Phytoremediation potential of the naturally occurring v Beach in Ulcinj, Montenegro

Science of the Total Environment 797, 148995

DOI: 10.1016/j.scitotenv.2021.148995

Citation Report

#	Article	IF	CITATIONS
1	Tolerance mechanism and phytoremediation potential of <i>Pistia stratiotes</i> to zinc and cadmium co-contamination. International Journal of Phytoremediation, 2022, 24, 1259-1266.	3.1	7
2	Functions of nickel in higher plants: A review. Acta Agriculturae Serbica, 2022, 27, 89-101.	0.6	2
3	Provenance and sediment dispersal in the Po-Adriatic source-to-sink system unraveled by bulk-sediment geology. Earth-Science Reviews, 2022, 234, 104202.	9.1	11
4	Ecological disturbances and abundance of anthropogenic pollutants in the aquatic ecosystem: Critical review of impact assessment on the aquatic animals. Chemosphere, 2023, 313, 137475.	8.2	7
5	A review on sources identification of heavy metals in soil and remediation measures by phytoremediation-induced methods. International Journal of Environmental Science and Technology, 2024, 21, 1099-1120.	3.5	6
6	Is the Plant Bolboschoenus maritimus an Adequate Biomonitor for Trace Metal Contamination in Saltmarshes? A Field Study from the Óbidos Lagoon (Portugal). Journal of Marine Science and Engineering, 2023, 11, 1826.	2.6	0
7	The combined rhizoremediation by a triad: plant-microorganism-functional materials. Environmental Science and Pollution Research, 2023, 30, 90500-90521.	5.3	3
8	Ameliorative effect of natural floating island as fish aggregating devices on heavy metals distribution in a freshwater wetland. Environmental Pollution, 2023, 336, 122428.	7.5	1
9	Phytoremediation of Heavy Metals: Reaction Mechanisms and Selected Efficient Technologies of Heavy Metal Contamination. , 2023, , 245-269.		0
10	Phytostabilization of metal(loid)s by ten emergent macrophytes following a 90-day exposure to industrially contaminated groundwater. New Biotechnology, 2024, 79, 50-59.	4.4	1
11	Bioaccumulation efficacy and physio-morphological adaptations in response to iron and aluminium contamination of Indian camphorweed (Pluchea indica L.) using different growth substrates. Environmental Science and Pollution Research, 2024, 31, 23623-23637.	5.3	0