Development and assessment of a solar driven trigener electricity, ammonia and fresh water production

Energy Conversion and Management 245, 114585

DOI: 10.1016/j.enconman.2021.114585

Citation Report

#	Article	IF	CITATIONS
1	Design and modeling of a multigeneration system driven by waste heat of a marine diesel engine. International Journal of Hydrogen Energy, 2022, 47, 40513-40530.	3.8	12
2	Fe–Co controlled super-hygroscopic hydrogels toward efficient atmospheric water harvesting. Nanoscale, 2022, 14, 18022-18032.	2.8	7
3	Technical-Economic Feasibility Study of a Tri-Generation System in an Isolated Tropical Island. International Journal of Energy Optimization and Engineering, 2022, 11, 1-26.	0.4	0
4	Thermo-enviro-exergoeconomic analysis and multi-objective optimization of a novel geothermal-solar-wind micro-multi-energy system for cleaner energy production. Chemical Engineering Research and Design, 2023, 170, 157-175.	2.7	35
5	Hydrogen electrolyser for sustainable energy production: A bibliometric analysis and future directions. International Journal of Hydrogen Energy, 2023, 48, 4960-4983.	3.8	24
6	Techno-economic analysis and optimization of a proposed solar-wind-driven multigeneration system; case study of Iran. International Journal of Hydrogen Energy, 2023, 48, 13343-13361.	3.8	21
7	Development and assessment of a solar-driven multigeneration plant with compressed hydrogen storage for multiple useful products. International Journal of Hydrogen Energy, 2023, 48, 39043-39063.	3.8	10
8	Sensitivity analysis and exergoeconomic optimization of an improved He-CO2 cascade Brayton cycle	4.4	6