Predicting rice yield at pixel scale through synthetic use with satellite data in South and North Korea

Science of the Total Environment 802, 149726

DOI: 10.1016/j.scitotenv.2021.149726

Citation Report

#	Article	IF	CITATIONS
1	Exploring the potential role of environmental and multi-source satellite data in crop yield prediction across Northeast China. Science of the Total Environment, 2022, 815, 152880.	8.0	24
2	Multi-Resolution-Based Deep Learning Approach for Rice Field Monitoring. Canadian Journal of Remote Sensing, 2022, 48, 278-298.	2.4	1
3	Assessing Surface Water Flood Risks in Urban Areas Using Machine Learning. Water (Switzerland), 2021, 13, 3520.	2.7	5
4	A Systematic Literature Review on Crop Yield Prediction with Deep Learning and Remote Sensing. Remote Sensing, 2022, 14, 1990.	4.0	79
5	Accurately mapping global wheat production system using deep learning algorithms. International Journal of Applied Earth Observation and Geoinformation, 2022, 110, 102823.	1.9	8
6	Probabilistic forecasting of remotely sensed cropland vegetation health and its relevance for food security. Science of the Total Environment, 2022, 838, 156157.	8.0	3
7	Incorporation of machine learning and deep neural network approaches into a remote sensing-integrated crop model for the simulation of rice growth. Scientific Reports, 2022, 12, .	3.3	10
8	Random Forest for rice yield mapping and prediction using Sentinel-2 data with Google Earth Engine. Advances in Space Research, 2022, 70, 2443-2457.	2.6	11
9	Machine Learning for Smart Agriculture and Precision Farming: Towards Making the Fields Talk. Archives of Computational Methods in Engineering, 2022, 29, 4557-4597.	10.2	26
10	Downscaling solar-induced chlorophyll fluorescence for field-scale cotton yield estimation by a two-step convolutional neural network. Computers and Electronics in Agriculture, 2022, 201, 107260.	7.7	15
11	Integrating an attention-based deep learning framework and the SAFY-V model for winter wheat yield estimation using time series SAR and optical data. Computers and Electronics in Agriculture, 2022, 201, 107334.	7.7	3
12	Machine Learning Crop Yield Models Based on Meteorological Features and Comparison with a Process-Based Model. , 2022, 1, .		1
13	Winter Wheat Yield Prediction Using an LSTM Model from MODIS LAI Products. Agriculture (Switzerland), 2022, 12, 1707.	3.1	19
14	Assimilation of Deep Learning and Machine Learning Schemes into a Remote Sensing-Incorporated Crop Model to Simulate Barley and Wheat Productivities. Remote Sensing, 2022, 14, 5443.	4.0	1
15	Rice Yield Estimation Using Deep Learning. Communications in Computer and Information Science, 2022, , 379-388.	0.5	8
16	Representation Learning with a Variational Autoencoder for Predicting Nitrogen Requirement in Rice. Remote Sensing, 2022, 14, 5978.	4.0	3
17	Developing an integrated approach based on geographic object-based image analysis and convolutional neural network for volcanic and glacial landforms mapping. Scientific Reports, 2022, 12, .	3.3	6
18	Integrating environmental and satellite data to estimate county-level cotton yield in Xinjiang Province. Frontiers in Plant Science, 0, 13, .	3.6	2

	CITATION REP	CITATION REPORT	
#	Article	IF	CITATIONS
19	Deep learning methods for scientific and industrial research. Handbook of Statistics, 2023, , 107-168.	0.6	1
20	Neglected infrastructures for 6G—Underwater communications: How mature are they?. Journal of Network and Computer Applications, 2023, 213, 103595.	9.1	6
21	A comparative study of deep learning and Internet of Things for precision agriculture. Engineering Applications of Artificial Intelligence, 2023, 122, 106034.	8.1	35
22	AsiaRiceYield4km: seasonal rice yield in Asia from 1995 to 2015. Earth System Science Data, 2023, 15, 791-808.	9.9	6
23	In-season mapping of rice yield potential at jointing stage using Sentinel-2 images integrated with high-precision UAS data. European Journal of Agronomy, 2023, 146, 126808.	4.1	5
24	Forecasting Wheat Yield Using Long Short- Term Memory Considering Soil and Metrological Parameters. , 2023, , .		1
25	Mapping Wheat Take-All Disease Levels from Airborne Hyperspectral Images Using Radiative Transfer Models. Remote Sensing, 2023, 15, 1960.	4.0	1
26	Remote-Sensing Data and Deep-Learning Techniques in Crop Mapping and Yield Prediction: A Systematic Review. Remote Sensing, 2023, 15, 2014.	4.0	20
27	A novel transfer learning framework for sorghum biomass prediction using UAV-based remote sensing data and genetic markers. Frontiers in Plant Science, 0, 14, .	3.6	3
28	Deep Learning-based Near-real-time Monitoring of Autumn Irrigation Extent at Sub-pixel Scale in a Large Irrigation District. Agricultural Water Management, 2023, 284, 108335.	5.6	1
29	Ensemble Deep Learning Algorithm for Forecasting of Rice Crop Yield based on Soil Nutrition Levels. EAI Endorsed Transactions on Scalable Information Systems, 0, , e7.	0.8	1
30	Ứng dụng công nghệ UAV (drones) theo dõi sinh trưởng và dự báo năng suất lúa tại vùng c Giang. Tap Chi Khoa Hoc = Journal of Science, 2023, 59, 35-44.	anh tÃic l 0.1	úa tỉnh O
31	Estimation Rice Productivity Based on Vegetation Index Algorithm of Modis MOD13A1 Satellite (Case) Tj ETQq0 C Environmental Science, 2023, 1182, 012008.	0 rgBT /C 0.3	Overlock 10 ⁻ 0
32	CNN-BI-LSTM-CYP: A deep learning approach for sugarcane yield prediction. Sustainable Energy Technologies and Assessments, 2023, 57, 103263.	2.7	2
33	Automated H yperparameter Tuned Stacked Autoencoder based Rice Crop Yield Prediction Model. , 2023, , .		2
34	Spatio-temporal patterns and driving mechanisms of rice biomass during the growth period in China since 2000. Ecological Indicators, 2023, 153, 110389.	6.3	1
35	Crop yield estimation based on assimilation of crop models and remote sensing data: A systematic evaluation. Agricultural Systems, 2023, 210, 103711.	6.1	6
36	Winter wheat yield prediction in the conterminous United States using solar-induced chlorophyll fluorescence data and XGBoost and random forest algorithm. Ecological Informatics, 2023, 77, 102194.	5.2	7

CITATION REPORT

#	Article	IF	CITATIONS
37	Crop Mapping Based on Sentinel-2 Images Using Semantic Segmentation Model of Attention Mechanism. Sensors, 2023, 23, 7008.	3.8	2
38	Crop Yield Prediction Using Spatio Temporal CNN and Multimodal Remote Sensing. , 2023, , .		2
39	Can Yield Prediction Be Fully Digitilized? A Systematic Review. Agronomy, 2023, 13, 2441.	3.0	4
40	Paddy Rice mapping in fragmented lands by improved phenology curve and correlation measurements on Sentinel-2 imagery in Google earth engine. Environmental Monitoring and Assessment, 2023, 195, .	2.7	0
41	Improving grain yield prediction through fusion of multi-temporal spectral features and agronomic trait parameters derived from UAV imagery. Frontiers in Plant Science, 0, 14, .	3.6	0
42	Improved prediction of rice yield at field and county levels by synergistic use of SAR, optical and meteorological data. Agricultural and Forest Meteorology, 2023, 342, 109729.	4.8	0
43	Mapping Indian Rice Yields Through Statistical Modeling Using Satellite and Climatic Data. , 2023, , .		0
44	Regional-scale cotton yield forecast via data-driven spatio-temporal prediction (STP) of solar-induced chlorophyll fluorescence (SIF). Remote Sensing of Environment, 2023, 299, 113861.	11.0	0
45	Functional–Structural Plant Model "GreenLab― A State-of-the-Art Review. Plant Phenomics, 2024, 6, .	5.9	0
46	Simulation of the of the DeepLabv3 neural network learning process for the agricultural fields segmentation. Vestnik Dagestanskogo Gosudarstvennogo TehniÄeskogo Universiteta: TehniÄeskie Nauki, 2023, 50, 142-149.	0.1	0
47	An Extensive Study on Precision Farming Based on Crop Yield Using Integrated Approaches to Learning. , 2023, , .		0
48	Deep learningâ€based association analysis of root image data and cucumber yield. Plant Journal, 2024, 118, 696-716.	5.7	0
49	High-Throughput Plot-Level Quantitative Phenotyping Using Convolutional Neural Networks on Very High-Resolution Satellite Images. Remote Sensing, 2024, 16, 282.	4.0	0
50	Combining machine learning and remote sensing-integrated crop modeling for rice and soybean crop simulation. Frontiers in Plant Science, 0, 15, .	3.6	0
51	Using Probabilistic Machine Learning Methods to Improve Beef Cattle Price Modeling and Promote Beef Production Efficiency and Sustainability in Canada. Sustainability, 2024, 16, 1789.	3.2	0