Antimicrobial properties of dental cements modified with nanoparticles

Bioactive Materials 8, 49-56 DOI: 10.1016/j.bioactmat.2021.06.011

Citation Report

#	Article	IF	CITATIONS
1	Advanced Biomaterials for Regulating Polarization of Macrophages in Wound Healing. Advanced Functional Materials, 2022, 32, .	14.9	68
3	Advances in orthodontic clear aligner materials. Bioactive Materials, 2023, 22, 384-403.	15.6	28
4	A Polytetrafluoroethylene (PTFE) and Nano-Al2O3 Based Composite Coating with a Bacteriostatic Effect against E. coli and Low Cytotoxicity. Polymers, 2022, 14, 4764.	4.5	5
5	Antibacterial hydrogel with pH-responsive microcarriers of slow-release VEGF for bacterial infected wounds repair. Journal of Materials Science and Technology, 2023, 144, 198-212.	10.7	23
6	Noninvasive Adaptation Appraisal of Antimicrobial Nano-Filled Composite. International Dental Journal, 2022, , .	2.6	0
7	Nanoparticles in Dentistry—Current Literature Review. Coatings, 2023, 13, 102.	2.6	6
8	Antibacterial Properties In Vitro of Magnesium Oxide Nanoparticles for Dental Applications. Nanomaterials, 2023, 13, 502.	4.1	7
9	Multifunctional dental resin composite with antibacterial and remineralization properties containing nMgO-BAG. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 141, 105783.	3.1	5
10	Estudo da eletrodeposição de óxido de titânio com adição de magnésio em substrato de titânio com corrente constante. Revista Materia, 2023, 28, .	0.2	0
11	Application of Magnesium Oxide Nanoparticles in Dentistry: A Literature Review. European Journal of General Dentistry, 2023, 12, 001-006.	0.4	2
12	Synthesis, Characterization and Antimicrobial Studies of Modified Silica Materials Derived from Rice Husks. BioNanoScience, 2023, 13, 1163-1176.	3.5	2
13	Materials used to prevent adhesion, growth, and biofilm formation of <i>Candida</i> species. Medical Mycology, 2023, 61, .	0.7	2
14	Water Adsorption on MgO Surfaces: A Vibrational Analysis. Crystals, 2023, 13, 1153.	2.2	1
15	Comparing the Antibacterial Effect of Coated and Impregnated Flexible Dentures with Magnesium Oxide Nanoparticles against Streptococcus mutans. Coatings, 2023, 13, 1429.	2.6	0
16	Cytotoxic effects of dose dependent inorganic magnesium oxide nanoparticles on the reproductive organs of rats. Annals of Medicine, 2023, 55, .	3.8	1
17	Fabrication of Allium cepa–assisted magnesium oxide nanoparticles with antibacterial and antioxidant properties. Biomass Conversion and Biorefinery, 0, , .	4.6	0
18	An In vitro Comparison of Retention of Provisional Crowns Cemented with Provisional Cement Enriched with Three Different Additives. Advances in Human Biology, 2023, 13, 327-332.	0.2	0
19	Color behavior of composite resin enhanced with different shapes of new antimicrobial polymer coated nanoparticles. BMC Oral Health, 2023, 23, .	2.3	1

#	Article	IF	CITATIONS
20	Influence of inorganic nanoparticles on dental materials' mechanical properties. A narrative review. BMC Oral Health, 2023, 23, .	2.3	1
21	Advancing oral health: the antimicrobial power of inorganic nanoparticles. Journal of the Korean Ceramic Society, 2024, 61, 201-223.	2.3	0
22	Evaluation of time-dependent ion-release and antibacterial activity of three adhesive resin cements. Tanta Dental Journal, 2024, 21, 21-28.	0.1	0