An experimental study on methanol as a fuel in large bo Port fuel injected spark ignited combustion

Fuel 303, 121292

DOI: 10.1016/j.fuel.2021.121292

Citation Report

#	Article	IF	CITATIONS
1	Does soot form in a spark-ignition engine fuelled with lean methanol and methanol-hydrogen mixtures?. Fuel, 2021, 306, 121728.	6.4	0
2	The effect of methanol production and application in internal combustion engines on emissions in the context of carbon neutrality: A review. Fuel, 2022, 320, 123902.	6.4	91
3	Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: New concept and energy analysis. Energy Conversion and Management, 2022, 260, 115582.	9.2	4
4	Experimental Studies on a Small-Bore Port Fuel Injected SI Engine Operated on Neat Methanol and Comparison with Gasoline. , 0, , .		1
5	The Operating Parameters, Structural Composition, and Fuel Sustainability Aspects of PEM Fuel Cells: A Mini Review. Fuels, 2022, 3, 449-474.	2.7	23
6	Integration and Validation of a Quasi-Dimensional Modelling Methodology and Application to Light-Duty and Heavy-Duty Methanol-Fueled Spark-Ignited Engines. , 0, , .		О
7	Investigation on injection strategy affecting the mixture formation and combustion of a heavy-duty spark-ignition methanol engine. Fuel, 2023, 334, 126680.	6.4	5
8	Experimental study on flame combustion characteristics of large-bore marine diesel engine based on endoscopic technology. Case Studies in Thermal Engineering, 2023, 44, 102856.	5.7	1
9	Effects of injection and spark timings on combustion, performance and emissions (regulated and) Tj ETQq0 0 0 r 247, 107758.	gBT /Overl 7.2	lock 10 Tf 50 8
11	Optical diagnosis study of fuel volatility on combustion characteristics of spray flame and wall-impinging flame. Fuel Processing Technology, 2023, 250, 107880.	7.2	3
12	Review of current regulations, available technologies, and future trends in the green shipping industry. Ocean Engineering, 2023, 280, 114670.	4.3	32
13	Particulates, unregulated and regulated emissions and catalytic converter efficiency evaluation of methanol (M15) fuelled BS-VI compliant light-duty spark-ignition engine. Science of the Total Environment, 2023, 902, 166047.	8.0	O
14	Methanol Evaporation in an Engine Intake Runner under Various Conditions. , 0, , .		0
15	Renewable Alternatives for Fossil Fuels in Non-Road Mobile Machinery: A Multicriteria Analysis. , 0, , .		0
16	The sensitivity of pressure-based knock threshold values to alternative fuels: A comparison of methanol vs. gasoline. Fuel, 2024, 362, 130850.	6.4	0
17	An exploratory study of knock intensity in a large-bore heavy-duty methanol engine. Energy Conversion and Management, 2024, 302, 118089.	9.2	1
18	Experimental Investigation on Knock Characteristics from Pre-Chamber Gas Engine Fueled by Hydrogen. Energies, 2024, 17, 937.	3.1	0