Understanding the mechanisms of whey protein isolate starch by in vitro simulated digestion

Food Hydrocolloids 124, 107211

DOI: 10.1016/j.foodhyd.2021.107211

Citation Report

#	Article	IF	CITATIONS
1	Insight into the multi-scale structure changes and mechanism of corn starch modulated by different structural phenolic acids during retrogradation. Food Hydrocolloids, 2022, 128, 107581.	10.7	34
2	Effects of egg white on physicochemical and functional characteristics of steamed cold noodles (a) Tj ETQq1	1 0.784314 5.2	rgBŢ /Overlock
3	Octenylsuccinic anhydride group distribution in esterified maize starches with different granular structure and its effect on starch digestibility. Food Bioscience, 2022, 50, 102056.	4.4	4
4	Effect of endogenous proteins and heat treatment on the in vitro digestibility and physicochemical properties of corn flour. Food Hydrocolloids, 2023, 135, 108220.	10.7	1
5	Effect of starch-protein interaction on regulating the digestibility of waxy rice starch under radio frequency treatment with added CaCl2. International Journal of Biological Macromolecules, 2023, 232, 123236.	7. 5	6
6	Understanding effects of glutelin on physicochemical and structural properties of extruded starch and the underlying mechanism. Carbohydrate Polymers, 2023, 304, 120513.	10.2	5
7	Alternations in the multilevel structures of chickpea protein during fermentation and their relationship with digestibility. Food Research International, 2023, 165, 112453.	6.2	13
8	The Effect of Co-Fermentation with Lactobacillus plantarum HLJ29L2 and Yeast on Wheat Protein Characteristics in Sourdough and Crackers. Foods, 2023, 12, 555.	4.3	7
9	Effects of jicama (Pachyrhizus erosus L.) non-starch polysaccharides with different molecular weights on structural and physicochemical properties of jicama starch. Food Hydrocolloids, 2023, 139, 108502.	10.7	11
10	Tartary buckwheat-derived exosome-like nanovesicles against starch digestion and their interaction mechanism. Food Hydrocolloids, 2023, 141, 108739.	10.7	3
11	Role of phenolic acids with different functional groups in the regulation of starch digestion in simulated dietary intake patterns. International Journal of Biological Macromolecules, 2023, 235, 123815.	7. 5	4
12	Study on the mechanism of various exogenous proteins with different inhibitions on wheat starch digestion: From the distribution behaviors of protein in the starch matrix. International Journal of Biological Macromolecules, 2023, 242, 124909.	7. 5	5
13	Metal ion-mediated modulation of morphology, physicochemical properties, and digestibility of type 3 resistant starch microparticle. Carbohydrate Polymers, 2023, 316, 121027.	10.2	2
14	Multiscale structures, physicochemical properties, and in vitro digestibility of oat starch complexes co-gelatinized with jicama non-starch polysaccharides. Food Hydrocolloids, 2023, 144, 108983.	10.7	6
15	The research advance of resistant starch: structural characteristics, modification method, immunomodulatory function, and its delivery systems application. Critical Reviews in Food Science and Nutrition, 0, , 1-18.	10.3	4
16	Interaction between potato starch and barley \hat{l}^2 -glucan and its influence on starch pasting and gelling properties. International Journal of Biological Macromolecules, 2023, 253, 126840.	7.5	2
17	Soybean protein isolate affects in vitro digestion properties of fermented indica rice starch by regulating its gel characteristics. Food Hydrocolloids, 2023, 145, 109165.	10.7	3
18	Effect of starch type on the physicochemical and emulsifying properties of amorphous starch–whey protein isolate mixtures. LWT - Food Science and Technology, 2023, 185, 115134.	5.2	3

#	Article	IF	CITATIONS
19	Effects of peanut oligopeptides on the pasting properties of potato starch and digestive characteristics of dry, flat potato starch noodles. International Journal of Biological Macromolecules, 2023, 253, 126992.	7.5	1
20	Enrichment of resistant starch in starch-protein hydrolysate binary matrix by modulating pH during thermal processing. Food Research International, 2023, 174, 113602.	6.2	1
21	Recent progress in regulating starch digestibility using natural additives and sustainable processing operations. Critical Reviews in Food Science and Nutrition, 0 , $1-15$.	10.3	0
22	Alterations in the multilevel structure and depolymerization behavior of gluten induced by selenium in fermented dough. Food Bioscience, 2023, 56, 103389.	4.4	2
23	Fish collagen peptides, an effective starch gelatinization regulator, modify the processing properties and improve the nutritional value of wheat starch. Food Hydrocolloids, 2024, 149, 109612.	10.7	3
24	Extensive inhibition of starch digestion by exogenous proteins and inhibition mechanisms: A comprehensive review. Trends in Food Science and Technology, 2024, 143, 104303.	15.1	3
25	Including protein hydrolysates during thermal processing mitigates the starch digestion of resulted starch-based binary matrix. International Journal of Biological Macromolecules, 2024, 258, 128976.	7.5	1
26	Influence of starch-protein interactions on the digestibility and chemical properties of a 3D-printed food matrix based on salmon by-product proteins. Food Research International, 2024, 179, 114035.	6.2	0
27	Effect of hydrocolloids on starch digestion: A review. Food Chemistry, 2024, 444, 138636.	8.2	0
28	Impact of Whey Protein Isolate and Xanthan Gum on the Functionality and in vitro Digestibility of Raw and Cooked Chestnut Flours. Plant Foods for Human Nutrition, 2024, 79, 189-193.	3.2	0
29	Whey protein isolate regulates the oral processing characteristics of lotus root starch. Food Bioscience, 2024, 58, 103802.	4.4	0
30	The synergistic effect of lactic acid bacteria fermentation combined with gluten on the starch digestive properties of highland barley. Food Bioscience, 2024, 58, 103822.	4.4	0
31	Interactions of hsian-tsao polysaccharide with corn starch to reduce its in vitro digestibility. International Journal of Biological Macromolecules, 2024, 265, 130951.	7.5	0