheets in carbon framework for high-performance potassium-ion batteries. Chemical Engineering Journal, 2022, 448, 137658.	12.7	25
131	Investigation of ion-electrode interactions of linear polyimides and alkali metal ions for next generation alternative-ion batteries. Chemical Science, 2022, 13, 9191-9201.	7.4	11
132	Facile preparation of nitrogen-doped carbon nanosheets from CO ₂ for potassium-ion storage. Materials Chemistry Frontiers, 2022, 6, 2535-2544.	5.9	4
133	å±,状KxMnO2基钾离åç"µæ±æ£æžœœ−™çš"ç"究现状åŠåધ展趋势. Scientia Sinica Chimica, 2022, , .	0.4	0
134	Ammonium ion preâ€intercalated manganese dioxide with hydrogen bond for highâ€rate and stable zincâ€ion batteries. EcoMat, 2022, 4, .	11.9	12
135	Advanced Materials for Electrocatalysis and Energy Storage. Coatings, 2022, 12, 901.	2.6	1
136	Chemical cross-linking and mechanically reinforced carbon network constructed by graphene boosts potassium ion storage. Nano Research, 2022, 15, 9019-9025.	10.4	9
137	Amorphous Telluriumâ€Embedded Hierarchical Porous Carbon Nanofibers as Highâ€Rate and Longâ€Life Electrodes for Potassiumâ€ion Batteries. Small, 2022, 18, .	10.0	10
138	Architectural van der Waals Bi2S3/Bi2Se3 topological heterostructure as a superior potassium-ion storage material. Energy Storage Materials, 2022, 51, 789-805.	18.0	40
139	A Rechargeable K/Br Battery. Advanced Functional Materials, 2022, 32, .	14.9	28
140	Embedding amorphous SnS in electrospun porous carbon nanofibers for efficient potassium storage with ultralong cycle life. Composites Part B: Engineering, 2022, 243, 110132.	12.0	14
141	Promoting superior K-ion storage of Bi2S3 nanorod anode via graphene physicochemical protection and electrolyte stabilization effect. Applied Energy, 2022, 322, 119471.	10.1	11
142	MOF derived Co9S8 nanoparticles embedded in 3D N-doped carbon matrix for high-performance K-ion battery anode. Applied Surface Science, 2022, 600, 154159.	6.1	6
143	Tailored MoS2 bilayer grafted onto N/S-doped carbon for ultra-stable potassium-ion capacitor. Chemical Engineering Journal, 2022, 450, 137815.	12.7	4
144	Ion incorporation on the Zr2CS2 MXene monolayer towards better-performing rechargeable ion batteries. Journal of Alloys and Compounds, 2022, 922, 166240.	5.5	7
145	Fe-substituted Mn-based Prussian white as cathode for high-performance potassium-ion battery. Journal of Materials Science, 2022, 57, 14015-14025.	3.7	5

#	Article	IF	Citations
146	Recent Developments and Future Prospects of Transition Metal Compounds as Electrode Materials for Potassiumâ€lon Hybrid Capacitors. Advanced Materials Technologies, 2023, 8, .	5.8	11
147	Multiphysics study on cement-based composites incorporating green biobased shape-stabilized phase change materials for thermal energy storage. Journal of Cleaner Production, 2022, 372, 133826.	9.3	11
148	Achieving Sustainable and Stable Potassiumâ€ion Batteries by Leafâ€Bioinspired Nanofluidic Flow. Advanced Materials, 2022, 34, .	21.0	11
149	Constructing Flexible and Conductive Carbon Matrix on Organic Potassium Terephthalate to Enhance the K-storage Performance. Journal of Electroanalytical Chemistry, 2022, , 116727.	3.8	0
150	Celluloseâ€Acetate Coating by Integrating Ester Group with Zinc Salt for Dendriteâ€Free Zn Metal Anodes. Small, 2022, 18, .	10.0	22
151	Formation of Mn–Ni Prussian Blue Analogue Spheres as a Superior Cathode Material for Potassium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 11789-11796.	5.1	21
152	Recent progress in application of cobalt-based compounds as anode materials for high-performance potassium-ion batteries. Rare Metals, 2022, 41, 3301-3321.	7.1	17
153	Quinone Electrode for Long Lifespan Potassium-Ion Batteries Based on Ionic Liquid Electrolytes. ACS Applied Materials & Interfaces, 2022, 14, 38887-38894.	8.0	10
154	Robust potassium metal anodes realized by ferroelectricity and high conductivity separator. Materials Science in Semiconductor Processing, 2022, 151, 107001.	4.0	3
155	Multidimensional antimony nanomaterials tailored by electrochemical engineering for advanced sodium-ion and potassium-ion batteries. Journal of Colloid and Interface Science, 2022, 628, 41-52.	9.4	7
156	Regulated adsorption-diffusion and enhanced charge transfer in expanded graphite cohered with N, B bridge-doping carbon patches to boost K-ion storage. Journal of Energy Chemistry, 2023, 76, 67-74.	12.9	9
157	Metal-Ion Batteries. Encyclopedia, 2022, 2, 1611-1623.	4.5	3
158	All-surface-state potassium storage enabled ultra-stable potassium cathode. Energy Storage Materials, 2022, 53, 148-155.	18.0	10
159	Bimetallic oxide nanoparticles contained hollow spheres with sodium as a core: a promising energy storage advanced structure. Materials Today Chemistry, 2022, 26, 101103.	3.5	4
160	Electrochemical performance of CoSe ₂ with mixed phases decorated with N-doped rGO in potassium-ion batteries. RSC Advances, 2022, 12, 21374-21384.	3.6	6
161	A novel strategy for encapsulating metal sulfide nanoparticles inside hollow carbon nanosphere-aggregated microspheres for efficient potassium ion storage. Journal of Materials Chemistry A, 2022, 10, 17790-17800.	10.3	10
162	A two-dimensional metallic SnB monolayer as an anode material for non-lithium-ion batteries. Physical Chemistry Chemical Physics, 2022, 24, 23737-23748.	2.8	6
163	Rational design of coral ball-like MoS ₂ /N-doped carbon nanohybrids <i>via</i> atomic interface engineering for effective sodium/potassium storage. Journal of Materials Chemistry C, 2022, 10, 14686-14694.	5.5	3

#	Article	IF	CITATIONS
164	Electrochemical Activity Regulating by Strain Control to Achieve High-Performance Potassium-Ion-Based Dual-Ion Battery. SSRN Electronic Journal, 0, , .	0.4	0
165	Thermodynamic and Electrochemical Investigations of Potassium–Antimony Alloys. Russian Journal of Applied Chemistry, 2022, 95, 341-351.	0.5	0
166	Grid scale energy storage: The alkali-ion battery systems of choice. Current Opinion in Electrochemistry, 2022, 36, 101130.	4.8	4
167	Recent advances in MXene-based anode materials for alkali metal-ion capacitors. Materials Today Sustainability, 2022, 20, 100226.	4.1	7
168	Perspective of Vanadium Disulfide: A Rising Star Finds Plenty of Room in Single and Multielectron Energy Storage. Energy & Fuels, 2022, 36, 13931-13955.	5.1	4
169	Ni-Containing Electrolytes for Superior Zinc-Ion Aqueous Batteries with Zinc Hexacyanoferrate Cathodes. ACS Omega, 2022, 7, 33942-33948.	3.5	3
170	Stressâ€Regulation Design of Mesoporous Carbon Spheres Anodes with Radial Pore Channels Toward Ultrastable Potassiumâ€lon Batteries. Small Science, 2022, 2, .	9.9	11
171	Review on recent advances of inorganic electrode materials for potassium-ion batteries. Tungsten, 2024, 6, 174-195.	4.8	2
172	A high-tortuosity holey graphene in-situ derived from cytomembrane/cytoderm boosts ultrastable potassium storage. Journal of Materials Science and Technology, 2023, 139, 69-78.	10.7	3
173	Environmentally Benign Humic Acid for Potassium-Ion Hybrid Capacitors. Energy & Fuels, 2022, 36, 12807-12815.	5.1	1
174	Nanostructuringâ€Promoted Nonâ€Equilibrium Phase Transformation of Bi Anodes Toward Diffusionâ€Controlled Reaction for Kâ€ion Batteries. Advanced Energy Materials, 2022, 12, .	19.5	10
175	Anchoring Metalâ€Organic Frameworkâ€Derived ZnTe@C onto Elastic Ti ₃ C ₂ T <i>_x</i> MXene with 0D/2D Dual Confinement for Ultrastable Potassiumâ€Ion Storage. Advanced Energy Materials, 2022, 12, .	19.5	18
176	Machine Learning Captures Synthetic Intuitions for Hollow Nanostructures. ACS Applied Nano Materials, 2022, 5, 17095-17104.	5.0	1
177	Rational design of 3D porous niobium carbide MXene/rGO hybrid aerogels as promising anode for potassium-ion batteries with ultrahigh rate capability. Nano Research, 2023, 16, 2463-2473.	10.4	7
178	Frogspawn-Like P-Rich Copper Phosphides@N-doped Carbon As Advanced Potassium-Ion Batteries Anodes. ACS Applied Energy Materials, 2022, 5, 14193-14200.	5.1	0
179	Applications of Carbon Dots in Electrochemical Energy Storage. ACS Applied Electronic Materials, 2022, 4, 5144-5164.	4.3	8
180	Electrochemical activity regulating by strain control to achieve high-performance potassium-ion-based dual-ion battery. Energy Storage Materials, 2022, 53, 890-898.	18.0	4
181	Facile strategy for synthesis of mesoporous ZnSe nanobelts coated with nitrogen-doped carbon as high-performance anodes for potassium-ion batteries. Applied Surface Science, 2023, 609, 155278.	6.1	6

#	Article	IF	CITATIONS
182	Co3C/Mxene composites wrapped in N-rich carbon as stable-performance anodes for potassium/sodium-ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130332.	4.7	10
183	Constructing FePSe ₃ –FeSe ₂ heterojunctions uniformly in a Ketjen black carbon matrix for superior potassium ion batteries. Journal of Materials Chemistry A, 2022, 10, 25671-25682.	10.3	6
184	First principles study of S-repaired ultra-thin InSe electrodes for ion storage and transport. Chemical Physics Letters, 2022, , 140196.	2.6	0
185	Mg-Doped KFeSO ₄ F as a High-Performance Cathode Material for Potassium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 13470-13479.	5.1	2
186	Single-crystalline Mn-based oxide as a high-rate and long-life cathode material for potassium-ion battery. EScience, 2023, 3, 100081.	41.6	48
187	Copper hexacyanoferrate as a long-life cathode for aqueous aluminum ion batteries. Materials Today Energy, 2023, 31, 101205.	4.7	7
188	Multiâ€lonic Capacity of Znâ€Al/V ₆ O ₁₃ Systems Enable Fastâ€Charging and Ultraâ€6table Aqueous Aluminiumâ€lon Batteries. ChemElectroChem, 2022, 9, .	3.4	2
189	Triggering hollow carbon nanotubes via dual doping for fast pseudocapacitive potassium-ion storage. Applied Materials Today, 2023, 30, 101694.	4.3	1
190	Halloysite nanotube@N-doped graphene heterostructure enabled advanced potassium ion hybrid capacitor anode. Applied Materials Today, 2023, 30, 101702.	4.3	1
191	PEDOT-intercalated NH4V3O8 nanobelts as high-performance cathode materials for potassium ion batteries. Journal of Colloid and Interface Science, 2023, 633, 619-627.	9.4	5
192	Encapsulation of KTi2(PO4)3 nanoparticles in porous N-doped carbon nanofibers as a free-standing electrode for superior Na/K-storage performance. Journal of Alloys and Compounds, 2023, 937, 168358.	5.5	2
193	Coupling Lowâ€Tortuosity Carbon Matrix with Singleâ€Atom Chemistry Enables Dendriteâ€Free Potassiumâ€Metal Anode. Advanced Energy Materials, 2023, 13, .	19.5	19
194	Highly Stable Sb/C Anode for K ⁺ and Na ⁺ Energy Storage Enabled by Pulsed Laser Ablation and Polydopamine Coating. Small, 2023, 19, .	10.0	4
195	Practical assessment of the energy density of potassium-ion batteries. Science China Chemistry, 2024, 67, 4-12.	8.2	9
196	Organic Photovoltaics Utilizing Smallâ€Molecule Donors and Yâ€Series Nonfullerene Acceptors. Advanced Materials, 2023, 35, .	21.0	14
197	Self-Standing Soft Carbon-Coated MoS2 Nanofiber Film Anode for Superior Potassium Storage. Coatings, 2022, 12, 1969.	2.6	1
198	Solution-phase selenization engineering of zeolitic imidazolate framework (ZIF)-67-derived Co0.85Se@nitrogen-doped carbon for potassium-ion storage. Applied Surface Science, 2023, 614, 156218.	6.1	5
199	Defect Chemistry in Zn3V4(PO4)6. Batteries, 2023, 9, 5.	4.5	Ο

#	Article	IF	CITATIONS
200	Engineering of the Crystalline Lattice of Hard Carbon Anodes Toward Practical Potassiumâ€lon Batteries. Advanced Functional Materials, 2023, 33, .	14.9	31
201	Corrosion Behavior of Cobalt Oxide and Lithium Carbonate on Mullite–Cordierite Saggar Used for Lithium Battery Cathode Material Sintering. Materials, 2023, 16, 653.	2.9	2
202	Editorial: Advanced electrochemical energy devices. Frontiers in Chemistry, 0, 10, .	3.6	2
203	Synergistic engineering of electronic structure and particle size in SnSe@CNF anode toward high performance potassium ion batteries. Chemical Engineering Journal, 2023, 458, 141489.	12.7	6
204	Synthesis of Fe3Se4/CoFe/NSeC@NSeC for fast and longevous energy storage. Journal of Alloys and Compounds, 2023, 941, 168911.	5.5	5
205	Engineering Electrode/Electrolyte Interphase Chemistry toward High-Rate and Long-Life Potassium Ion Full-Cell. ACS Energy Letters, 2023, 8, 995-1002.	17.4	14
206	Metal–Organic Frameworksâ€Based Cathode Materials for Energy Storage Applications: A Review. Energy Technology, 2023, 11, .	3.8	11
207	Controllable engineering of intrinsic defects on carbon nanosheets enables fast and stable potassium storage performance. Carbon, 2023, 204, 507-515.	10.3	6
208	Adjusting coherence length of expanded graphite by self-activation and its electrochemical implication in potassium ion battery. Carbon, 2023, 204, 315-324.	10.3	14
209	Regulating the interfacial chemistry enables fast-kinetics hard carbon anodes for potassium ion batteries. Journal of Power Sources, 2023, 557, 232592.	7.8	6
210	Candied Haws-Like Fe–N–C Catalysts with Broadened Carbon Interlayer Spacing for Efficient Zinc–Air Battery. ACS Applied Materials & Interfaces, 2023, 15, 953-962.	8.0	3
211	Carbon quantum dots and its composites for electrochemical energy storage applications. , 2023, , 341-375.		0
212	Defect Engineering of Disordered Carbon Anodes with Ultra-High Heteroatom Doping Through a Supermolecule-Mediated Strategy for Potassium-Ion Hybrid Capacitors. Nano-Micro Letters, 2023, 15, .	27.0	27
213	Reduced graphene oxide coated modified SnO2 forms excellent potassium storage properties. Ceramics International, 2023, 49, 15741-15750.	4.8	5
214	Comprehensively Understanding the Role of Anion Vacancies on Kâ€lon Storage: A Case Study of Seâ€Vacancyâ€Engineered VSe ₂ . Advanced Materials, 0, , 2211311.	21.0	20
215	Enhanced electrochemical and environmental stability of black phosphorus-derived phosphorus composite anode for safe potassium-ion battery using amorphous zinc phosphate as a multi-functional additive. Energy Storage Materials, 2023, 57, 400-410.	18.0	8
216	Electrospun carbon-based nanomaterials for next-generation potassium batteries. Chemical Communications, 2023, 59, 2381-2398.	4.1	8
217	In-situ catalytic mechanism coupling quantum dot effect for achieving high-performance sulfide anode in potassium-ion batteries. Journal of Colloid and Interface Science, 2023, 638, 606-615.	9.4	1

#	Article	IF	CITATIONS
218	Research Progress of Constructing Anode Materials for Potassium Ion Batteries Based on Electrospinning Technology. , 2023, 4, 8-14.		0
219	Chemical Prepotassiation Realizes Scalable KC ₈ Foil Anodes for Potassiumâ€lon Pouch Cells. Advanced Energy Materials, 2023, 13, .	19.5	15
220	Recent progress in conductive electrospun materials for flexible electronics: Energy, sensing, and electromagnetic shielding applications. Chemical Engineering Journal, 2023, 465, 142847.	12.7	21
221	2023 roadmap for potassium-ion batteries. JPhys Energy, 2023, 5, 021502.	5.3	15
222	High-entropy NaCl-type metal chalcogenides as K-ion storage materials: role of the cocktail effect. Energy Storage Materials, 2023, 59, 102770.	18.0	5
223	Pore structure engineering in carbon microsphere for fast potassium/lithium storage. Materials Today Sustainability, 2023, 22, 100358.	4.1	2
224	Fundamentals, recent developments and prospects of lithium and non-lithium electrochemical rechargeable battery systems. Journal of Energy Chemistry, 2023, 81, 221-259.	12.9	27
225	From lithium to potassium: Comparison of cations in poly(ethylene oxide)-based block copolymer electrolytes for solid-state alkali metal batteries. Electrochimica Acta, 2023, 454, 142421.	5.2	4
226	Zeolitic imidazolate framework-derived ZnO polyhedrons wrapped by Co nanoparticle embedded in N-doped carbon for high-performance lithium and potassium storage. Journal of Alloys and Compounds, 2023, 948, 169677.	5.5	6
227	Life cycle thinking and safe-and-sustainable-by-design approaches for the battery innovation landscape. IScience, 2023, 26, 106060.	4.1	1
228	Current Challenges, Progress and Future Perspectives of Aluminum-Ion Batteries. Applied Solar Energy (English Translation of Geliotekhnika), 2022, 58, 334-354.	1.6	0
229	Threeâ€dimensional Honeycomb MoP@C Nanocomposite with Advanced Sodium/Potassium Ion Storage Performance. ChemistrySelect, 2023, 8, .	1.5	2
230	Nitrogen as An Anionic Center/Dopant for Nextâ€Generation Highâ€Performance Lithium/Sodiumâ€Ion Battery Electrodes: Key Scientific Issues, Challenges and Perspectives. Advanced Functional Materials, 2023, 33, .	14.9	8
231	Recent Advances in Potassiumâ€lon Batteries: From Material Design to Electrolyte Engineering. Advanced Materials Technologies, 2023, 8, .	5.8	9
232	Constructing Active BN Sites in Carbon Nanosheets for High apacity and Fast Charging Toward Potassium Ion Storage. Small, 2023, 19, .	10.0	11
233	Lowâ€Temperature Potassium Batteries Enabled by Electric and Thermal Field Regulation. Angewandte Chemie - International Edition, 2023, 62, .	13.8	25
234	Lowâ€Temperature Potassium Batteries Enabled by Electric and Thermal Field Regulation. Angewandte Chemie, 2023, 135, .	2.0	0
235	Achieving Stable and Ultrafast Potassium Storage of Antimony Anode via Dual Confinement of MXene@Carbon Framework. Small Methods, 2023, 7, .	8.6	7

#	Article	IF	Citations
236	Metalâ€Organic Assembly Strategy for the Synthesis of Layered Metal Chalcogenide Anodes for Na ⁺ /K ⁺ â€lon Batteries. ChemSusChem, 2023, 16, .	6.8	2
237	Highâ€Entropy Perovskites for Energy Conversion and Storage: Design, Synthesis, and Potential Applications. Small Methods, 2023, 7, .	8.6	14
238	A perspective on silicon-based polymer-derived ceramics materials for beyond lithium-ion batteries. JPhys Materials, 2023, 6, 021001.	4.2	2
239	Double-layer phosphates coated Mn-based oxide cathodes for highly stable potassium-ion batteries. Energy Storage Materials, 2023, 58, 101-109.	18.0	18
240	Free-Standing Carbon Nanofiber Composite Networks Derived from Bacterial Cellulose and Polypyrrole for Ultrastable Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 0, , .	8.0	2
241	A New Candidate in Polyanionic Compounds for Potassium Ion Battery Anode: MXene Derived Carbon Coated π‶i ₂ 0(PO ₄) ₂ . Advanced Functional Materials, 2023, 33, .	14.9	9
242	Interlayer-Expanded MoS2 Enabled by Sandwiched Monolayer Carbon for High Performance Potassium Storage. Molecules, 2023, 28, 2608.	3.8	2
243	Confined Bismuth–Organic Framework Anode for Highâ€Energy Potassiumâ€Ion Batteries. Small Methods, 2023, 7, .	8.6	10
244	Review of Materials for Electrodes and Electrolytes of Lithium Batteries. Reviews on Advanced Materials and Technologies, 2022, 4, 39-61.	0.3	1
245	Pseudohexagonal Nb ₂ O ₅ Anodes for Fast-Charging Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2023, 15, 16664-16672.	8.0	8
246	Understanding the Highly Reversible Potassium Storage of Hollow Ternary (Bi-Sb) ₂ S ₃ @N-C Nanocube. ACS Nano, 2023, 17, 6754-6769.	14.6	13
247	Metal-organic frameworks for fast electrochemical energy storage: Mechanisms and opportunities. CheM, 2023, 9, 798-822.	11.7	11
248	Confined Assembly of Hydrated Vanadium Oxide into Hollow Mesoporous Carbon Nanospheres for Fast and Stable K ⁺ Storage Capability. Small, 2023, 19, .	10.0	2
249	A comprehensive overview of MXeneâ€based anode materials for univalent metal ions (Li ⁺ ,) Tj ETÇ 2023, 8, .	q1 1 0.78 1.5	4314 rgBT 0 0
250	Highly Crystalline Prussian Blue for Kinetics Enhanced Potassium Storage. Small, 2023, 19, .	10.0	7
251	Ultrarapid Nanomanufacturing of Highâ€Quality Bimetallic Anode Library toward Stable Potassiumâ€lon Storage. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
252	Ultrarapid Nanomanufacturing of Highâ€Quality Bimetallic Anode Library toward Stable Potassiumâ€lon Storage. Angewandte Chemie, 2023, 135, .	2.0	1
253	Pillar effect boosting the electrochemical stability of Prussian blue-polypyrrole for potassium ion batteries. Nano Research, 2023, 16, 6326-6333.	10.4	7

#	Article	IF	CITATIONS
254	Impact of Surface Structure on SEI for Carbon Materials in Alkali Ion Batteries: A Review. Batteries, 2023, 9, 226.	4.5	6
255	Constructing high K+ concentration layer to expedite K+ intercalation in graphite: towards superior rate capability without trading off power density of potassium-ion batteries. Materials Today Energy, 2023, 34, 101315.	4.7	0
256	Co-activation for enhanced K-ion storage in battery anodes. National Science Review, 2023, 10, .	9.5	37
257	A MOF-to-MOF conversion assisted formation of hierarchical hollow Zn–Co1–S/C@C composite for efficient potassium-ion storage. , 2023, 42, 100092.		2
258	Unraveling the Origin of Enhanced K ⁺ Storage of Carbonaceous Anodes Enabled by Nitrogen/Sulfur Coâ€Đoping. Advanced Functional Materials, 2023, 33, .	14.9	3
259	Structureâ€Engineered Lowâ€Cost Carbon Microbelt Hosts for Highly Robust Potassium Metal Anode. Advanced Functional Materials, 2023, 33, .	14.9	6
260	Amorphous vanadium oxides for electrochemical energy storage. Nano Research, 2023, 16, 9195-9213.	10.4	2
261	Ultralong Cycle Life for Deep Potassium Storage Enabled by BiOCl/MXene van der Waals Heterostructures. Advanced Functional Materials, 2023, 33, .	14.9	3
262	Advances in functional organic material-based interfacial engineering on metal anodes for rechargeable secondary batteries. Nanoscale, 2023, 15, 9256-9289.	5.6	5
263	Manipulating Molecular Structure to Trigger Ultrafast and Longâ€Life Potassium Storage of Fe _{0.4} Ni _{0.6} S Solid Solution. Small, 2023, 19, .	10.0	2
264	Internal interface engineering of yolk-shell structure toward fast and robust potassium storage. Energy Storage Materials, 2023, 59, 102794.	18.0	2
265	Dual-salt assisted synergistic synthesis of Prussian white cathode towards high-capacity and long cycle potassium ion battery. Journal of Energy Chemistry, 2023, 83, 16-23.	12.9	15
266	Carbon anode from carbon dots-regulated polypyrrole for enhanced potassium storage. Journal of Alloys and Compounds, 2023, 958, 170481.	5.5	8
267	å°†Cu2Sè¶ç»†çº³ç±³ç2'åå‡åŒ€æ¤¥ç¢³çº³ç±³çº¿ä»¥å®žçްé«~整钾离å电æ±è Ÿæž• Science China Mater	ia66,32023	, 66 , 2613-2
268	Stable cathode material enabled by Mg2+ intercalation layered potassium vanadate for high rate and long life potassium ion batteries. Applied Surface Science, 2023, 633, 157603.	6.1	1
269	Biochemical fulvic acid derived amorphous carbon modified microcrystalline graphite as low-cost anode for potassium-ion storage. Journal of Colloid and Interface Science, 2023, 648, 108-116.	9.4	3
270	Unveiling the role of oxygen doping in activated carbon cathode for potassium-ion capacitors. Journal of Power Sources, 2023, 579, 233289.	7.8	2
271	Mesoporous N,Sâ€Rich Carbon Hollow Nanospheres Controllably Prepared From Poly(2â€aminothiazole) with Ultrafast and Highly Durable Potassium Storage. Advanced Functional Materials, 2024, 34, .	14.9	8

#	Article	IF	CITATIONS
272	Phosphorene polymeric nanocomposites for electrochemical energy storage applications. Journal of Energy Storage, 2023, 69, 107940.	8.1	10
273	Durable Integrated Kâ€Metal Anode with Enhanced Mass Transport through Potassiphilic Porous Interconnected Mediator. Advanced Functional Materials, 2023, 33, .	14.9	4
274	Sustainable Polyvinyl Chlorideâ€Đerived Soft Carbon Anodes for Potassiumâ€lon Storage: Electrochemical Behaviors and Mechanism. ChemSusChem, 2023, 16, .	6.8	3
275	Enhanced K-storage performance in ultralong cycle-life potassium-ion batteries achieved via carbothermal-reduction-synthesized KVOPO4 cathode. Energy Storage Materials, 2023, 61, 102852.	18.0	1
276	Electrolyteâ€Mediated Misconception of Carbonâ€Based Electrode Performance and Beyond in Metalâ€Ion Batteries. Advanced Energy Materials, 2023, 13, .	19.5	5
277	Fundamental investigations on the ionic transport and thermodynamic properties of non-aqueous potassium-ion electrolytes. Nature Communications, 2023, 14, .	12.8	7
278	Coal-based hierarchical porous carbon for lithium/potassium storage. Materials Chemistry and Physics, 2023, 303, 127835.	4.0	6
279	Zincâ€Doping Strategy on P2â€Type Mnâ€Based Layered Oxide Cathode for Highâ€Performance Potassiumâ€ion Batteries. Small, 2023, 19, .	10.0	10
280	Densified graphene-like carbon nanosheets with enriched heteroatoms enabling superior gravimetric and volumetric potassium storage capacities. Journal of Colloid and Interface Science, 2023, 647, 296-305.	9.4	7
281	Facile fabrication of few-layer nanostructured MoSe2 entrenched on N-doped carbon as a superior anode material for high-performance potassium-ion hybrid capacitors. Journal of Alloys and Compounds, 2023, 960, 170706.	5.5	2
282	Yolk-shell structured MoS2/NiS@S heterojunction for high-performance rechargeable Al batteries. Composites Part B: Engineering, 2023, 262, 110821.	12.0	3
283	å≇é‡é™åŸŸå‡ä¼₂•ä,的化å¦é"®åŠ©åŠ›Bi2Se3åŸ≌è¼₂¬æ¢-å•̂é‡'èŸæžææ–™å®žçްä¼~å¼,çš"é'离åå,¨å∹. Scien	ϣhina I	Materials, 2
284	High sulfur-doped microporous carbon for high-rate potassium ion storage: Interspace design and solvent effect. Carbon, 2023, 213, 118261.	10.3	6
285	Unlocking Highâ€Performance Ammoniumâ€Ion Batteries: Activation of Inâ€Layer Channels for Enhanced Ion Storage and Migration. Advanced Materials, 2023, 35, .	21.0	9
286	Progress of Prussian Blue and Its Analogues as Cathode Materials for Potassium Ion Batteries. European Journal of Inorganic Chemistry, 2023, 26, .	2.0	2
287	Impact of electrolyte decomposition products on the electrochemical performance of 4 V class K-ion batteries. Chemical Science, 2023, 14, 8860-8868.	7.4	2
288	Mild-Expanded Graphitic Onion-like Carbon with Nonflammable Electrolytes for Safety and High-Performance Potassium Storage. ACS Sustainable Chemistry and Engineering, 2023, 11, 10906-10916.	6.7	1
289	Recent progress of carbon-fiber-based electrode materials for energy storage. Diamond and Related Materials, 2023, 138, 110208.	3.9	2

#	Article	IF	CITATIONS
290	Polymer-Metal Oxides Nanocomposites for Metal-Ion Batteries. Green Energy and Technology, 2023, , 299-312.	0.6	0
291	Fine valence regulation of hydrated vanadium oxide as a novel cathode for stable potassium-ion storage. Chemical Communications, 2023, 59, 10000-10003.	4.1	2
292	Hard carbon: a potential anode material for potassium ion batteries and its current bottleneck. Energy Advances, 0, , .	3.3	0
293	Construction of NiCoP-NiCoO/NiCo–PO heterostructure by controllable phosphating effect for high-performance hybrid supercapacitors and alkaline zinc batteries. Journal of Alloys and Compounds, 2023, 965, 171502.	5.5	1
294	Cobalt-doping-induced ultrathin solid-electrolyte interphase construction and shuttle effect inhibition in Cu3PS4-carbon nanotube hybrid enabling superior potassium-ion storage. Journal of Power Sources, 2023, 580, 233440.	7.8	0
295	Self-assembled vanadium oxide nanoflowers as a high-efficiency cathode material for magnesium-ion batteries. Chemical Engineering Journal, 2023, 472, 145118.	12.7	1
296	Flexible Backbone Effects on the Redox Properties of Perylenediimide-Based Polymers. ACS Applied Materials & Interfaces, 0, , .	8.0	2
297	Oxygen Defect Engineering toward Zero-Strain V ₂ O _{2.8} @Porous Reticular Carbon for Ultrastable Potassium Storage. ACS Nano, 2023, 17, 16478-16490.	14.6	5
298	Recent advances in Zinc-based chalcogenides for potassium ion batteries. , 2023, , .		0
299	Optimizing Kinetics for Enhanced Potassiumâ€ion Storage in Carbonâ€Based Anodes. Advanced Functional Materials, 2023, 33, .	14.9	4
300	Thiophene-sulfur doping in nitrogen-rich porous carbon enabling high-ICE/rate anode materials for potassium-ion storage. Journal of Materials Chemistry A, 2023, 11, 22187-22197.	10.3	1
301	Covalent Organic Framework-Based Electrolytes for Lithium Solid-State Batteries—Recent Progress. Batteries, 2023, 9, 469.	4.5	2
302	MXenes for Zincâ€Based Electrochemical Energy Storage Devices. Small, 0, , .	10.0	1
303	Recent Progress in Design Principles of Covalent Organic Frameworks for Rechargeable Metalâ€lon Batteries. Small Methods, 2023, 7, .	8.6	3
304	Advancements and Prospects of Graphite Anode for Potassiumâ€lon Batteries. Small Methods, 2023, 7, .	8.6	4
305	Aqueous electrolyte-mediated reversible K ⁺ ion insertion into graphite. Physical Chemistry Chemical Physics, 2023, 25, 24298-24302.	2.8	0
306	An organic cathode in non-flammable phosphate electrolyte for K-ion batteries. Journal of Energy Storage, 2023, 73, 108901.	8.1	1
307	Ultra-thick, dense dual-encapsulated Sb anode architecture with conductively elastic networks promises potassium-ion batteries with high areal and volumetric capacities. EScience, 2023, 3, 100177.	41.6	11

#	Article	IF	CITATIONS
308	Trimming the Degrees of Freedom via a K+ Flux Rectifier for Safe and Long-Life Potassium-Ion Batteries. Nano-Micro Letters, 2023, 15, .	27.0	30
309	Prussian Blue Analogues Cathodes for Nonaqueous Potassiumâ€lon Batteries: Past, Present, and Future. Advanced Functional Materials, 2024, 34, .	14.9	3
310	Dendrite-free and gasless potassium metal anodes assisted by the mechanical-electrochemical enhancing solid K-electrode and electrolyte interface. Chemical Engineering Science, 2023, 282, 119295.	3.8	2
311	Structural engineering of SnS quantum dots embedded in N, S Co-Doped carbon fiber network for ultrafast and ultrastable sodium/potassium-ion storage. Journal of Colloid and Interface Science, 2024, 653, 267-276.	9.4	3
312	Fe ₂ O ₃ for stable K-ion storage: mechanism insight into dimensional construction from stress distribution and micro-tomography. Physical Chemistry Chemical Physics, 2023, 25, 27606-27617.	2.8	0
313	Prussian blue analogues and their derived materials for electrochemical energy storage: Promises and Challenges. Materials Research Bulletin, 2024, 170, 112593.	5.2	1
314	Carbon-assisted anodes and cathodes for zinc ion batteries: From basic science to specific applications, opportunities and challenges. Energy Storage Materials, 2023, 62, 102940.	18.0	3
315	å∙有å±ä»·é"®ç‰¹å¾çš"金属-有机基团ä;ƒèį›é«~性能钾离å电æ±. Science China Materi	aka;32023,	, 66, 3827- <mark>3</mark>
316	Synchronous regulation of Schottky/p-n dual junction in Prussian blue-derived Janus heterostructures: A path to ultrafast long life potassium ion batteries. Chemical Engineering Journal, 2023, 474, 145992.	12.7	4
317	Recent Advances and Challenges in Ti-Based Oxide Anodes for Superior Potassium Storage. Nanomaterials, 2023, 13, 2539.	4.1	1
319	Mesoporous Iron Family Element (Fe, Co, Ni) Molybdenum Disulfide/Carbon Nanohybrids for High-Performance Supercapacitors. Inorganic Chemistry, 2023, 62, 16038-16046.	4.0	2
320	Elucidating the Potassiation Mechanism in SnS ₂ from a First-Principles Perspective. Journal of Physical Chemistry C, 2023, 127, 18809-18820.	3.1	0
321	Machine learning for beyond Li-ion batteries: Powering the research. Journal of Energy Storage, 2023, 73, 109057.	8.1	6
322	Regulating Interlayerâ€Spacing of Vanadium Phosphates for Highâ€Capacity and Longâ€Life Aqueous Ironâ€Ion Batteries. Small, 2024, 20, .	10.0	0
323	Dynamic self-adapting strategy for durable potassium ion batteries. Applied Surface Science, 2024, 642, 158580.	6.1	1
324	Entropy-Stabilized Layered K _{0.6} Ni _{0.05} Fe _{0.05} Mg _{0.05} Ti _{0.05} Mn _{0.725 as a High-Rate and Stable Cathode for Potassium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2023, 15, 48277-48286.}	O<	syb>2
325	Loss-free pulverization by confining copper oxide inside hierarchical nitrogen-doped carbon nanocages toward superb potassium-ion batteries. Materials Horizons, 0, , .	12.2	0
326	Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2023, , 109191.	9.0	1

#	Article	IF	CITATIONS
327	Built-In Electric Field-Driven Ultrahigh-Rate K-Ion Storage via Heterostructure Engineering of Dual Tellurides Integrated with Ti3C2Tx MXene. Nano-Micro Letters, 2023, 15, .	27.0	1
328	A review of flexible potassium-ion based energy storage devices. Energy Storage Materials, 2023, 63, 103022.	18.0	0
329	In situ TEM observation of the (De)potassiation process of α-MnO2 nanowires. Journal of Alloys and Compounds, 2023, , 172599.	5.5	0
330	An extensive exploration of non-conventional sources for preparing NiS and its potential applications in battery and photodegradation processes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2024, 299, 116918.	3.5	0
331	The synergy of ferric surface anchoring and interior doping engineering enables anode with boosted potassium ion storage performances. Nano Energy, 2023, 118, 109020.	16.0	0
332	Graphene Oxide Block Derived Edgeâ€Nitrogen Doped Quasiâ€Graphite for High K ⁺ Intercalation Capacity and Excellent Rate Performance. Advanced Energy Materials, 2023, 13, .	19.5	4
333	A review on iron-nitride (Fe2N) based nanostructures for electrochemical energy storage applications: Research progress, and future perspectives. Journal of Alloys and Compounds, 2024, 976, 172626.	5.5	2
334	Fully exposed (101) plane endowing CoSe anode with fast and stable potassium storage. Electrochimica Acta, 2024, 474, 143524.	5.2	Ο
335	Sb Doping and Amorphization Coâ€Induced High Capacity and Excellent Durability of Tin Sulfideâ€Based Anode for Kâ€Ion Batteries. Small Methods, 0, , .	8.6	0
336	Lowâ€Temperature Carbonized N/O/Sâ€Triâ€Doped Hard Carbon for Fast and Stable Kâ€lons Storage. Advanced Energy Materials, 2024, 14, .	19.5	3
337	Advancements in Cathode Materials for Potassium-Ion Batteries:Current Landscape, Obstacles, and Prospects. Energy Advances, 0, , .	3.3	1
338	Protic ionic liquids for sustainable uses. Green Chemistry, 2024, 26, 1092-1131.	9.0	1
339	Potassiumâ€Rich Iron Hexacyanoferrate/Carbon Cloth Electrode for Flexible and Wearable Potassiumâ€Ion Batteries. Advanced Science, 2024, 11, .	11.2	1
340	Advances in Bismuth-Based Anodes for Potassium-Ion Batteries. Journal of Materials Chemistry A, O, , .	10.3	1
341	First-principles study of bismuthene as a high energy density and excellent rate performance anode material for potassium-ion batteries. Physica Scripta, 0, , .	2.5	1
342	Component design and regulation to stabilize P3-type Mn-based layered cathodes for potassium-ion batteries. Ceramics International, 2023, , .	4.8	Ο
343	Recent Progress of Potassium Metal Anodes: How to Regulate the Growth of Dendrite. International Journal of Energy Research, 2023, 2023, 1-52.	4.5	0
344	Novel Ultraâ€Stable 2D SbBi Alloy Structure with Precise Regulation Ratio Enables Longâ€Stable Potassium/Lithiumâ€ion Storage. Advanced Materials, 0, , .	21.0	0

#	Article	IF	CITATIONS
345	Recent progress in device designs and dualâ€functional photoactive materials for direct solar to electrochemical energy storage. , 0, , .		0
346	Nanostructure Engineering of Alloy-Based Anode Materials with Different Dimensions for Sodium/Potassium Storage. Coatings, 2023, 13, 2088.	2.6	0
347	High Entropy-Induced Kinetics Improvement and Phase Transition Suppression in K-Ion Battery Layered Cathodes. ACS Nano, 2024, 18, 337-346.	14.6	1
348	Stable zinc anode by regulating solvated shell and electrode-electrolyte interface with sodium tartrate additive. , 0, , .		0
349	Structural and Electrochemical Properties of F-Doped RbTiOPO4 (RTP:F) Predicted from First Principles. Crystals, 2024, 14, 5.	2.2	0
350	Crystallography of Active Particles Defining Battery Electrochemistry. Advanced Energy Materials, 2024, 14, .	19.5	Ο
351	Studies on fluoride ion conductivity of the mechanochemically synthesized β-KSbF4 for all-solid-state fluoride-ion batteries. Sustainable Materials and Technologies, 2024, 39, e00810.	3.3	0
352	Plasma-Doped Carbon-Based Anode Materials in Potassium Ion Batteries: A Review of Current and Future Prospects. , 0, 73, 559-569.		Ο
353	Recent advances in two-dimensional polymers: synthesis, assembly and energy-related applications. Chemical Society Reviews, 2024, 53, 1823-1869.	38.1	1
354	In Situ Structure Modulation of Cathodeâ€Electrolyte Interphase for Highâ€Performance Potassiumâ€ion Battery. Advanced Functional Materials, 2024, 34, .	14.9	Ο
355	Hydroxylâ€Decorated Carbon Cloth with High Potassium Affinity Enables Stable Potassium Metal Anodes. Small, 2024, 20, .	10.0	0
356	Local Steric Hindrance for CO ₂ Electroreduction at a Thermodynamic Potential and Wide Working Window. Advanced Energy Materials, 2024, 14, .	19.5	0
357	TiB ₄ and SrB ₈ monolayers: high capacity and zero strain-like anode materials for Li/Na/K/Ca ion batteries. Physical Chemistry Chemical Physics, 2024, 26, 4455-4465.	2.8	0
358	Future Technology Development Using VIKOR Method. , 2024, 1, 28-35.		0
359	Exploring nature-behaviour relationship of carbon black materials for potassium-ion battery electrodes. , 0, 4, .		1
360	Transition metal dichalcogenideâ€based materials for rechargeable aluminumâ€ion batteries: A miniâ€review. ChemSusChem, 0, , .	6.8	1
361	Redox-Active Organic Materials: From Energy Storage to Redox Catalysis. ACS Materials Au, 0, , .	6.0	0
362	3D Microâ€Flower Structured BiFeO ₃ Constructing High Energy Efficiency/Stability Potassium Ion Batteries Over Wide Temperature Range. Advanced Functional Materials, 2024, 34, .	14.9	0

#	Article	IF	CITATIONS
363	Regulating ion transport behaviors toward dendrite-free potassium metal batteries: recent advances and perspectives. Rare Metals, 2024, 43, 1435-1460.	7.1	0
364	Defective MoSSe with local-expanded structure for high-rate potassium ion battery. Energy Storage Materials, 2024, 65, 103186.	18.0	0
365	SAXS unveils porous anodes for potassium-ion batteries: dynamic evolution of pore structures in Fe@Fe ₂ O ₃ /PCNFs composite nanofibers. Physical Chemistry Chemical Physics, 2024, 26, 4885-4897.	2.8	0
366	Low-Dimensional Vanadium-Based High-Voltage Cathode Materials for Promising Rechargeable Alkali-Ion Batteries. Materials, 2024, 17, 587.	2.9	0
367	Deciphering the Formation and Accumulation of Solid-Electrolyte Interphases in Na and K Carbonate-Based Batteries. Nano Letters, 2024, 24, 1673-1678.	9.1	0
368	Potassium ion batteries: Recent advancements in anodic, cathodic, and electrolytic materials. Journal of Alloys and Compounds, 2024, 981, 173680.	5.5	0
369	Exploiting bifunctional ZnTe for Zn anode protection and conversion-type cathode toward compatible aqueous Zn-ion batteries. Energy Storage Materials, 2024, 66, 103228.	18.0	0
370	3D Dense Encapsulated Architecture of 2D Bi Nanosheets Enabling Potassiumâ€lon Storage with Superior Volumetric and Areal Capacities. Small, 0, , .	10.0	0
371	Nanopore design of sulfur doped hollow carbon nanospheres for superior potassium-ion battery anodes. Rare Metals, 2024, 43, 2103-2114.	7.1	0
372	Insights into the heteroatom-incorporated storage mechanism of hierarchically interconnected porous conjugated polymer networks for extremely stable potassium-ion storage. Chemical Engineering Journal, 2024, 483, 149200.	12.7	0
373	Building Stable Solidâ \in State Potassium Metal Batteries. Advanced Materials, 0, , .	21.0	3
374	Hierarchical Structured SrV ₂ O ₆ /2D-V ₂ CT _X MXene Nanohybrid Material for Robust and High-Capacity Aqueous Zn-Ion Batteries. ACS Applied Energy Materials, 2024, 7, 1433-1439.	5.1	0
375	Exfoliated misfit layer compounds synergize conversion-alloying-intercalation triple mechanism for enhanced rate performance in potassium ion storages. Chemical Engineering Journal, 2024, 483, 149289.	12.7	0
376	Electron spectroscopy investigations of potassium and potassium-intercalated graphite with battery background. Applied Surface Science, 2024, 655, 159614.	6.1	0
377	Fe-modified NASICON-type Na ₃ V ₂ (PO ₄) ₃ as a cathode material for sodium ion batteries. RSC Advances, 2024, 14, 4835-4843.	3.6	0
378	Design of grid-like triple-carbon matrix confined ultrafine CoTe ₂ nanocrystals toward durable and fast potassium storage. Journal of Materials Chemistry A, 0, , .	10.3	0
379	Synergistic effects of freestanding architecture and heteroatom-doping in carbon anode toward ultra-high areal capacity potassium-ion batteries. Journal of Energy Storage, 2024, 84, 110782.	8.1	0
380	Oxygen vacancy chemistry in oxide cathodes. Chemical Society Reviews, 2024, 53, 3302-3326.	38.1	Ο

#	Article	IF	CITATIONS
381	Layer-structured K _{0.5} Mn _{0.8} Cu _{0.1} Mg _{0.1} O ₂ for high-performance potassium-ion batteries by alleviating the phase transformation. Journal of Materials Chemistry A, 2024, 12, 6261-6268.	10.3	0
382	Defect-Free Prussian Blue Analogue as Zero-Strain Cathode Material for High-Energy-Density Potassium-Ion Batteries. ACS Nano, 2024, 18, 7287-7297.	14.6	0
383	Tightly-connected carbon-coated FeS2 hollow sphere-graphene microstructure for ultrafast and stable potassium ion storage. Journal of Energy Storage, 2024, 84, 110984.	8.1	0
384	Insights into the Jahnâ€Teller Effect in Layered Oxide Cathode Materials for Potassiumâ€Ion Batteries. Advanced Energy Materials, 2024, 14, .	19.5	0
385	Unraveling the reaction activity of Fe-based compounds toward potassium-ion storage. Applied Surface Science, 2024, 657, 159786.	6.1	0
386	Hard carbon anode for lithium-, sodium-, and potassium-ion batteries: Advancement and future perspective. Cell Reports Physical Science, 2024, 5, 101851.	5.6	0
387	Potentials and hotspots of post-lithium-ion batteries: Environmental impacts and supply risks for sodium- and potassium-ion batteries. Resources, Conservation and Recycling, 2024, 204, 107526.	10.8	0
388	Strain-modulated Mn-rich layered oxide enables highly stable potassium-ion batteries. Energy Storage Materials, 2024, 67, 103324.	18.0	0
389	Review on Layered Manganeseâ€Based Metal Oxides Cathode Materials for Potassiumâ€lon Batteries: From Preparation to Modification. Chemical Record, 2024, 24, .	5.8	0
390	Role of Etherâ€Based Electrolytes in Enhancing Potential of Potassiumâ€ion Batteries. Advanced Energy Materials, 0, , .	19.5	0
392	Operando Studies of Bismuth Nanoparticles Embedded in N, Oâ€Đoped Porous Carbon for Highâ€Performance Potassiumâ€ion Hybrid Capacitor. Small, 0, , .	10.0	0
393	Enhancing the performance of silicon-based anode materials for alkali metal (Li, Na, K) ion battery: A review on advanced strategies. Materials Today Communications, 2024, 39, 108653.	1.9	0
395	Adsorption of potassium atoms on twin T-graphene and twin-graphene surfaces for K-ion batteries. Diamond and Related Materials, 2024, 144, 111023.	3.9	0
397	A highly conjugated tetrakis-lawsone organic cathode material for enhancing the capacity utilization in the zinc-ion batteries. Journal of Chemical Sciences, 2024, 136, .	1.5	0
398	In Situ Defect Engineering in Carbon by Atomic Selfâ€Activation to Boost the Accessible Lowâ€Voltage Insertion for Advanced Potassiumâ€Ion Fullâ€Cells. Small, 0, , .	10.0	0
399	Pyridine Nâ€Modulated Adsorption Equilibrium of Highly Dispersed Atomic Wâ€P Clusters toward Advanced Potassiumâ€Ion Hybrid Capacitors. Advanced Energy Materials, 0, , .	19.5	0
400	Progress and perspectives on iron-based electrode materials for alkali metal-ion batteries: a critical review. Chemical Society Reviews, 2024, 53, 4154-4229.	38.1	0
401	Fluorine Chemistry in Rechargeable Batteries: Challenges, Progress, and Perspectives. Chemical Reviews, 2024, 124, 3494-3589.	47.7	0

#	Article	IF	CITATIONS
402	Short-Chain Sulfur Confined into Nitrogen-Doped Hollow Carbon Nanospheres for High-Capacity Potassium Storage. Nanomaterials, 2024, 14, 550.	4.1	0