Motor Imagery EEG Decoding Method Based on a Discri

IEEE Transactions on Neural Systems and Rehabilitation Engin 29, 368-379

DOI: 10.1109/tnsre.2021.3051958

Citation Report

#	Article	lF	CITATIONS
1	Impact of EEG Parameters Detecting Dementia Diseases: A Systematic Review. IEEE Access, 2021, 9, 78060-78074.	2.6	39
2	A Temporal-Spectral-Based Squeeze-and- Excitation Feature Fusion Network for Motor Imagery EEG Decoding. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 1534-1545.	2.7	64
3	A novel motor imagery EEG decoding method based on feature separation. Journal of Neural Engineering, 2021, 18, 036022.	1.8	13
4	Two-branch 3D convolutional neural network for motor imagery EEG decoding. Journal of Neural Engineering, 2021, 18, 0460c7.	1.8	4
5	Investigating Feature Ranking Methods for Sub-Band and Relative Power Features in Motor Imagery Task Classification. Journal of Healthcare Engineering, 2021, 2021, 1-11.	1.1	7
6	BECT Spike Detection Based on Novel EEG Sequence Features and LSTM Algorithms. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 1734-1743.	2.7	28
7	A CNN-based modular classification scheme for motor imagery using a novel EEG sampling protocol suitable for IoT healthcare systems. Neural Computing and Applications, 2023, 35, 22865-22886.	3.2	2
8	A multiscale siamese convolutional neural network with cross-channel fusion for motor imagery decoding. Journal of Neuroscience Methods, 2022, 367, 109426.	1.3	8
9	Deep EEG feature learning via stacking common spatial pattern and support matrix machine. Biomedical Signal Processing and Control, 2022, 74, 103531.	3.5	5
10	A Two-Branch CNN Fusing Temporal and Frequency Features for Motor Imagery EEG Decoding. Entropy, 2022, 24, 376.	1.1	10
11	Multi-Hierarchical Fusion to Capture the Latent Invariance for Calibration-Free Brain-Computer Interfaces. Frontiers in Neuroscience, 2022, 16, 824471.	1.4	0
12	A novel multi-branch hybrid neural network for motor imagery EEG signal classification. Biomedical Signal Processing and Control, 2022, 77, 103718.	3.5	16
13	How to successfully classify EEG in motor imagery BCI: a metrological analysis of the state of the art. Journal of Neural Engineering, 2022, 19, 031002.	1.8	31
14	EEG Motor Imagery Classification Based on Multi-spatial Convolutional Neural Network. , 2022, , .		2
15	2020 International brainâ \in "computer interface competition: A review. Frontiers in Human Neuroscience, 0, 16, .	1.0	14
16	Multiclass Classification of Imagined Speech Vowels and Words of Electroencephalography Signals Using Deep Learning. Advances in Human-Computer Interaction, 2022, 2022, 1-10.	1.8	3
17	Execution and perception of upper limb exoskeleton for stroke patients: a systematic review. Intelligent Service Robotics, 2022, 15, 557-578.	1.6	6
18	Convolutional neural network and riemannian geometry hybrid approach for motor imagery classification. Neurocomputing, 2022, 507, 180-190.	3.5	11

#	ARTICLE	IF	CITATIONS
19	Excellent fine-tuning: From specific-subject classification to cross-task classification for motor imagery. Biomedical Signal Processing and Control, 2023, 79, 104051.	3.5	7
20	FBMSNet: A Filter-Bank Multi-Scale Convolutional Neural Network for EEG-Based Motor Imagery Decoding. IEEE Transactions on Biomedical Engineering, 2023, 70, 436-445.	2.5	14
21	Cognitive Computing for Brain–Computer Interface-Based Computational Social Digital Twins Systems. IEEE Transactions on Computational Social Systems, 2022, 9, 1635-1643.	3.2	3
22	Deep Convolutional Neural Network for EEG-Based Motor Decoding. Micromachines, 2022, 13, 1485.	1.4	3
23	Brain-Computer Interface using neural network and temporal-spectral features. Frontiers in Neuroinformatics, $0,16,1$	1.3	0
24	EEG- and EMG-Driven Poststroke Rehabilitation: A Review. IEEE Sensors Journal, 2022, 22, 23649-23660.	2.4	13
25	EEG-Based Mental Tasks Recognition via a Deep Learning-Driven Anomaly Detector. Diagnostics, 2022, 12, 2984.	1.3	5
26	Deep Common Spatial Pattern based Motor Imagery Classification with Improved Objective Function. , 0, , 73-84.		32
27	An efficient Dual-Band CNN for Motor Imagery EEG Signal Classification. , 2022, , .		1
28	A Review on Deep Learning Approaches for Motor Imagery EEG Signal Classification for Brain–Computer Interface Systems. Advances in Intelligent Systems and Computing, 2023, , 353-365.	0.5	1
29	EEG-Channel-Temporal-Spectral-Attention Correlation for Motor Imagery EEG Classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31, 1659-1669.	2.7	9
30	Feature Analysis for Motor Imagery EEG Signals with Different Classification Schemes. Sakarya University Journal of Science, 2023, 27, 259-270.	0.3	O
31	Investigating Feature Selection Techniques to Enhance the Performance of EEG-Based Motor Imagery Tasks Classification. Mathematics, 2023, 11, 1921.	1.1	6
32	FedEEG: Federated EEG Decoding Via inter-Subject Structure Matching. , 2023, , .		O
36	Online processing for motor imagery-based brain-computer interfaces relying on EEG., 2023,,.		0
46	Comparative analysis of EEG-based motor imagery classification techniques. AIP Conference Proceedings, 2023, , .	0.3	0
50	Deep Learning Techniques for EEG-Based BCI: Analysis and Applications. , 2023, , .		0