Shared genetic pathways contribute to risk of hypertrowith opposite directions of effect

Nature Genetics 53, 128-134 DOI: 10.1038/s41588-020-00762-2

Citation Report

#	Article	IF	CITATIONS
1	Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity. Nature Genetics, 2021, 53, 135-142.	9.4	165
2	Diagnosis and Risk Prediction of Dilated Cardiomyopathy in the Era of Big Data and Genomics. Journal of Clinical Medicine, 2021, 10, 921.	1.0	16
3	New insights into the genetics of cardiomyopathies. Nature Reviews Cardiology, 2021, 18, 229-229.	6.1	1
4	Genomic Context Differs Between Human Dilated Cardiomyopathy and Hypertrophic Cardiomyopathy. Journal of the American Heart Association, 2021, 10, e019944.	1.6	9
5	Genome-wide association for heart failure: from discovery to clinical use. European Heart Journal, 2021, 42, 2012-2014.	1.0	2
6	Editorial commentary: Genetic testing for congenital heart disease: The future is now. Trends in Cardiovascular Medicine, 2022, 32, 320-321.	2.3	1
7	Improving risk prediction in hypertrophic cardiomyopathy: the key role of Dutch founder variants. Netherlands Heart Journal, 2021, 29, 299-300.	0.3	0
8	The TRIB3 R84 variant is associated with increased left ventricular mass in a sample of 2426 White individuals. Cardiovascular Diabetology, 2021, 20, 115.	2.7	1
9	The Complex and Diverse Genetic Architecture of Dilated Cardiomyopathy. Circulation Research, 2021, 128, 1514-1532.	2.0	49
10	Evidence-Based Assessment of Genes in Dilated Cardiomyopathy. Circulation, 2021, 144, 7-19.	1.6	213
11	Time to Think Differently About Sarcomere-Negative Hypertrophic Cardiomyopathy. Circulation, 2021, 143, 2415-2417.	1.6	32
12	Understanding the genetics of adult-onset dilated cardiomyopathy: what a clinician needs to know. European Heart Journal, 2021, 42, 2384-2396.	1.0	28
13	Towards precision medicine in heart failure. Nature Reviews Cardiology, 2021, 18, 745-762.	6.1	34
14	Reappraising Genes for Dilated Cardiomyopathy: Stepping Back to Move Forward. Circulation, 2021, 144, 20-22.	1.6	4
15	RBM20 Is a Candidate Gene for Hypertrophic Cardiomyopathy. Canadian Journal of Cardiology, 2021, 37, 1751-1759.	0.8	10
16	Alpha-protein kinase 3 (<i>ALPK3</i>) truncating variants are a cause of autosomal dominant hypertrophic cardiomyopathy. European Heart Journal, 2021, 42, 3063-3073.	1.0	51
17	Childhood Hypertrophic Cardiomyopathy: A Disease of the Cardiac Sarcomere. Frontiers in Pediatrics, 2021, 9, 708679.	0.9	10
18	Phenotypic variability and modifier variants in children with hereditary heart diseases. Rossiyskiy Vestnik Perinatologii I Pediatrii, 2021, 66, 12-19.	0.1	1

	CITATION	Report	
# 19	ARTICLE ALPK3: a full spectrum cardiomyopathy gene?. European Heart Journal, 2021, 42, 3074-3077.	IF 1.0	Citations 4
21	Pathogenic Mechanisms of Hypertrophic Cardiomyopathy beyond Sarcomere Dysfunction. International Journal of Molecular Sciences, 2021, 22, 8933.	1.8	20
23	Phenotypic Expression and Outcomes in Individuals With Rare Genetic Variants of Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology, 2021, 78, 1097-1110.	1.2	55
24	Genetic Testing in Patients with Hypertrophic Cardiomyopathy. International Journal of Molecular Sciences, 2021, 22, 10401.	1.8	21
25	Minor hypertrophic cardiomyopathy genes, major insights into the genetics of cardiomyopathies. Nature Reviews Cardiology, 2022, 19, 151-167.	6.1	50
26	Sex Differences in Hypertrophic Cardiomyopathy: Interaction With Genetics and Environment. Current Heart Failure Reports, 2021, 18, 264-273.	1.3	28
27	Deleterious Rare Desmosomal Variants Contribute to Hypertrophic Cardiomyopathy and Are Associated With Distinctive Clinical Features. Canadian Journal of Cardiology, 2022, 38, 41-48.	0.8	6
28	The genetics of human performance. Nature Reviews Genetics, 2022, 23, 40-54.	7.7	25
29	Genetic markers of vasovagal syncope. Autonomic Neuroscience: Basic and Clinical, 2021, 235, 102871.	1.4	6
31	Recent Findings Related to Cardiomyopathy and Genetics. International Journal of Molecular Sciences, 2021, 22, 12522.	1.8	21
32	The genetic case for cardiorespiratory fitness as a clinical vital sign and the routine prescription of physical activity in healthcare. Genome Medicine, 2021, 13, 180.	3.6	16
33	Translation of New and Emerging Therapies for Genetic Cardiomyopathies. JACC Basic To Translational Science, 2022, 7, 70-83.	1.9	20
34	Unraveling the Genetic Substrate and Phenotypic Variability of Hypertrophic Cardiomyopathy: A Role for Desmosome Gene Variants?. Canadian Journal of Cardiology, 2022, 38, 3-5.	0.8	3
36	Predicting Sudden Cardiac Death in Genetic Heart Disease. Canadian Journal of Cardiology, 2022, 38, 479-490.	0.8	3
37	Common and Distinctive Intercellular Communication Patterns in Human Obstructive and Nonobstructive Hypertrophic Cardiomyopathy. International Journal of Molecular Sciences, 2022, 23, 946.	1.8	10
38	Targeted therapies in genetic dilated and hypertrophic cardiomyopathies: from molecular mechanisms to therapeutic targets. A position paper from the Heart Failure Association (HFA) and the Working Group on Myocardial Function of the European Society of Cardiology (ESC). European Journal of Heart Failure. 2022. 24. 406-420.	2.9	22
39	Effect of taurine administration on symptoms, severity, or clinical outcome of dilated cardiomyopathy and heart failure in humans: a systematic review. Wellcome Open Research, 0, 7, 9.	0.9	1
40	Genetics of sudden cardiac death. Current Opinion in Cardiology, 2022, 37, 212-218.	0.8	4

CITATION REPORT

#	Article	IF	CITATIONS
41	Identifying Dilated Cardiomyopathy Through Family-Based Screening. JAMA - Journal of the American Medical Association, 2022, 327, 430.	3.8	0
42	Effect of taurine administration on symptoms, severity, or clinical outcome of dilated cardiomyopathy and heart failure in humans: a systematic review. Wellcome Open Research, 0, 7, 9.	0.9	1
43	Improving diagnosis and risk stratification across the ejection fraction spectrum: the Maastricht Cardiomyopathy registry. ESC Heart Failure, 2022, 9, 1463-1470.	1.4	9
45	The harder the climb the better the view: The impact of substrate stiffness on cardiomyocyte fate. Journal of Molecular and Cellular Cardiology, 2022, 166, 36-49.	0.9	7
48	The mechanics of the heart: zooming in on hypertrophic cardiomyopathy and cMyBP . FEBS Letters, 2022, 596, 703-746.	1.3	12
49	Pediatric Hypertrophic Cardiomyopathy: Exploring the Genotypeâ€Phenotype Association. Journal of the American Heart Association, 2022, 11, e024220.	1.6	10
50	Need for Inclusive Genomic Research. Circulation Genomic and Precision Medicine, 2022, , CIRCGEN122003736.	1.6	0
51	Whole genome sequencing delineates regulatory, copy number, and cryptic splice variants in early onset cardiomyopathy. Npj Genomic Medicine, 2022, 7, 18.	1.7	14
52	Altered intercellular communication and extracellular matrix signaling as a potential disease mechanism in human hypertrophic cardiomyopathy. Scientific Reports, 2022, 12, 5211.	1.6	10
53	European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. Europace, 2022, 24, 1307-1367.	0.7	108
54	European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the State of Genetic Testing for Cardiac Diseases. Heart Rhythm, 2022, 19, e1-e60.	0.3	78
55	European Heart Rhythm Association (<scp>EHRA</scp>)/Heart Rhythm Society (<scp>HRS</scp>)/Asia Pacific Heart Rhythm Society (<scp>APHRS</scp>)/Latin American Heart Rhythm Society (<scp>LAHRS</scp>) Expert Consensus Statement on the state of genetic testing for cardiac diseases. lournal of Arrhythmia. 2022. 38. 491-553.	0.5	24
56	Genetic insights into cardiac relaxation and filling. , 2022, 1, 291-293.		0
57	Application of an F0-based genetic assay in adult zebrafish to identify modifier genes of an inherited cardiomyopathy. DMM Disease Models and Mechanisms, 2023, 16, .	1.2	9
58	Genetic Landscape of Dilated Cardiomyopathy. Russian Journal of Genetics, 2022, 58, 369-383.	0.2	1
59	The Genetic Architecture of Hypertrophic Cardiomyopathy in Hungary: Analysis of 242 Patients with a Panel of 98 Genes. Diagnostics, 2022, 12, 1132.	1.3	4
60	Rare and Common Genetic Variation Underlying the Risk of Hypertrophic Cardiomyopathy in a National Biobank. JAMA Cardiology, 2022, 7, 715.	3.0	22
62	The Involvement of ALPK3 in Hypertrophic Cardiomyopathy in East Asia. Frontiers in Medicine, 0, 9, .	1.2	2

CITATION REPORT

#	Article	IF	CITATIONS
64	Effect of taurine administration on symptoms, severity, or clinical outcome of dilated cardiomyopathy and heart failure in humans: a systematic review. Wellcome Open Research, 0, 7, 9.	0.9	2
65	What Causes Hypertrophic Cardiomyopathy?. American Journal of Cardiology, 2022, 179, 74-82.	0.7	10
66	Molecular genetic mechanisms of dilated cardiomyopathy. Current Opinion in Genetics and Development, 2022, 76, 101959.	1.5	1
67	Heart failure with supraâ€normal left ventricular ejection fraction: distinct polygenic bases of an unrecognized phenotype. European Journal of Heart Failure, 2022, 24, 2128-2130.	2.9	2
68	2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. European Heart Journal, 2022, 43, 3997-4126.	1.0	733
69	Genome-wide associations of aortic distensibility suggest causality for aortic aneurysms and brain white matter hyperintensities. Nature Communications, 2022, 13, .	5.8	18
70	From diagnostic testing to precision medicine: the evolving role of genomics in cardiac channelopathies and cardiomyopathies in children. Current Opinion in Genetics and Development, 2022, 76, 101978.	1.5	1
71	Single Nucleus RNA-sequencing Reveals Altered Intercellular Communication and Dendritic Cell Activation in Nonobstructive Hypertrophic Cardiomyopathy. Cardiology and Cardiovascular Medicine, 2022, 06, .	0.1	4
72	Common genetic variants improve risk stratification after the atrial switch operation for transposition of the great arteries. International Journal of Cardiology, 2023, 371, 153-159.	0.8	5
73	Multi-Ethnic Study of Atherosclerosis: Relationship between Left Ventricular Shape at Cardiac MRI and 10-year Outcomes. Radiology, 2023, 306, .	3.6	3
74	Athletic Activity for Patients With Hypertrophic Cardiomyopathy and OtherÂInherited Cardiovascular Diseases. Journal of the American College of Cardiology, 2022, 80, 1268-1283.	1.2	10
75	A large genome-wide association study of QT interval length utilizing electronic health records. Genetics, 2022, 222, .	1.2	1
76	"Mendelian Code―in the Genetic Structure of Common Multifactorial Diseases. Russian Journal of Genetics, 2022, 58, 1159-1168.	0.2	2
77	Prospects for remodeling the hypertrophic heart with myosin modulators. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	1
80	A Human Hereditary Cardiomyopathy Shares a Genetic Substrate With Bicuspid Aortic Valve. Circulation, 2023, 147, 47-65.	1.6	9
81	Genome-wide association and multi-trait analyses characterize the common genetic architecture of heart failure. Nature Communications, 2022, 13, .	5.8	29
82	Novel Genes Involved in Hypertrophic Cardiomyopathy: Data of Transcriptome and Methylome Profiling. International Journal of Molecular Sciences, 2022, 23, 15280.	1.8	2
83	Overlapping Phenotype of Adult-Onset <i>ALPK3</i> -Cardiomyopathy in the Setting of Two Novel Variants. Cardiology Research, 2022, 13, 398-404.	0.5	2

CITATION REPORT

#	Article	IF	CITATIONS
84	Genome-wide association studies of cardiovascular disease. Physiological Reviews, 2023, 103, 2039-2055.	13.1	13
85	Phenotypic and Genetic Factors Associated with Absence of Cardiomyopathy Symptoms in PLN:c.40_42delAGA Carriers. Journal of Cardiovascular Translational Research, 0, , .	1.1	2
86	Genome-Wide Analysis of Left Ventricular Maximum Wall Thickness in the UK Biobank Cohort Reveals a Shared Genetic Background With Hypertrophic Cardiomyopathy. Circulation Genomic and Precision Medicine, 2023, 16, .	1.6	3
87	Targeted next-generation sequencing for genetic variants of left ventricular mass status among community-based adults in Taiwan. Frontiers in Genetics, 0, 13, .	1.1	0
88	Genome-Wide Association and Inheritance-Based Analyses Implicate Unconventional Myosin Genes in Hypoplastic Left Heart Syndrome. Circulation Genomic and Precision Medicine, 0, , .	1.6	0
89	The role of genetic testing in diagnosis and care of inherited cardiac conditions in a specialised multidisciplinary clinic. Genome Medicine, 2022, 14, .	3.6	4
92	Heart Disease and Stroke Statistics—2023 Update: A Report From the American Heart Association. Circulation, 2023, 147, .	1.6	2,130
93	Molecular autopsy: Twenty years of post-mortem diagnosis in sudden cardiac death. Frontiers in Medicine, 0, 10, .	1.2	8
94	Structural and signaling proteins in the Z-disk and their role in cardiomyopathies. Frontiers in Physiology, 0, 14, .	1.3	5
95	Precision and genomic medicine for dilated and hypertrophic cardiomyopathy. Frontiers in Cardiovascular Medicine, 0, 10, .	1.1	0
97	Conventional and genetic associations between resting heart rate, cardiac morphology and function as assessed by magnetic resonance imaging: Insights from the UK biobank population study. Frontiers in Cardiovascular Medicine, 0, 10, .	1.1	0
101	Clinical and genetic associations of deep learning-derived cardiac magnetic resonance-based left ventricular mass. Nature Communications, 2023, 14, .	5.8	8
102	Correlation Analysis of <i>CTSB</i> Promoter Polymorphism and Function in Patients with Dilated Cardiomyopathy. DNA and Cell Biology, 2023, 42, 203-211.	0.9	0
103	Clinical and Genetic Screening for Hypertrophic Cardiomyopathy in Paediatric Relatives: Changing Paradigms in Clinical Practice. Journal of Clinical Medicine, 2023, 12, 2788.	1.0	2
130	Artificial intelligence in cardiovascular genetics. , 2024, , 271-277.		0
139	Molecular testing in inherited cardiomyopathies. , 2024, , 231-240.		0