Facile construction of novel organic–inorganic tetra (porphyrin/Bi2MoO6 heterojunction for tetracycline deg degradation pathways, intermediate toxicity analysis ar

Journal of Colloid and Interface Science 605, 727-740 DOI: 10.1016/j.jcis.2021.07.137

Citation Report

#	Article	IF	CITATIONS
1	Highly enhanced photodegradation of emerging pollutants by Ag/AgCl/Ta2O5â^'x mesocrystals. Separation and Purification Technology, 2021, 279, 119733.	3.9	39
2	Construction of an efficient and durable hierarchical porous CuO/SiO2 monolith for synergistically boosting the visible-light-driven degradation of organic pollutants. Separation and Purification Technology, 2021, 279, 119759.	3.9	16
3	Well-designed three-dimensional hierarchical hollow tubular g-C3N4/ZnIn2S4 nanosheets heterostructure for achieving efficient visible-light photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2022, 607, 1391-1401.	5.0	139
4	Photocatalytic degradation of tetracycline antibiotic by a novel Bi2Sn2O7/Bi2MoO6 S-scheme heterojunction: Performance, mechanism insight and toxicity assessment. Chemical Engineering Journal, 2022, 429, 132519.	6.6	279
5	ZIF-67-derived flower-like ZnIn ₂ S ₄ @CoS ₂ heterostructures for photocatalytic hydrogen production. New Journal of Chemistry, 2021, 45, 20289-20295.	1.4	12
6	Enhanced visible-light photocatalytic bacterial inhibition using recyclable magnetic heterogeneous nanocomposites (Fe3O4@SiO2@Ag2WO4@Ag2S) in core/shell structure. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100601.	1.7	8
7	Enhanced photocatalytic activities of facile auto-combustion synthesized ZnO nanoparticles for wastewater treatment: An impact of Ni doping. Chemosphere, 2022, 291, 132687.	4.2	36
8	Visible-light photocatalytic tetracycline degradation over nanodots-assembled N-ZrO2â°'x nanostructures: Performance, degradation pathways and mechanistic insight. Journal of Alloys and Compounds, 2022, 895, 162582.	2.8	24
9	Photocatalytic properties of flower-like BiOBr/BiOCl heterojunctions in-situ constructed by a reactable ionic liquid. Inorganic Chemistry Communication, 2021, 134, 109063.	1.8	17
10	Figures of Merit for Photocatalysis: Comparison of NiO/La-NaTaO3 and Synechocystis sp. PCC 6803 as a Semiconductor and a Bio-Photocatalyst for Water Splitting. Catalysts, 2021, 11, 1415.	1.6	5
11	2D/2D Schottky heterojunction of in-situ growth FAPbBr3/Ti3C2 composites for enhancing photocatalytic CO2 reduction. Journal of Colloid and Interface Science, 2022, 610, 538-545.	5.0	26
12	Novel 0D/2D ZnSe/SnSe heterojunction photocatalysts exhibiting enhanced photocatalytic and photoelectrochemical activities. Journal of Alloys and Compounds, 2022, 897, 163123.	2.8	15
13	Synthesis of Ag4Bi2O5 nanoparticles and evaluation of their photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 427, 113776.	2.0	2
14	Construction of a hydrangea-like Bi ₂ WO ₆ /BiOCl composite as a high-performance photocatalyst. New Journal of Chemistry, 2022, 46, 2627-2634.	1.4	14
15	3D structured TiO ₂ -based aerogel photocatalyst for the high-efficiency degradation of toluene gas. New Journal of Chemistry, 2022, 46, 2272-2281.	1.4	10
16	Topotactic formation of poriferous (Al,C)–Ta2O5 mesocrystals for improved visible-light photocatalysis. Journal of Environmental Management, 2022, 304, 114289.	3.8	22
17	Activation of peracetic acid by RuO2/MWCNTs to degrade sulfamethoxazole at neutral condition. Chemical Engineering Journal, 2022, 431, 134217.	6.6	21
18	Electrospun CuS nanoparticles/chitosan nanofiber composites for visible and near-infrared light-driven catalytic degradation of antibiotic pollutants. Chemical Engineering Journal, 2022, 431, 134059.	6.6	25

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
19	Enhanced Feâ~'N active site formation through interfacial energy control of precursor impregnation solution for the air cathode of membraneless direct formate fuel cells. Carbon, 2022, 189, 240-250.	5.4	7
20	In-situ synthesis of a novel ZnO/CuCo2S4 p-n heterojunction photocatalyst with improved phenol and rhodamine B degradation performance and investigating the mechanism of charge carrier separation. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 425, 113676.	2.0	9
21	Z-scheme 0D/3D p-Ag6Si2O7 nanoparticles-decorated n-Bi2O2CO3 micro-flowers heterojunction photocatalyst for efficient degradation of organic contaminants. Journal of Alloys and Compounds, 2022, 899, 163150.	2.8	15
22	Facile Construction of CoO/Bi ₂ WO ₆ p-n Heterojunction with Following Z-Scheme Pathways for Simultaneous Elimination of Tetracycline and Cr(VI) Under Visible Light Irradiation. SSRN Electronic Journal, 0, , .	0.4	0
23	Co3O4-Bi2O3 heterojunction: An effective photocatalyst for photodegradation of rhodamine B dye. Arabian Journal of Chemistry, 2022, 15, 103732.	2.3	32
24	Novel organic/inorganic PDI-Urea/BiOBr S-scheme heterojunction for improved photocatalytic antibiotic degradation and H2O2 production. Chinese Chemical Letters, 2022, 33, 5200-5207.	4.8	64
25	Synthesis of mesoporous zirconium manganese mixed metal oxide nanowires for photocatalytic reduction of CO2. Journal of Materials Research, 2022, 37, 522-532.	1.2	0
26	Sustainable adsorptive removal of antibiotic residues by chitosan composites: An insight into current developments and future recommendations. Arabian Journal of Chemistry, 2022, 15, 103743.	2.3	85
27	Epitaxial Growth of Flower-Like MoS2 on One-Dimensional Nickel Titanate Nanofibers: A "Sweet Spot― for Efficient Photoreduction of Carbon Dioxide. Frontiers in Chemistry, 2022, 10, 837915.	1.8	6
28	Synthesis of a CoO–ZnO photocatalyst for enhanced visible-light assisted photodegradation of methylene blue. New Journal of Chemistry, 2022, 46, 2224-2231.	1.4	30
29	Oxygen-vacancy-mediated photocatalytic degradation of tetracycline under weak visible-light irradiation over hierarchical Bi ₂ MoO ₆ @Bi ₂ O ₃ core–shell fibers. Catalysis Science and Technology, 2022, 12, 1685-1696.	2.1	10
30	Electrochemical energy storage application of CuO/CuO@Ni–CoMoO4·0.75H2O nanobelt arrays grown directly on Cu foam. Progress in Natural Science: Materials International, 2022, 32, 163-170.	1.8	8
31	Facile fabrication of electrospun g-C ₃ N ₄ /Bi ₁₂ O ₁₇ Cl ₂ /poly(acrylonitrile- <i>co<!--<br-->Journal of Chemistry, 2022, 46, 3727-3737.</i>	i>-maleic) 1.4	Tj ĘTQq0 0 C
32	Facile construction of CoO/Bi2WO6 p-n heterojunction with following Z-Scheme pathways for simultaneous elimination of tetracycline and Cr(VI) under visible light irradiation. Journal of Alloys and Compounds, 2022, 904, 164046.	2.8	44
33	Construction of flower-like Ag/AgBr/BiOBr heterostructures with boosted photocatalytic activity. Inorganic Chemistry Communication, 2022, 137, 109254.	1.8	16
34	In situ forming heterointerface in g-C3N4/BiOBr photocatalyst for enhancing the photocatalytic activity. Journal of Physics and Chemistry of Solids, 2022, 163, 110609.	1.9	13
35	Efficient photo-Fenton degradation performance, mechanism, and pathways of tetracycline hydrochloride over missing-linker metal–organic framework with mix-valence coordinatively unsaturated metal sites. Separation and Purification Technology, 2022, 287, 120568.	3.9	16
36	Synthesis of novel p-n heterojunction by the decoration of CuFe2O4 on ZnO nanorod: Characterization, enhanced visible light driven photocatalytic activity and intrinsic mechanism. Surfaces and Interfaces, 2022, 29, 101726.	1.5	6

#	Article	IF	CITATIONS
37	Visible light-driven photocatalytic and enzyme-like properties of novel AgBr/Ag2MoO4 for degradation of pollutants and improved antibacterial application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639, 128348.	2.3	11
38	GNR@CeO2 heterojunction as a novel sonophotocatalyst: Degradation of tetracycline hydrochloride, kinetic modeling and synergistic effects. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639, 128324.	2.3	16
39	DFT, EPR and SPR insight to the relation between photocatalytic activity and nonlinearity and anisotropy ferromagnetism of Au/Co3O4/Bi2MoO6 composites. Journal of Alloys and Compounds, 2022, 902, 163804.	2.8	21
40	Ag-Pd alloy decorated ZnIn2S4 microspheres with optimal Schottky barrier height for boosting visible-light-driven hydrogen evolution. Journal of Materials Science and Technology, 2022, 114, 81-89.	5.6	53
41	Synthesis of BiOCl/Bi3NbO7 heterojunction by in-situ chemical etching with enhanced photocatalytic performance for the degradation of organic pollutants. Applied Surface Science, 2022, 587, 152633.	3.1	11
42	Hydrothermal Synthesis and Photocatalytic Properties of Graphene@Ag/AgSb2O5.8 Composites: Reaction Laws of the Composites in Sintering Process. Advances in Materials Science and Engineering, 2022, 2022, 1-11.	1.0	0
43	A novel hierarchical nanostructured S-scheme RGO/Bi2MoO6/Bi2WO6 heterojunction: Excellent photocatalytic degradation activity for pollutants. Applied Surface Science, 2022, 588, 152788.	3.1	23
44	In-Situ Constructing C3n5 Nanosheets/Bi2wo6 Nanodots S-Scheme Heterojunction with Enhanced Structural Defects for Efficiently Photocatalytic Removal of Tetracycline and Cr(Vi). SSRN Electronic Journal, 0, , .	0.4	0
45	Photocatalytic degradation of lignin by low content g-C ₃ N ₄ modified TiO ₂ under visible light. New Journal of Chemistry, 2022, 46, 8644-8652.	1.4	8
46	Fabrication and characterization of a TiBs@MCN cable-like photocatalyst with high photocatalytic performance under visible light irradiation. New Journal of Chemistry, 2022, 46, 6319-6329.	1.4	3
47	<i>In situ</i> construction of a C ₃ N ₅ nanosheet/Bi ₂ WO ₆ nanodot S-scheme heterojunction with enhanced structural defects for the efficient photocatalytic removal of tetracycline and Cr(<scp>vi</scp>). Inorganic Chemistry Frontiers, 2022, 9, 2479-2497.	3.0	217
48	Developing high photocatalytic antibacterial Zn electrodeposited coatings through Schottky junction with Fe3+-doped alkalized g-C3N4 photocatalysts. Nano Materials Science, 2023, 5, 177-188.	3.9	8
49	Fabricating hollow, multishell CeO2 microspheres for enhanced photocatalytic degradation of RhB under visible light. Journal of Materials Research, 2022, 37, 1070-1082.	1.2	7
50	A novel all-solid-state S-scheme in CdS/ZnTHPP binary nanosystem for hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 13044-13053.	3.8	11
51	One step in situ synthesis of Bi2S3/Bi2O2CO3/Bi3O4Cl ternary heterostructures with enhanced photocatalytic performance. Applied Surface Science, 2022, 592, 153160.	3.1	11
52	Synthesis of <scp>CuFe₂O₄a€fic/scp> and <scp>CuFe₂O₄a€fia€GO</scp> nanocomposite photocatalysts using greenâ€synthesized <scp>CuFe₂O₄</scp>: determination of photocatalytic activity, bacteria inactivation and antibiotic degradation potentials under visible light. Journal of</scp>	1.6	3
53	Chemical rechnology and Biotechnology, 2022, 97, 1992-1999. One-step electrodeposition of a polypyrrole/NiO nanocomposite as a supercapacitor electrode. Scientific Reports, 2022, 12, 3611.	1.6	56
54	Photocatalytic oxidation of tetracycline, reduction of hexavalent chromium and hydrogen evolution by Cu2O/g-C3N4 S-scheme photocatalyst: Performance and mechanism insight. Applied Surface Science, 2022, 592, 153309.	3.1	27

#	Article	IF	CITATIONS
55	The design of praseodymium galena nanospheres: An effective photocatalyst for the remediation of carcinogenic phenothiazine and chromium contaminants. Journal of Physics and Chemistry of Solids, 2022, 165, 110660.	1.9	3
56	A distinct hollow spindle-like CdIn2S4 photocatalyst for high-efficiency tetracycline removal. Materials Today Chemistry, 2022, 24, 100800.	1.7	6
57	CaMoO4/CaWO4 heterojunction micro/nanocomposites with interface defects for enhanced photocatalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642, 128642.	2.3	30
58	Constructing an ohmic junction of copper@ cuprous oxide nanocomposite with plasmonic enhancement for photocatalysis. Journal of Colloid and Interface Science, 2022, 616, 163-176.	5.0	25
59	Efficient degradation of ciprofloxacin by Co3O4/Si nanoarrays heterojunction activated peroxymonosulfate under simulated sunlight: Performance and mechanism. Journal of Environmental Chemical Engineering, 2022, 10, 107397.	3.3	17
60	Visible-light-driven TiO2@N-Au nanorobot penetrating the vitreous. Applied Materials Today, 2022, 27, 101455.	2.3	8
61	Designing novel MgFe2O4 coupled V2O5 nanorod for synergetic photodegradation of tetracycline with enhanced visible-light energy harvesting: Photoluminescence, kinetics, intrinsic mechanism and bactericidal effect. Chemosphere, 2022, 296, 134012.	4.2	11
62	Recent developments in industrial organic degradation via semiconductor heterojunctions and the parameters affecting the photocatalytic process: A review study. Journal of Water Process Engineering, 2022, 47, 102671.	2.6	69
63	In-situ synthesis of Bi0 on 3D-3D-shaped (BiO)2CO3 surface for photocatalytic inactivation: Metal self-doping mechanism. Journal of Environmental Chemical Engineering, 2022, 10, 107576.	3.3	2
64	Photocatalytic reduction of CO2 and degradation of Bisphenol-S by g-C3N4/Cu2O@Cu S-scheme heterojunction: Study on the photocatalytic performance and mechanism insight. Carbon, 2022, 193, 272-284.	5.4	51
65	Heterojunction and ferroelectric polarization co-promoting photocatalytic activity. Applied Surface Science, 2022, 587, 152852.	3.1	16
66	High-performance photocatalytic membranes for water purification in relation to environmental and operational parameters. Journal of Environmental Management, 2022, 311, 114817.	3.8	18
67	Strengthened photocatalytic removal of bisphenol A under visible light by magnetic ternary heterojunctions Bi4O5Br2/Bi4O5I2/Fe3O4. Journal of Alloys and Compounds, 2022, 908, 164644.	2.8	11
68	Coupling of Ru nanoclusters decorated mixed-phase (1T and 2H) MoSe2 on biomass-derived carbon substrate for advanced hydrogen evolution reaction. Journal of Colloid and Interface Science, 2022, 617, 594-603.	5.0	34
69	In suit constructing S-scheme FeOOH/MgIn2S4 heterojunction with boosted interfacial charge separation and redox activity for efficiently eliminating antibiotic pollutant. Chemosphere, 2022, 298, 134297.	4.2	82
70	Rationally designed Ta3N5/BiOCl S-scheme heterojunction with oxygen vacancies for elimination of tetracycline antibiotic and Cr(VI): Performance, toxicity evaluation and mechanism insight. Journal of Materials Science and Technology, 2022, 123, 177-190.	5.6	232
71	Phosphorus Co-Existing in Water: A New Mechanism to Boost Boron Removal by Calcined Oyster Shell Powder. Molecules, 2022, 27, 54.	1.7	5
72	Magnetically separable type-II semiconductor based ZnO/MoO ₃ photocatalyst: a proficient system for heteroarenes arylation and rhodamine B degradation under visible light. New Journal of Chemistry, 2022, 46, 8478-8488.	1.4	5

#	Article	IF	CITATIONS
73	Promoted charge separation and specific surface area <i>via</i> interlacing of N-doped titanium dioxide nanotubes on carbon nitride nanosheets for photocatalytic degradation of Rhodamine B. Nanotechnology Reviews, 2022, 11, 1592-1605.	2.6	6
74	Metal–organic frameworkâ€based heterojunction photocatalysts for organic pollutant degradation: design, construction, and performances. Journal of Chemical Technology and Biotechnology, 2022, 97, 2675-2693.	1.6	23
75	Copper selenides controlled hydrothermal synthesis of porous micro-networks with highly efficient photocatalysis. Materials Today Sustainability, 2022, 18, 100135.	1.9	1
76	BiOBr/Bi2S3 heterojunction with S-scheme structureand oxygen defects: In-situ construction and photocatalytic behavior for reduction of CO2 with H2O. Journal of Colloid and Interface Science, 2022, 620, 407-418.	5.0	56
77	Photocatalytic degradation of rhodamine-B by visible light assisted peroxymonosulfate activation using the Z-scheme MIL-100(Fe)/Bi ₂ S ₃ composite: a combined experimental and theoretical approach. New Journal of Chemistry, 2022, 46, 10728-10745.	1.4	13
78	A novel Sn ₂ Nb ₂ O ₇ /defective carbon nitride heterojunction photocatalyst: preparation and application for photocatalytic oxytetracycline removal. CrystEngComm, 2022, 24, 4128-4133.	1.3	4
79	Integration of plasmonic effect and S-scheme heterojunction into gold decorated carbon nitride/cuprous oxide catalyst for photocatalysis. Journal of Cleaner Production, 2022, 360, 131948.	4.6	29
80	Nanodiamonds decorated yolk-shell ZnFe2O4 sphere as magnetically separable and recyclable composite for boosting antibiotic degradation performance. Chinese Journal of Chemical Engineering, 2023, 54, 162-172.	1.7	8
81	In-situ synthesis of nickel/palladium bimetal/ZnIn2S4 Schottky heterojunction for efficient photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2022, 623, 205-215.	5.0	29
82	Green-based biosynthesis of Se nanorods in chitosan and assessment of their photocatalytic and cytotoxicity effects. Environmental Technology and Innovation, 2022, 27, 102610.	3.0	8
83	Interface matters: Design of an efficient CaCu3Ti4O12-rGO photocatalyst. Powder Technology, 2022, 404, 117478.	2.1	12
84	Construction of Au and C60 quantum dots modified materials of Institute Lavoisier-125(Ti) architectures for antibiotic degradation: Performance, toxicity assessment, and mechanistic insight. Journal of Colloid and Interface Science, 2022, 623, 417-431.	5.0	18
85	Generating a captivating S-scheme CuBi2O4/CoV2O6 heterojunction with boosted charge spatial separation for efficiently removing tetracycline antibiotic from wastewater. Journal of Cleaner Production, 2022, 357, 131992.	4.6	63
86	Rationally designed S-scheme heterojunction of C3N4/Bi2MoO6/carbon fiber cloth as a recyclable, macroscopic and efficient photocatalyst for wastewater treatment. Chemical Engineering Journal, 2022, 445, 136703.	6.6	46
87	Decorated Bioi on Bifeo3@Fe2o3 Composite Derived from Mil-101(Fe)@Bioi for Improved Photocatalytic Performance. SSRN Electronic Journal, 0, , .	0.4	0
88	Comparative study of BiVO ₄ and BiVO ₄ /Ag ₂ O regarding their properties and photocatalytic degradation mechanism. New Journal of Chemistry, 2022, 46, 11608-11616.	1.4	7
89	Bioinspired hierarchical 3D flower-in-ridge hybrid structure for the photodegradation of persistent organic pollutants. Nanoscale, 2022, 14, 8130-8144.	2.8	7
90	Constructing Ag decorated ZnS1-x quantum dots/Ta2O5-x nanospheres for boosted tetracycline removal: Synergetic effects of structural defects, S-scheme heterojunction, and plasmonic effects. Journal of Colloid and Interface Science, 2022, 623, 1085-1100.	5.0	21

#	Article	IF	CITATIONS
91	Structural, morphological, and gas sensing properties of Co-doped ZnO nanoparticles. Journal of the Australian Ceramic Society, 2022, 58, 793-802.	1.1	8
92	Visible light driven antibiotics degradation using S-scheme Bi2WO6/CoIn2S4 heterojunction: Mechanism, degradation pathways and toxicity assessment. Chemosphere, 2022, 303, 135113.	4.2	32
93	The photocatalytic performance and mechanism of magnetically retrievable Z-scheme Cr ₂ O ₃ –Fe ₃ O ₄ /C hetero-nanostructure polyhedra. New Journal of Chemistry, 0, , .	1.4	1
94	Designing oxygen vacancy mediated bismuth molybdate (Bi2MoO6)/N-rich carbon nitride (C3N5) S-scheme heterojunctions for boosted photocatalytic removal of tetracycline antibiotic and Cr(VI): Intermediate toxicity and mechanism insight. Journal of Colloid and Interface Science, 2022, 624, 219-232.	5.0	155
95	Two-dimensional polymerized carbon nitride coupled with (0 0 1)-facets-exposed titanium dioxide S-scheme heterojunction for photocatalytic degradation of norfloxacin. Inorganic Chemistry Communication, 2022, 142, 109704.	1.8	4
96	Inorganic-organic hybrid photocatalysts: Syntheses, mechanisms, and applications. Chinese Journal of Catalysis, 2022, 43, 2111-2140.	6.9	49
97	Bisphenol A assisted Ti3C2Tx/CuZnInS Schottky heterojunction for highly efficient photocatalytic nitrogen fixation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129430.	2.3	9
98	Photocatalytic H2 production over S-scheme Co3Se4/TiO2 nanosheet with super-hydrophilic surface. Applied Surface Science, 2022, 599, 153900.	3.1	22
99	A carbon nanowire-promoted Cu ₂ O/TiO ₂ nanocomposite for enhanced photoelectrochemical performance. New Journal of Chemistry, 2022, 46, 15495-15503.	1.4	5
100	Towards a relationship between photoluminescence emissions and photocatalytic activity of Ag ₂ SeO ₄ : combining experimental data and theoretical insights. Dalton Transactions, 2022, 51, 11346-11362.	1.6	5
101	Polypyrrole and a polypyrrole/nickel oxide composite – single-walled carbon nanotube enhanced photocatalytic activity under visible light. New Journal of Chemistry, 2022, 46, 14065-14080.	1.4	5
102	Constructing Cd0.5Zn0.5S/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr(VI) reduction. , 2023, 2, 100073.		158
103	Transpiration-prompted Photocatalytic Degradation of Dye Pollutant with AuNPs/PANI Based Cryogels. Chinese Journal of Polymer Science (English Edition), 0, , .	2.0	4
104	Black phosphorus quantum dots and Ag nanoparticles co-modified TiO2 nanorod arrays as powerful photocatalyst for tetracycline hydrochloride degradation: Pathways, toxicity assessment, and mechanism insight. Separation and Purification Technology, 2022, 297, 121454.	3.9	28
105	Facile synthesizing Z-scheme Bi12O15Cl6/InVO4 heterojunction to effectively degrade pollutants and antibacterial under light-emitting diode light. Journal of Colloid and Interface Science, 2022, 627, 224-237.	5.0	16
106	Metal organic framework-derived Zr/Cu bimetallic photocatalyst for the degradation of tetracycline and organic dyes. Environmental Nanotechnology, Monitoring and Management, 2022, 18, 100727.	1.7	5
107	Enhanced visible light absorption CdS-decorated direct Z-scheme g-C3N4/TiO2 for improved photocatalysis and hydrogen generation. Journal of Materials Research, 2022, 37, 2241-2256.	1.2	4
108	Bismuth (III)-based metal-organic framework for tetracycline removal via adsorption and visible light catalysis processes. Journal of Environmental Chemical Engineering, 2022, 10, 108469.	3.3	3

#	Article	IF	CITATIONS
109	Synthesis of novel pâ€n heterojunction gâ€C ₃ N ₄ /Bi ₄ Ti ₃ O ₁₂ photocatalyst with improved solarâ€lightâ€driven photocatalytic degradation of organic dyes. Environmental Quality Management, 2022, 32, 45-59.	1.0	2
110	Natural Diatomite Supported Zirconium-Doped TiO2 with Tailoring Band Structure for Enhanced Visible-Light Photocatalytic Properties. Nanomaterials, 2022, 12, 2827.	1.9	3
111	Non-metallic hollow porous sphere loaded CN/catalytic ozonation synergistic photocatalytic system: Enhanced treatment of emerging pollutants by three-stage cyclic reaction mechanism. Applied Catalysis B: Environmental, 2022, 318, 121881.	10.8	18
112	Building synergism through heterojunction of n-CaTiO3 with p-CaFe2O4 for upgraded photocatalytic degradation of pharmaceuticals. Powder Technology, 2022, 411, 117945.	2.1	10
113	Ultra-stable type-II heterojunctions Bi4O5I2/FeVO4 of reinforced photocatalytic NOx removal abilities in visible light. Materials Chemistry and Physics, 2022, 291, 126729.	2.0	5
114	Popcorn-like ZnFe2O4/CdS nanospheres for high-efficient photocatalyst degradation of rhodamine B. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654, 130127.	2.3	7
115	Innovation synthesis of Zn0.5Cd0.5S/WO3 S-scheme heterostructures with significantly enhanced photocatalytic activity. Journal of Physics and Chemistry of Solids, 2022, 171, 110986.	1.9	4
116	<i>In situ</i> construction of ZnFe ₂ O ₄ nanospheres on CoO nanosheets for durable photodegradation of organics: kinetics and mechanistic insights. New Journal of Chemistry, 2022, 46, 17201-17212.	1.4	1
117	Co/Ce-modified PbO2 as the active layer in Ti/Sb2O3–SnO2/PbO2 electrodes for efficient degradation of crystal violet. Journal of Materials Research, 0, , .	1.2	0
118	An effective strategy to achieve high photocatalytic activity of a hierarchical ZnO/BiOI structure. Journal of Materials Research, 2022, 37, 3099-3112.	1.2	3
119	Fast synthesis of NaNbO3 nanoparticles with high photocatalytic activity for degradation of organic dyes. Journal of the American Ceramic Society, 2023, 106, 399-409.	1.9	6
120	Confined growth of TiO2 nanoclusters inside mesopores of core–shell silica spheres with high loading as efficient photocatalysts. Journal of Materials Science, 2022, 57, 17277-17290.	1.7	0
121	Rapid fabrication of MgO@g-C ₃ N ₄ heterojunctions for photocatalytic nitric oxide removal. Beilstein Journal of Nanotechnology, 0, 13, 1141-1154.	1.5	4
122	Unveiling Sâ€Scheme Charge Transfer Pathways in In ₂ S ₃ /Nb ₂ O ₅ Hybrid Nanofiber Photocatalysts for Lowâ€Concentration CO ₂ Hydrogenation. Solar Rrl, 2023, 7, .	3.1	12
123	Enhanced removal of tetracycline over CeMO-7Â% nanorods via electronic interaction effect: Degradation, kinetics and mechanism. Journal of Water Process Engineering, 2022, 50, 103284.	2.6	6
124	Recent advances in designing ZnIn2S4-based heterostructured photocatalysts for hydrogen evolution. Journal of Materials Science and Technology, 2023, 139, 167-188.	5.6	57
125	A conjugated polymeric photocatalyst with a heterostructure and visible-light response for organic pollutant removal. New Journal of Chemistry, 0, , .	1.4	0
126	Yttrium and cobalt doped LaNiO3Ânanoparticles synthesis and solar light driven photocatalytic removal of Rhodamine B. Materials Research Bulletin, 2023, 159, 112112.	2.7	8

#	Article	IF	CITATIONS
127	Growing of ultra-thin Bi2MoO6 nanoflowers on Co/N-doped graphitic carbon nanoshells as attractive custom supports: Excellent photocatalytic degradation activity for pollutants. Applied Surface Science, 2023, 613, 156100.	3.1	9
128	A review study summarizes the main characterization techniques of nano-composite photocatalysts and their applications in photodegradation of organic pollutants. Environmental Nanotechnology, Monitoring and Management, 2023, 19, 100765.	1.7	11
129	Rational design of AgCl@Zr3+-ZrO2 nanostructures for ultra-efficient visible-light photodegradation of emerging pollutants. Applied Catalysis B: Environmental, 2023, 325, 122308.	10.8	32
130	Fabrication of black NiO/Sr2FeTaO6 heterojunctions with rapid interface charge transfer for efficient photocatalytic hydrogen evolution. Frontiers in Chemistry, 0, 10, .	1.8	1
131	Novel Ni2+/Cu2+ doped Bi2WO6 nanosheets with enhanced photocatalytic performance under visible light. Journal of the Iranian Chemical Society, 0, , .	1.2	0
132	Synthesis of porous carbon nanomaterials and their application in tetracycline removal from aqueous solutions. Chinese Journal of Chemical Engineering, 2023, 59, 200-209.	1.7	3
133	Graphene oxide modulated dual S-scheme ultrathin heterojunctions with iron phthalocyanine and phase-mixed bismuth molybdate as wide visible-light catalysts. Environmental Science: Nano, 2023, 10, 922-932.	2.2	7
134	Dual-optimization strategy engineered Ti-based metal-organic framework with Fe active sites for highly-selective CO2 photoreduction to formic acid. Applied Catalysis B: Environmental, 2023, 327, 122418.	10.8	19
135	A novel recoverable 1D core-shell cotton fiber@ZnIn2S4 composite with improved photoactivity for H2 evolution under visible light. International Journal of Hydrogen Energy, 2023, 48, 21712-21722.	3.8	12
136	Interfacial engineering of Ti3C2 MXene/CdIn2S4 Schottky heterojunctions for boosting visible-light H2 evolution and Cr(VI) reduction. Journal of Colloid and Interface Science, 2023, 640, 851-863.	5.0	29
137	Chloroplast inspired Z-scheme photocatalyst for efficient degradation of antibiotics: Synergistic effect of full-visible light response, multi-channel electron transport and enhanced molecular oxygen activation. Separation and Purification Technology, 2023, 315, 123721.	3.9	3
138	Synthesis of PDI/Zn0.8Cd0.2S composites for efficient visible light-driven photocatalytic overall water splitting. Journal of the Taiwan Institute of Chemical Engineers, 2023, 143, 104693.	2.7	4
139	Reduced Fe, Mn-based catalyst with dual reaction sites for rapid decolorization treatment via Fenton-like reactions. Applied Surface Science, 2023, 616, 156522.	3.1	6
140	The enhanced photocatalytic performance of Co3O4 nanoparticles/In2O3 nanotubes pn junction via dual MOFs template auxiliary. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	0
141	MOF derived ZnO clusters on ultrathin Bi2MoO6 yolk@shell reactor: Establishing carrier transfer channel via PANI tandem S–scheme heterojunction. Applied Catalysis B: Environmental, 2023, 328, 122492.	10.8	21
142	Ag3PO4-anchored La2Ti2O7 nanorod as a Z-Scheme heterostructure composite with boosted photogenerated carrier separation and enhanced photocatalytic performance under natural sunlight. Environmental Pollution, 2023, 323, 121322.	3.7	7
143	Supramolecular hybrids based on Ru(<scp>ii</scp>) porphyrin and octahedral Mo(<scp>ii</scp>) iodide cluster. Dalton Transactions, 2023, 52, 5354-5365.	1.6	2
144	Metalloporphyrin modified defective TiO ₂ porous cages with the enhanced photocatalytic activity for coupling of hydrogen generation and tetracycline removal. RSC Advances, 2023, 13, 8822-8829.	1.7	1

CITATION REPORT

#	Article	IF	CITATIONS
145	Boosted Charge Transfer via Coordinate Bond Construction in Porphyrin Metal–Organic Framework/ZnIn ₂ S ₄ Core–Shell Heterostructures. Inorganic Chemistry, 2023, 62, 6794-6807.	1.9	7
146	Heterogeneous activation of persulfate using delafossite AgFeO2/α-MnO2 for efficient degradation of tartrazine under visible light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 670, 131492.	2.3	9