Mussel-inspired adhesive antioxidant antibacterial hem dressing via photo-polymerization for infected skin wo

Bioactive Materials 8, 341-354

DOI: 10.1016/j.bioactmat.2021.06.014

Citation Report

#	Article	IF	CITATIONS
1	Functional Hydrogels as Wound Dressing to Enhance Wound Healing. ACS Nano, 2021, 15, 12687-12722.	7.3	1,131
2	Antibacterial hydrogel microparticles with drug loading for wound healing. Materials Research Express, 2021, 8, 095403.	0.8	7
3	Paramylon Hydrogel: A Bioactive Material That Scavenges ROS and Promotes Angiogenesis for Wound Repair. SSRN Electronic Journal, 0, , .	0.4	0
4	Injectable Double Network Hydrogel with Hemostasis and Antibacterial Activity for Promoting Multidrugâ°'Resistant Bacteria Infected Wound Healing. SSRN Electronic Journal, 0, , .	0.4	O
5	A bionic cellulose nanofiber-based nanocage wound dressing for NIR-triggered multiple synergistic therapy of tumors and infected wounds. Biomaterials, 2022, 281, 121330.	5.7	56
6	Supramolecular Adhesive Hydrogels for Tissue Engineering Applications. Chemical Reviews, 2022, 122, 5604-5640.	23.0	238
7	Chitosan coated bacteria responsive metal-polyphenol coating as efficient platform for wound healing. Composites Part B: Engineering, 2022, 234, 109665.	5.9	15
8	Antibacterial biomaterials for skin wound dressing. Asian Journal of Pharmaceutical Sciences, 2022, 17, 353-384.	4.3	182
9	An injectable gellan gum-based hydrogel that inhibits <i>Staphylococcus aureus</i> for infected bone defect repair. Journal of Materials Chemistry B, 2022, 10, 282-292.	2.9	13
10	Hydrogel adhesives for generalized wound treatment: Design and applications. Journal of Polymer Science, 2022, 60, 1328-1359.	2.0	34
11	A conductive photothermal non-swelling nanocomposite hydrogel patch accelerating bone defect repair. Biomaterials Science, 2022, 10, 1326-1341.	2.6	25
12	Bio-inspired, bio-degradable adenosine 5′-diphosphate-modified hyaluronic acid coordinated hydrophobic undecanal-modified chitosan for hemostasis and wound healing. Bioactive Materials, 2022, 17, 162-177.	8.6	34
13	Polyphenol-based hydrogels: Pyramid evolution from crosslinked structures to biomedical applications and the reverse design. Bioactive Materials, 2022, 17, 49-70.	8.6	64
14	Wound healing and antibacterial chitosan-genipin hydrogels with controlled drug delivery for synergistic anti-inflammatory activity. International Journal of Biological Macromolecules, 2022, 203, 679-694.	3.6	27
15	Fabrication of gelatin-based and Zn2+-incorporated composite hydrogel for accelerated infected wound healing. Materials Today Bio, 2022, 13, 100216.	2.6	35
16	A multifunctional hydrogel dressing with antibacterial properties for effective wound healing. Dalton Transactions, 2022, 51, 6817-6824.	1.6	7
17	A chitosan-based multifunctional hydrogel containing <i>in situ</i> rapidly bioreduced silver nanoparticles for accelerating infected wound healing. Journal of Materials Chemistry B, 2022, 10, 2135-2147.	2.9	25
18	Regenerative Activities of ROS-Modulating Trace Metals in Subcutaneously Implanted Biodegradable Cryogel. Gels, 2022, 8, 118.	2.1	4

#	Article	IF	Citations
19	Photopolymerized Zwitterionic Hydrogels with a Sustained Delivery of Cerium Oxide Nanoparticle-miR146a Conjugate Accelerate Diabetic Wound Healing. ACS Applied Bio Materials, 2022, 5, 1092-1103.	2.3	10
20	Light-triggered on-site rapid formation of antibacterial hydrogel dressings for accelerated healing of infected wounds., 2022, 136, 212784.		10
21	Antimicrobial hydrogel microspheres for protein capture and wound healing. Materials and Design, 2022, 215, 110478.	3.3	39
22	UV-Crosslinked Electrospun Zein/PEO Fibroporous Membranes for Wound Dressing. ACS Applied Bio Materials, 2022, 5, 1538-1551.	2.3	13
23	Synthesis and characterization of cellulose, \hat{l}^2 -cyclodextrin, silk fibroin-based hydrogel containing copper-doped cobalt ferrite nanospheres and exploration of its biocompatibility. Journal of Nanostructure in Chemistry, 2023, 13, 103-113.	5.3	10
24	Naturally-Sourced Antibacterial Polymeric Nanomaterials with Special Reference to Modified Polymer Variants. International Journal of Molecular Sciences, 2022, 23, 4101.	1.8	21
25	Paramylon hydrogel: A bioactive polysaccharides hydrogel that scavenges ROS and promotes angiogenesis for wound repair. Carbohydrate Polymers, 2022, 289, 119467.	5.1	30
26	Shape-Recoverable Hyaluronic Acid–Waterborne Polyurethane Hybrid Cryogel Accelerates Hemostasis and Wound Healing. ACS Applied Materials & Samp; Interfaces, 2022, 14, 17093-17108.	4.0	35
27	Progress in Hydrogels for Skin Wound Repair. Macromolecular Bioscience, 2022, 22, e2100475.	2.1	56
28	Injectable Hydrogel Based on Defectâ€Rich Multiâ€Nanozymes for Diabetic Wound Healing via an Oxygen Selfâ€6upplying Cascade Reaction. Small, 2022, 18, e2200165.	5.2	64
29	Biomimetic macroporous hydrogel with a triple-network structure for full-thickness skin regeneration. Applied Materials Today, 2022, 27, 101442.	2.3	7
30	A Mg2+/polydopamine composite hydrogel for the acceleration of infected wound healing. Bioactive Materials, 2022, 15, 203-213.	8.6	78
31	N-carboxymethyl chitosan/sodium alginate composite hydrogel loading plasmid DNA as a promising gene activated matrix for in-situ burn wound treatment. Bioactive Materials, 2022, 15, 330-342.	8.6	18
32	An NIR photothermal-responsive hybrid hydrogel for enhanced wound healing. Bioactive Materials, 2022, 16, 162-172.	8.6	60
33	EGCG-crosslinked carboxymethyl chitosan-based hydrogels with inherent desired functions for full-thickness skin wound healing. Journal of Materials Chemistry B, 2022, 10, 3927-3935.	2.9	17
34	Advances in ultrasound-responsive hydrogels for biomedical applications. Journal of Materials Chemistry B, 2022, 10, 3947-3958.	2.9	18
35	An Overview on the Recent Advances in the Treatment of Infected Wounds: Antibacterial Wound Dressings. Macromolecular Bioscience, 2022, 22, e2200014.	2.1	26
36	Supramolecular Thermoâ€Contracting Adhesive Hydrogel with Selfâ€Removability Simultaneously Enhancing Noninvasive Wound Closure and MRSAâ€Infected Wound Healing. Advanced Healthcare Materials, 2022, 11, e2102749.	3.9	120

#	Article	IF	CITATIONS
37	A change-prone zwitterionic hyperbranched terpolymer-based diabetic wound dressing. Applied Materials Today, 2022, 27, 101477.	2.3	5
38	A hydrogel based on nanocellulose/polydopamine/gelatin used for the treatment of MRSA infected wounds with broad-spectrum antibacterial and antioxidant properties and tissue suitability. Biomaterials Science, 2022, 10, 3174-3187.	2.6	8
39	An injectable double network hydrogel with hemostasis and antibacterial activity for promoting multidrug-resistant bacteria infected wound healing. Biomaterials Science, 2022, 10, 3268-3281.	2.6	11
40	Bioactive hydrogels based on polysaccharides and peptides for soft tissue wound management. Journal of Materials Chemistry B, 2022, 10, 7148-7160.	2.9	13
41	Antibacterial adhesive self-healing hydrogels to promote diabetic wound healing. Acta Biomaterialia, 2022, 146, 119-130.	4.1	147
42	Wet-adhesive materials of oral and maxillofacial region: From design to application. Chinese Chemical Letters, 2023, 34, 107461.	4.8	5
43	In situ photoâ€crosslinked hydrogels prepared from acrylated 4â€armâ€poly(ethylene) Tj ETQq0 0 0 rgBT /Overlo Technologies, 2022, 33, 2620-2631.	ock 10 Tf ! 1.6	50 507 Td (gl 2
44	Glucose-responsive biomimetic nanoreactor in bacterial cellulose hydrogel for antibacterial and hemostatic therapies. Carbohydrate Polymers, 2022, 292, 119615.	5.1	23
45	Predatory bacterial hydrogels for topical treatment of infected wounds. Acta Pharmaceutica Sinica B, 2023, 13, 315-326.	5.7	18
46	An injectable and self-healing hydrogel with antibacterial and angiogenic properties for diabetic wound healing. Biomaterials Science, 2022, 10, 3480-3492.	2.6	22
47	A multifunctional chitosan hydrogel dressing for liver hemostasis and infected wound healing. Carbohydrate Polymers, 2022, 291, 119631.	5.1	50
48	Adhesive and Biodegradable Polymer Mixture Composed of High Bio-Safety Pharmaceutical Excipients as Non-Setting Periodontal Dressing. SSRN Electronic Journal, 0, , .	0.4	0
49	Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties. Biomaterials, 2022, 286, 121597.	5.7	174
50	Bioâ€Inspired Antibacterial Hydrogel Adhesives with High Adhesion Strength. Macromolecular Rapid Communications, 2022, 43, .	2.0	7
51	Photoâ€Crosslinked Antimicrobial Hydrogel Exhibiting Wound Healing Ability and Curing Infections In Vivo. Advanced Healthcare Materials, 2022, 11, .	3.9	10
52	Zn ²⁺ Cross-Linked Alginate Carrying Hollow Silica Nanoparticles Loaded with RL-QN15 Peptides Provides Promising Treatment for Chronic Skin Wounds. ACS Applied Materials & Samp; Interfaces, 2022, 14, 29491-29505.	4.0	23
53	Chitosan/Sodium Alginate/Velvet Antler Blood Peptides Hydrogel Promoted Wound Healing by Regulating PI3K/AKT/mTOR and SIRT1/NF-ÎB Pathways. Frontiers in Pharmacology, 0, 13, .	1.6	12
54	Construction of chitosan-based asymmetric antioxidant and anti-inflammatory repair film for acceleration of wound healing. International Journal of Biological Macromolecules, 2022, 215, 377-386.	3.6	15

#	ARTICLE	IF	Citations
55	Preparation and characterization of electrospun nanofibers-based facial mask containing hyaluronic acid as a moisturizing component and huangshui polysaccharide as an antioxidant component. International Journal of Biological Macromolecules, 2022, 214, 212-219.	3.6	22
56	A dynamic nano-coordination protein hydrogel for photothermal treatment and repair of infected skin injury. Journal of Materials Chemistry B, 2022, 10, 8181-8185.	2.9	16
57	Structural and Functional Design of Electrospun Nanofibers for Hemostasis and Wound Healing. Advanced Fiber Materials, 2022, 4, 1027-1057.	7.9	72
58	In situ fused granular hydrogels with ultrastretchability, strong adhesion, and mutli-bioactivities for efficient chronic wound care. Chemical Engineering Journal, 2022, 450, 138076.	6.6	12
59	Supramolecular Hydrogel Based on Pseudopolyrotaxane Aggregation for Bacterial Microenvironmentâ€Responsive Antibiotic Delivery. Chemistry - an Asian Journal, 2022, 17, .	1.7	4
60	Spatiotemporal self-strengthening hydrogels for oral tissue regeneration. Composites Part B: Engineering, 2022, 243, 110119.	5.9	14
61	A photocrosslinking antibacterial decellularized matrix hydrogel with nanofiber for cutaneous wound healing. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112691.	2.5	9
62	Together is better: poly(tannic acid) nanorods functionalized polysaccharide hydrogels for diabetic wound healing. Industrial Crops and Products, 2022, 186, 115273.	2.5	41
63	Advanced Multifunctional Wound Dressing Hydrogels as Drug Carriers. Macromolecular Bioscience, 2022, 22, .	2.1	8
64	Chitosan/Sodium Alginate/Velvet Antler Blood Peptides Hydrogel Promotes Diabetic Wound Healing via Regulating Angiogenesis, Inflammatory Response and Skin Flora. Journal of Inflammation Research, O, Volume 15, 4921-4938.	1.6	12
65	Bilayer Hydrogels for Wound Dressing and Tissue Engineering. Polymers, 2022, 14, 3135.	2.0	17
66	Logic-Based Diagnostic and Therapeutic Nanoplatform with Infection and Inflammation Monitoring and Microenvironmental Regulation Accelerating Wound Repair. ACS Applied Materials & Samp; Interfaces, 2022, 14, 39172-39187.	4.0	11
67	Spongeâ€Like Macroporous Hydrogel with Antibacterial and ROS Scavenging Capabilities for Diabetic Wound Regeneration. Advanced Healthcare Materials, 2022, 11, .	3.9	26
68	Rational Design of Intelligent and Multifunctional Dressing to Promote Acute/Chronic Wound Healing. ACS Applied Bio Materials, 2022, 5, 4055-4085.	2.3	40
69	Injectable magnetic montmorillonite colloidal gel for the postoperative treatment of hepatocellular carcinoma. Journal of Nanobiotechnology, 2022, 20, .	4.2	5
70	Emerging hemostatic materials for non-compressible hemorrhage control. National Science Review, 2022, 9, .	4.6	46
71	Highly stretchable, shape memory and antioxidant ionic conductive degradable elastomers for strain sensing with high sensitivity and stability. Materials and Design, 2022, 222, 111041.	3.3	9
72	A zwitterionic cellulose-based skin sensor for the real-time monitoring and antibacterial sensing wound dressing. Carbohydrate Polymers, 2022, 297, 119974.	5.1	11

#	Article	IF	Citations
73	Gelatin-based nanofiber membranes loaded with curcumin and borneol as a sustainable wound dressing. International Journal of Biological Macromolecules, 2022, 219, 1227-1236.	3.6	15
74	Preparation of biodegradable carboxymethyl cellulose/dopamine/Ag NPs cryogel for rapid hemostasis and bacteria-infected wound repair. International Journal of Biological Macromolecules, 2022, 222, 272-284.	3.6	11
75	Breathable, antifreezing, mechanically skin-like hydrogel textile wound dressings with dual antibacterial mechanisms. Bioactive Materials, 2023, 21, 313-323.	8.6	24
76	Construction of a matchstick-shaped Au@ZnO@SiO ₂ –ICG Janus nanomotor for light-triggered synergistic antibacterial therapy. Biomaterials Science, 2022, 10, 5608-5619.	2.6	11
77	Hydrogels for the treatment of oral and maxillofacial diseases: current research, challenges, and future directions. Biomaterials Science, 2022, 10, 6413-6446.	2.6	17
78	Epicatechin-assembled nanoparticles against renal ischemia/reperfusion injury. Journal of Materials Chemistry B, 2022, 10, 6965-6973.	2.9	3
79	Facile preparation of PVA hydrogels with adhesive, self-healing, antimicrobial, and on-demand removable capabilities for rapid hemostasis. Biomaterials Science, 2022, 10, 5620-5633.	2.6	14
80	A starch-regulated adhesive hydrogel dressing with controllable separation properties for painless dressing change. Journal of Materials Chemistry B, 2022, 10, 6026-6037.	2.9	9
81	Facile preparation of antibacterial hydrogel with multi-functions based on carboxymethyl chitosan and oligomeric procyanidin. RSC Advances, 2022, 12, 20897-20905.	1.7	14
82	Injectable adhesive self-healing biocompatible hydrogel for haemostasis, wound healing, and postoperative tissue adhesion prevention in nephron-sparing surgery. Acta Biomaterialia, 2022, 152, 157-170.	4.1	18
83	Antibacterial Conductive UV-Blocking Adhesion Hydrogel Dressing with Mild On-Demand Removability Accelerated Drug-Resistant Bacteria-Infected Wound Healing. ACS Applied Materials & Samp; Interfaces, 2022, 14, 41726-41741.	4.0	29
84	Production and Application of Biomaterials Based on Polyvinyl alcohol (PVA) as Wound Dressing. Chemistry - an Asian Journal, 2022, 17, .	1.7	32
85	Injectable Antibacterial Gelatin-Based Hydrogel Incorporated with Two-Dimensional Nanosheets for Multimodal Healing of Bacteria-Infected Wounds. ACS Applied Bio Materials, 2022, 5, 4435-4453.	2.3	11
86	Water-Swellable Cellulose Nanofiber Aerogel for Control of Hemorrhage from Penetrating Wounds. ACS Applied Bio Materials, 2022, 5, 4886-4895.	2.3	1
88	In vitro and in vivo Evaluation of the Bioactive Nanofibers-Encapsulated Benzalkonium Bromide for Accelerating Wound Repair with MRSA Skin Infection. International Journal of Nanomedicine, 0, Volume 17, 4419-4432.	3.3	2
89	Multifunctional wound dressing for highly efficient treatment of chronic diabetic wounds. View, 2022, 3, .	2.7	12
90	Preparation and Properties of Asymmetric Polyvinyl Pyrroli-Done/Polycaprolactone Composite Nanofiber Loaded with Tea Tree Extract. Polymers, 2022, 14, 3714.	2.0	2
91	Bioinspired Injectable Self-Healing Hydrogel Sealant with Fault-Tolerant and Repeated Thermo-Responsive Adhesion for Sutureless Post-Wound-Closure and Wound Healing. Nano-Micro Letters, 2022, 14, .	14.4	101

#	Article	IF	CITATIONS
92	Effects and Progress of Photo-Crosslinking Hydrogels in Wound Healing Improvement. Gels, 2022, 8, 609.	2.1	10
93	Bio-macromolecular design roadmap towards tough bioadhesives. Chemical Society Reviews, 2022, 51, 9127-9173.	18.7	31
94	Recent Advances in Functional Wound Dressings. Advances in Wound Care, 2023, 12, 399-427.	2.6	4
95	PVA Based Nanofiber Containing GO Modified with Cu Nanoparticles and Loaded Curcumin; High Antibacterial Activity with Acceleration Wound Healing. Current Drug Delivery, 2023, 20, 1569-1583.	0.8	12
96	Preparation and properties of chitosan-VC loaded nano-silver-doped natural latex. Progress in Natural Science: Materials International, 2022, 32, 625-633.	1.8	6
97	Synergistic Wound Healing by Novel Ag@ZIF-8 Nanostructures. International Journal of Pharmaceutics, 2022, 629, 122339.	2.6	23
98	Antibacterial Electrospun Nanofibrous Materials for Wound Healing. Advanced Fiber Materials, 2023, 5, 107-129.	7.9	30
99	Emerging materials for hemostasis. Coordination Chemistry Reviews, 2023, 475, 214823.	9.5	31
100	A catechol bioadhesive for rapid hemostasis and healing of traumatic internal organs and major arteries. Biomaterials, 2022, 291, 121908.	5.7	14
101	Analyzing and mapping the research status, hotspots, and frontiers of biological wound dressings: An in-depth data-driven assessment. International Journal of Pharmaceutics, 2022, 629, 122385.	2.6	3
102	Engineering functional natural polymer-based nanocomposite hydrogels for wound healing. Nanoscale Advances, 2022, 5, 27-45.	2.2	20
103	Antibacterial smart hydrogels: New hope for infectious wound management. Materials Today Bio, 2022, 17, 100499.	2.6	18
104	Polysaccharide-Based Adhesive Antibacterial and Self-Healing Hydrogel for Sealing Hemostasis. Biomacromolecules, 2022, 23, 5106-5115.	2.6	12
105	Biocide loaded shear-thinning hydrogel with anti-biofilm efficacy cures topical infection. Biomaterials Science, 2023, 11, 998-1012.	2.6	2
106	Cellulose nanofibrils reinforced chitosan-gelatin based hydrogel loaded with nanoemulsion of oregano essential oil for diabetic wound healing assisted by low level laser therapy. International Journal of Biological Macromolecules, 2023, 226, 220-239.	3.6	17
107	Enzymatic one-pot preparation of carboxylmethyl chitosan-based hydrogel with inherent antioxidant and antibacterial properties for accelerating wound healing. International Journal of Biological Macromolecules, 2023, 226, 823-832.	3.6	6
108	An antioxidant and antibacterial polydopamine-modified thermo-sensitive hydrogel dressing for <i>Staphylococcus aureus</i> -infected wound healing. Nanoscale, 2023, 15, 644-656.	2.8	19
109	Recent advances in conductive hydrogels: classifications, properties, and applications. Chemical Society Reviews, 2023, 52, 473-509.	18.7	125

#	Article	IF	CITATIONS
110	Facile preparation of polyphenol-crosslinked chitosan-based hydrogels for cutaneous wound repair. International Journal of Biological Macromolecules, 2023, 228, 99-110.	3.6	21
111	Honokiol@PF127 crosslinked hyaluronate-based hydrogel for promoting wound healing by regulating macrophage polarization. Carbohydrate Polymers, 2023, 303, 120469.	5.1	7
112	Antibacterial hydrogel with pH-responsive microcarriers of slow-release VEGF for bacterial infected wounds repair. Journal of Materials Science and Technology, 2023, 144, 198-212.	5.6	23
113	Mesoporous bioglass capsule composite injectable hydrogels with antibacterial and vascularization promotion properties for chronic wound repair. Journal of Materials Chemistry B, 2022, 10, 10139-10149.	2.9	9
114	Multifunctional 3D platforms for rapid hemostasis and wound healing: Structural and functional prospects at biointerfaces. International Journal of Bioprinting, 2022, 9, 648.	1.7	1
115	Polysaccharide-based hydrogels for drug delivery and wound management: a review. Expert Opinion on Drug Delivery, 2022, 19, 1664-1695.	2.4	16
116	Nanoarchitectonics of La-Doped Titanium Dioxide Nanoparticles for Optical and Antibacterial Properties. Nano, 2022, 17, .	0.5	2
117	Advances in Hemostatic Hydrogels That Can Adhere to Wet Surfaces. Gels, 2023, 9, 2.	2.1	12
118	Design of Adhesive Hemostatic Hydrogels Guided by the Interfacial Interactions with Tissue Surface. Advanced NanoBiomed Research, 2023, 3, .	1.7	2
119	Selfâ€Pumping Janus Hydrogel with Aligned Channels for Accelerating Diabetic Wound Healing. Macromolecular Rapid Communications, 2023, 44, .	2.0	3
120	Fabrication and inÂvitro characterization of zinc oxide nanoparticles and hyaluronic acid-containing carboxymethylcellulose gel for wound healing application. Pharmaceutical Development and Technology, 2023, 28, 95-108.	1.1	2
121	Long-term antibacterial, antioxidative, and bioadhesive hydrogel wound dressing for infected wound healing applications. Biomaterials Science, 2023, 11, 2080-2090.	2.6	4
122	Copper nano-architectures topical cream for the accelerated recovery of burnt skin. Nanoscale Advances, $0, , .$	2.2	3
123	Advances and challenges on hydrogels for wound dressing. Current Opinion in Biomedical Engineering, 2023, 26, 100443.	1.8	16
124	Omni-adhesive fibers via Taylor-cone co-electrospinning towards cold-supply chain. Nano Today, 2023, 48, 101748.	6.2	0
125	Electroactive injectable hydrogel based on oxidized sodium alginate and carboxymethyl chitosan for wound healing. International Journal of Biological Macromolecules, 2023, 230, 123231.	3.6	27
126	Preparation and characterization of mussel-inspired hydrogels based on methacrylated catechol-chitosan and dopamine methacrylamide. International Journal of Biological Macromolecules, 2023, 229, 443-451.	3.6	7
127	Supramolecular Gel, Its classification, preparation, properties, and applications: A review. Polymer-Plastics Technology and Materials, 2023, 62, 306-326.	0.6	0

#	ARTICLE	IF	CITATIONS
128	Nanomaterials-Functionalized Hydrogels for the Treatment of Cutaneous Wounds. International Journal of Molecular Sciences, 2023, 24, 336.	1.8	1
129	Multi-functional carboxymethyl chitosan/sericin protein/halloysite composite sponge with efficient antibacterial and hemostatic properties for accelerating wound healing. International Journal of Biological Macromolecules, 2023, 234, 123357.	3.6	16
130	Structure-property-function relationships of sustainable hydrogels., 2023,, 79-111.		0
131	A Dual-Crosslinked Hydrogel Based on Gelatin Methacryloyl and Sulfhydrylated Chitosan for Promoting Wound Healing. International Journal of Molecular Sciences, 2023, 24, 2447.	1.8	6
132	Hydrogels with electrically conductive nanomaterials for biomedical applications. Journal of Materials Chemistry B, 2023, 11, 2036-2062.	2.9	17
133	A chitosan-based self-healing hydrogel for accelerating infected wound healing. Biomaterials Science, 2023, 11, 4226-4237.	2.6	10
134	Facile fabrication of self-healing, injectable and antimicrobial cationic guar gum hydrogel dressings driven by hydrogen bonds. Carbohydrate Polymers, 2023, 310, 120723.	5.1	22
135	Injectable, self-healable and antibacterial multi-responsive tunicate cellulose nanocrystals strengthened supramolecular hydrogels for wound dressings. International Journal of Biological Macromolecules, 2023, 240, 124365.	3.6	8
136	Abundant tannic acid modified gelatin/sodium alginate biocomposite hydrogels with high toughness, antifreezing, antioxidant and antibacterial properties. Carbohydrate Polymers, 2023, 309, 120702.	5.1	20
137	Regenerated silk fibroin and alginate composite hydrogel dressings loaded with curcumin nanoparticles for bacterial-infected wound closure. , 2023, 149, 213405.		11
138	Preparation and evaluation of a novel alginate-arginine-zinc ion hydrogel film for skin wound healing. Carbohydrate Polymers, 2023, 311, 120757.	5.1	21
139	Gelatin and catechol-modified quaternary chitosan cotton dressings with rapid hemostasis and high-efficiency antimicrobial capacity to manage severe bleeding wounds. Materials and Design, 2023, 229, 111927.	3.3	6
140	Sustained release of EGF/bFGF growth factors achieved by mussel-inspired core–shell nanofibers with hemostatic and anti-inflammatory effects for promoting wound healing. European Polymer Journal, 2023, 190, 112003.	2.6	5
141	Functional carbohydrate-based hydrogels for diabetic wound therapy. Carbohydrate Polymers, 2023, 312, 120823.	5.1	10
142	Atomically precise Au nanocluster-embedded carrageenan for single near-infrared light-triggered photothermal and photodynamic antibacterial therapy. International Journal of Biological Macromolecules, 2023, 230, 123452.	3.6	14
143	Multifunctional chitosan/alginate hydrogel incorporated with bioactive glass nanocomposites enabling photothermal and nitric oxide release activities for bacteria-infected wound healing. International Journal of Biological Macromolecules, 2023, 232, 123445.	3.6	13
144	All-in-one bioactive properties of photothermal nanofibers for accelerating diabetic wound healing. Biomaterials, 2023, 295, 122029.	5.7	40
145	Injectable Intrinsic Photothermal Hydrogel Bioadhesive with Onâ€Demand Removability for Wound Closure and MRSAâ€Infected Wound Healing. Advanced Healthcare Materials, 2023, 12, .	3.9	26

#	Article	IF	CITATIONS
146	PDGF and VEGF-releasing bi-layer wound dressing made of sodium tripolyphosphate crosslinked gelatin-sponge layer and a carrageenan nanofiber layer. International Journal of Biological Macromolecules, 2023, 233, 123491.	3.6	15
147	Antioxidant ability and increased mechanical stability of hydrogel nanocomposites based on N-isopropylacrylamide crosslinked with Laponite and modified with polydopamine. European Polymer Journal, 2023, 187, 111876.	2.6	4
148	Antibacterial Collagenâ€Based Nanocomposite Dressings for Promoting Infected Wound Healing. Advanced Healthcare Materials, 2023, 12, .	3.9	12
149	Tissue adhesives for wound closure. , 2023, 2, .		8
150	Biocompatible gellan gum/sericin hydrogels containing halloysite@polydopamine nanotubes with hemostasis and photothermal antibacterial properties for promoting infectious wound repair. Materials and Design, 2023, 227, 111744.	3.3	16
151	Versatile Hydrogel Dressing with Skin Adaptiveness and Mild Photothermal Antibacterial Activity for Methicillinâ€Resistant Staphylococcus Aureusâ€Infected Dynamic Wound Healing. Advanced Science, 2023, 10, .	5.6	32
152	Click-crosslinked in-situ hydrogel improves the therapeutic effect in wound infections through antibacterial, antioxidant and anti-inflammatory activities. Chemical Engineering Journal, 2023, 461, 142092.	6.6	8
153	Chitosan-Based Biomaterials for Tissue Regeneration. Pharmaceutics, 2023, 15, 807.	2.0	35
155	Fabrication and desired properties of conductive hydrogel dressings for wound healing. RSC Advances, 2023, 13, 8502-8522.	1.7	6
156	Development of 3D-Printable Albumin–Alginate Foam for Wound Dressing Applications. 3D Printing and Additive Manufacturing, 0, , .	1.4	2
157	Mussel-inspired methacrylated gelatin-dopamine/quaternized chitosan/glycerin sponges with self-adhesion, antibacterial activity, and hemostatic ability for wound dressings. International Journal of Biological Macromolecules, 2023, 241, 124102.	3.6	8
158	A contact-polymerizable hemostatic powder for rapid hemostasis. Biomaterials Science, 2023, 11, 3616-3628.	2.6	9
159	Recent advances in adhesive materials used in the biomedical field: adhesive properties, mechanism, and applications. Journal of Materials Chemistry B, 2023, 11, 3338-3355.	2.9	6
160	A good adhesion and antibacterial double-network composite hydrogel from PVA, sodium alginate and tannic acid by chemical and physical cross-linking for wound dressings. Journal of Materials Science, 2023, 58, 5756-5772.	1.7	5
161	Double-Network Chitosan-Based Hydrogels with Improved Mechanical, Conductive, Antimicrobial, and Antibiofouling Properties. Gels, 2023, 9, 278.	2.1	8
162	Polydopamine-functionalized selenium nanoparticles as an efficient photoresponsive antibacterial platform. RSC Advances, 2023, 13, 9998-10004.	1.7	5
163	Accelerating bone regeneration in cranial defects using an injectable organic–inorganic composite hydrogel. Journal of Materials Chemistry B, 2023, 11, 3713-3726.	2.9	1
164	Glucoseâ€Responsive Antioxidant Hydrogel Accelerates Diabetic Wound Healing. Advanced Healthcare Materials, 2023, 12, .	3.9	14

#	Article	IF	CITATIONS
165	A CS-based composite scaffold with excellent photothermal effect and its application in full-thickness skin wound healing. Regenerative Biomaterials, 2023, 10 , .	2.4	2
166	Chitosan-Based Nanocomposites as Efficient Wound Dressing Materials. Biological and Medical Physics Series, 2023, , 181-199.	0.3	1
167	In situ forming ROS-scavenging hybrid hydrogel loaded with polydopamine-modified fullerene nanocomposites for promoting skin wound healing. Journal of Nanobiotechnology, 2023, 21, .	4.2	6
168	Bioinspired Polyacrylic Acidâ€Based Dressing: Wet Adhesive, Selfâ€Healing, and Multiâ€Biofunctional Coacervate Hydrogel Accelerates Wound Healing. Advanced Science, 2023, 10, .	5. 6	19
169	Biodegradable Polymers and Polymer Composites with Antibacterial Properties. International Journal of Molecular Sciences, 2023, 24, 7473.	1.8	9
170	Heat preservation, antifouling, hemostatic and antibacterial aerogel wound dressings for emergency treatment. Frontiers of Materials Science, 2023, 17, .	1.1	1
171	Photocatalytic Ag/AgBr-MBG for Rapid Antibacterial and Wound Repair. ACS Biomaterials Science and Engineering, 2023, 9, 2470-2482.	2.6	3
193	Recent advances in novel materials and techniques for developing transparent wound dressings. Journal of Materials Chemistry B, 2023, 11, 6201-6224.	2.9	10
235	Fundamentals of hydrogels lâ€"mechanical characterization. , 2024, , 3-12.		0
241	Three-dimensional approaches based on nanotechnology towards wound management. , 2024, , 245-280.		0
249	Side-by-Side Electrospun PCL-Ag NPs/CA-Lavender Oil Janus Nanobelt as a Potential Dressing. , 2023, , .		1
264	Polysaccharide-based responsive hydrogels for skin regeneration. , 2024, , 405-428.		O